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Introduction: Vitamin C is an essential nutrient. Sex differences in serum vitamin
C concentrations have been observed but are not fully known. Investigation of
levels of metabolites may help shed light on how dietary and other environmental
exposures interact with molecular processes. O-methylascorbate and ascorbic
acid 2-sulfate are two metabolites in the vitamin C metabolic pathway. Past
research has found genetic factors that influence the levels of these two
metabolites. Therefore, we investigated possible effect modification by sex of
genetic variant-metabolite associations and characterized the biological function
of these interactions.

Methods: We included individuals of European descent from the Canadian
Longitudinal Study on Aging with available genetic and metabolic data (n =
9004). We used linear mixed models to tests for genome-wide associations
with O-methylascorbate and ascorbic acid 2-sulfate, with and without a sex
interaction. We also investigated the biological function of the important genetic
variant-sex interactions found for each metabolite.

Results: Two genome-wide statistically significant (p value < 5 × 10−8) interaction
effects and several suggestive (p value < 10–5) interaction effects were found.
These suggestive interaction effects were mapped to several genes including
HSD11B2, associated with sex hormones, and AGRP, associated with hunger
drive. The genesmapped to O-methylascorbate were differently expressed in the
testis tissues, and the genes mapped to ascorbic acid 2-sulfate were differently
expressed in stomach tissues.

Discussion: By understanding the genetic factors that impact metabolites
associated with vitamin C, we can better understand its function in disease
risk and the mechanisms behind sex differences in vitamin C concentrations.
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1 Introduction

Vitamin C consumption and its effects on aging have been
extensively studied (Balboa-Castillo et al., 2018; Carr and Zawari,
2023). There has been evidence to suggest that older adