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Injuries to the spinal cord nervous system often result in permanent loss of
sensory, motor, and autonomic functions. Accurately identifying the cellular state
of spinal cord nerves is extremely important and could facilitate the development
of new therapeutic and rehabilitative strategies. Existing experimental techniques
for identifying the development of spinal cord nerves are both labor-intensive and
costly. In this study, we developed a machine learning predictor, ScnML, for
predicting subpopulations of spinal cord nerve cells as well as identifying marker
genes. The prediction performance of ScnML was evaluated on the training
dataset with an accuracy of 94.33%. Based on XGBoost, ScnML on the test dataset
achieved 94.08% 94.24%, 94.26%, and 94.24% accuracies with precision, recall,
and F1-measure scores, respectively. Importantly, ScnML identified new
significant genes through model interpretation and biological landscape
analysis. ScnML can be a powerful tool for predicting the status of spinal cord
neuronal cells, revealing potential specific biomarkers quickly and efficiently, and
providing crucial insights for precision medicine and rehabilitation recovery.
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Introduction

The spinal cord nerves are the primary regulators of a wide range of motor behaviors in
animals, which cover a range of fine motor actions from basic fight or flight responses to
complex social interactions (Liau et al., 2023a). When the spinal nerves are abnormal, the
patient quickly enters a phase known as “spinal shock,” which can lead to permanent loss of
motor, sensory, and autonomic functions (Li et al., 2022). Spinal cord injury (SCI) is a
traumatic neurological disorder, especially lower thoracic and cervical spine lesions causing
paraplegia and quadriplegia (Alizadeh et al., 2019). A detailed understanding of spinal cord
nerves provides important implications for the future development of more precise clinical
treatments or guided exercise training to promote functional recovery after SCI, as well as
for the conduct of pathophysiologic research (Fu et al., 2016; Alizadeh et al., 2019).

With the development of single-cell sequencing technique (Xiong et al., 2020; Xiong
et al., 2022), we can explore the cellular composition of spinal nerves at high resolution. For
example, Liau et al. (2023b) used scRNA sequencing to resolve the heterogeneity of mouse
spinal motor neurons and discovered a diverse code of neuropeptide to characterize
putative motor pool identities. Based on single-cell RNA sequencing (scRNA-seq)
technique, Wang T. et al. (2023) resolved the cellular heterogeneity of orthopedic
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diseases, including spinal cord injury (SCI), related to their
development, as well as their functions and potential molecular
mechanisms. Cao et al. (2022) utilized single-cell RNA sequencing
(scRNA-seq) to comprehensively depict the cellular diversity of the
spinal cord, deeply reveal the dynamic changes of cells and
molecules in the microenvironment, and elucidate the
intercellular communication between the normal and injured
states of the spinal cord, which provides a powerful tool for the
study of the molecular mechanisms of traumatic spinal cord injury.
Delile et al. (2019) used single-cell mRNA sequencing to resolve
developmental maps of the cervical and thoracic regions of the
neural tube in mice on embryonic days 9.5–13.5, revealing
mechanisms of neuronal specification and providing direct
insights into spinal cord cell classification.

Despite the fact that previous research techniques are quitemature,
there are time-consuming and laborious problems in mining marker
genes and identifying cell subpopulations using manual methods.
Therefore, there is an urgent need to develop a computational
method to assist researchers in efficiently identifying cellular
subpopulations and deeply exploring their potential marker genes.

To overcome these challenges, we introduced a computational
framework, called ScnML, designed to identify biomarkers of cell
subpopulations within the spinal cord neuronal and to predict
cellular developmental stages. The framework is shown in

Figure 1. In order to obtain the optimal predictive model, we
used a strategy that combines feature selection and incremental
feature selection (IFS) (Wang et al., 2021a) in four basic
classification methods: K-Nearest Neighbors (KNN), extreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016),
Support Vector Machine (SVM) (Cortes and Vapnik, 1995;
Zhang et al., 2024), and Random Forest (RF) (Al-Allak et al.,
2013). Given the importance of interpretability and robustness,
we chose the XGBoost algorithm to build the computational
model. We validated the model using a test set and achieved an
accuracy of 94.04%. By performing biological analysis of the optimal
genes, we identified potential marker genes that may assist biologists
in gaining a deeper insight into the diversity present within spinal
cord neuronal.

Identification of significant genes by ScnML

To identify significant genes associated with spinal cord
neuronal cell subpopulations, we used three feature selection
methods (Mutual Information Coefficient: MIC, Coefficient of
Variation Squared: CV2, and Principal Component Analysis:
PCA) to assess the significance of 27,998 genes and ranked them
according to their contribution values. Genes with importance

FIGURE 1
The workflow of constructing ScnML.
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scores less than or equal to zero were excluded. Next, the machine
learning models were combined with IFS to determine the optimal
subset of genes (Figures 2A–C). Machine learning models (SVM,
RFC, XGBoost, and KNN) were trained using single-cell gene
expression matrices (Normalized of raw read count) as input
features, based on five-fold cross-validation.

The results from the training dataset showed that MIC
combination with XGBoost (ScnML), achieved the optimal
prediction performance by using the first 210 genes, with an
accuracy of 94.33% (Table 1). Based on the 210 best genes, ScnML
also achieved the best performance on the test dataset, with accuracy,
precision, recall, and F1_metrics of 94.08%, 94.24%, 94.26%, and
94.24%, respectively (Table 2). It is notable that the four machine
learning models, when combined with PCA, also yielded superior
predictive performance. To avoid feature selection methods having
the same scoring preferences, we compared the top 100 genes scored
by the three feature selection methods. As observed from Figure 2D,
there is almost no intersection among the top 100 genes selected by
MIC, CV2, and PCA, demonstrating the effectiveness of each feature
selection method.

Performance of ScnML on the test dataset

To further validate the robustness of the model, receiver operating
characteristic (ROC) curves and confusion matrices were used to
evaluate the prediction performance of ScnML. We observe that the
AUC of the ScnML model is 0.96 (Figure 3A). The confusion matrix
validates the predictive performance of the model for each type of
spinal cord neural subpopulation, and the low misclassification rate
demonstrates the robustness of the model (Figure 3B). In addition,
Uniform Manifold Approximation and Projection (UMAP) of
6,000 single cells revealed that the overall performance of the
210 marker genes was significantly better than that of all genes
(Figures 3C, D). In particular, the samples from different categories
were almost blended together in the clustering process that exploited all
genes (Figure 3C). However, employing the 210 optimal genes
generates a distinct distribution of cell subpopulations,
demonstrating clear clustering findings (Figure 3D). We also
performed heat map clustering analysis on the ScnML gene set and
obtained excellent clustering results, demonstrating the advantages of
machine learning (Supplementary Figure S1).

FIGURE 2
The results of feature selection. (A–C) Show the incremental feature selection (IFS) curves illustrating the prediction performance of the three
feature selection methods (CV2, MIC and PCA) with four different classifiers for different gene subsets. (D) Comparative Venn diagram of the top
100 genes in MIC, CV2 and PCA.
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Gene function analysis

We performed functional enrichment analysis of the ScnML
gene set to explore biological processes related to sci
pathophysiology and potential recovery mechanisms. The analysis
revealed significant enrichment in genes associated with axon
ensheathment, myelination, and the ensheathment of neurons,
highlighting the pivotal role of myelin repair and axonal
regeneration post-injury (Franklin and Ffrench-Constant, 2008;
Lee et al., 2012) (Supplementary Figure S2). Additionally,
processes such as glial cell differentiation and gliogenesis were
prominently featured, underscoring the importance of glial
responses in scar formation and neural tissue remodeling
(Sofroniew, 2009). Importantly, our findings also suggest that the
regulation of cell-substrate adhesion and leukocyte migration,

including myeloid cells, as key components in the inflammatory
response and subsequent healing processes (Supplementary Figures
S3, S4). The modulation of cell adhesion dynamics is particularly
critical, as it influences axonal growth and neural cell interaction
with the extracellular matrix, which are essential for effective nerve
repair (Zhu et al., 2015).

Expression analysis of the ScnML gene set

In addition, we explored the representation of the 210 marker
genes in the biological landscape. We identified potential marker
genes such as Atp1a2, which is highly expressed in astrocytes; C1qa
and Ly86, which are specifically expressed in microglia; and Vtn,
which characterizes a subpopulation of endothelial cells (Figure 4A).

TABLE 1 Performance evaluation of different feature selection combined with machine learning schemes (Train dataset).

Method Feature selection No. of features Accuracy (%)

KNN PCA 360 47.15

XGBoost PCA 10,000 94.11

SVM PCA 14,000 88.14

RFC PCA 4,800 87.79

KNN CV2 760 31.72

XGBoost CV2 10,000 92.29

SVM CV2 10,000 84.33

RFC CV2 18,000 87.04

KNN MIC 60 85.77

XGBoost MIC 210 94.33

SVM MIC 660 93.72

RFC MIC 4,800 87.79

TABLE 2 Performance evaluation of different feature selection combined with machine learning schemes (Test dataset).

Method Feature selection No. of features Accuracy (%) Precision (%) Recall (%) F1-measure (%)

KNN PCA 360 45.23 45.64 46.06 45.47

XGBoost PCA 10,000 92.89 92.13 92.04 92.33

SVM PCA 14,000 87.05 87.50 86.61 86.92

RFC PCA 4,800 87.23 87.36 86.97 87.23

KNN CV2 760 27.41 27.23 27.02 26.51

XGBoost CV2 10,000 91.83 92.12 92.04 92.00

SVM CV2 10,000 82.41 84.35 82.57 82.90

RFC CV2 18,000 86.33 87.86 86.68 86.85

KNN MIC 60 86.91 88.64 87.06 87.47

XGBoost MIC 210 94.08 94.24 94.26 94.24

SVM MIC 660 93.51 93.80 93.74 93.74

RFC MIC 4,800 87.13 88.31 87.46 87.62
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These genes have been verifiably reported. Furthermore, the use of
multiple genes to characterize cellular subpopulations improves
accuracy. For instance, Meg3, Snhg11, and Malat1 ensure the
identification of neuron subpopulations; Atp1a2, Cst3, and Dbi
are highly expressed in astrocytes; and Cst3, C1qb, and Ctss
exhibit high expression levels in microglia (Figure 4B).

We analyzed single-cell expression profiles containing all genes
and separately, the 210 genes, as the basis for constructing a partition-
based graph abstraction (PAGA) to describe the spinal cord neuronal
cell bioscape. Both displayed the same topological structure, such as a
tight association between microglia and astrocytes, indicating that
ScnML screened for key molecular markers and removed redundant
information (Figures 5A, B). We utilized Scanpy to compare the
expression levels of the top 20 genes in each cell subpopulation with
their expression levels in the other five clusters. For example, the
expression levels of Cst3, Dbi, and Malat1 in the astrocyte
subpopulation were each higher than the combined totals from the

remaining five cellular subpopulations. In the neuron cell
subpopulation, Meg3, Snhg11, and Malat1 showed high levels of
expression, suggesting their potential as marker genes (Figure 5C and
Supplementary Table S1). These results indicate that ScnML possesses
irreplaceable advantages in processing scRNA-seq data without
relying on prior biological knowledge.

Conclusion

Single-cell sequencing technology has been extensively used in
both basic science research and the clinical setting, promoting the
exploration of cellular differentiation and molecular heterogeneity.
In this research, we designed and developed a machine learning-
based predictive model, ScnML, for predicting spinal cord nerve cell
subpopulations. ScnML addresses the computational inefficiencies
and overfitting problems caused by high-dimensional feature spaces,

FIGURE 3
Predictive performance of ScnML. (A) The ReceiverOperating Characteristic (ROC) curves for the ScnMLmodel evaluated on the training dataset. (B)
Confusion matrix for ScnML, used to assess the predictive performance of the model for each cell subpopulation classification. (C) UMAP shows
clustering performance for six spinal cord nervous cell subpopulations at all gene set levels. (D) UMAP shows clustering performance for six spinal cord
nervous cell subpopulations at ScnML gene set levels.
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thereby improving the model’s prediction accuracy and robustness.
Results from an independent dataset show that ScnML
outperformed other methods, achieving an accuracy of 94.08%
and a ROC of 0.96. More significantly, through the analysis of
the ScnML model, we have successfully identified a set of key genes
that can be utilized as reliable biomarkers for spinal cord neuronal
cell subpopulations. This discovery provides an important molecular
tool for deeper comprehension of spinal cord nerve cells’ intricacies,
with far-reaching impacts on future neurobiology research.

Methods

Dataset construction and preprocessing

The single-cell transcriptome dataset of crush-injured adult
mouse spinal cord that support the findings of this study are
available in figshare with the identifier (https://doi.org/10.6084/
m9.figshare.17702045) (Li et al., 2022). Based on the same
processing method used by Liu et al. the raw sequence data were

aligned to the mm10 (Ensembl 84) reference genome and cell
numbers and unique molecular identifiers (UMIs) were estimated
using CellRanger (3.1.0). The 6,000 single-cell transcriptome
samples were used to classify six spinal cord injury cell
subpopulations, including Endothelial, Astrocyte, Microglia,
Neuron, Oligodendrocyte (ODC), and Pericyte cells. These
single-cell transcriptome samples were randomly divided into a
4800-sample training set and a 2200-sample testing set with a ratio
of 7:3. To construct a stringent and robust benchmark dataset, we
applied a filtration criterion, excluding genes with unique feature
counts of zero or less. This process yielded a final set of 27,998 genes,
each expressed in at least one of the 6,000 cells surveyed.

Mutual information coefficient

The Mutual Information Coefficient (MIC) is predicated on the
idea that the presence of a relationship between two variables allows
for the construction of a grid that effectively partitions their scatter
plot, encapsulating the essence of their interaction. To enable

FIGURE 4
Computational analysis of ScnML gene set. (A) UMAP shows reported marker genes for spinal cord neuronal cell subpopulations. (B) Violin plot
shows potential marker genes for subpopulations of spinal cord nerve cells.
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equitable comparisons across grids of different sizes, the mutual
information values derived from these partitions are normalized.
This normalization ensures a consistent framework for evaluating
the strength and complexity of relationships between variables,
irrespective of their scale or the intricacy of their association
(Zhou et al., 2004; Reshef et al., 2011; Albanese et al., 2012).

I X;Y( ) � ∑
x,y

p x, y( )log
p x, y( )

p x( )p y( )
� H X( ) −H X|Y( ) (1)

Where I(X;Y) representing Mutual Information Entropy, is a
measure of the information about variable X (or Y) contained in
variable Y (orX).

Biological analysis

We performed an extensive analysis to assess the represent
capability of 210 marker genes in identifying cell subpopulations.
The clustering analyses were performed using the Scanpy software
(version 1.9.1), and default parameters were used for all analyses

(Wolf et al., 2018). Partition-based graph abstraction (PAGA) was
also implemented via Scanpy, while uniform manifold
approximation and projection (UMAP) visualizations were
generated using the umap-learn Python package (version 0.3.9),
with parameters set to default values. Furthermore, functional
enrichment analysis was executed employing the enrichGO
function from the clusterProfiler package (version 4.6.2).

eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is a highly sophisticated
and efficient machine learning algorithm that has gained widespread
recognition for its performance in various predictive modeling
competitions (Chen and Guestrin, 2016; Wang et al., 2023b).
XGBoost has gained prominence for its efficiency and
effectiveness in various predictive modeling competitions. It
operates by constructing a series of decision trees in a sequential
manner, where each subsequent tree aims to correct the errors of its
predecessors. This approach enables the model to learn complex

FIGURE 5
(A, B) Expression trajectory analysis of 210marker genes (downward) and all genes (upward) of spinal cord nerve cell subpopulations colored by cell
type using PAGA. The thicker the line, the closer the cell connection. (C) Comparison of marker genes selected by ScnML (210 marker genes) using split
violin plots. The expression level ofmarker genes in specific cells is shown on the left (Blue), and the total expression level in the remaining five cell types is
shown on the right (Orange).
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patterns in the data, enhancing its predictive accuracy. One of the
key strengths of XGBoost is its ability to handle large datasets with
speed and precision, making it an ideal choice for our study. In
addition, compared to models such as KNN and SVM, XGBoost
provides a direct way to evaluate the importance of each
input variable.

Model evaluation

The four classic metrics were used to quantify the performance
of model predictions, including Accuracy, Recall, Precision, and F1_
measure, defined as (Fu et al., 2019; Wang et al., 2021b; Joshi et al.,
2021; Liang et al., 2021; Wang et al., 2023c; Liu et al., 2023; Qian
et al., 2023):

Accuracy � TP + TN

TP + TN + FP + FN
(2)

Recall � TP

TP + FN
(3)

Precision � TP

TP + FP
(4)

F1measure � 2* precision*recall( )
precision + recall

(5)

Where TP, TN, FP andFN represent the numbers of true positives,
true negatives, false positives and false negatives, respectively. In
addition, ROC was used to evaluate the performance of the ScnML
(Zeng et al., 2016; Zulfiqar et al., 2024).
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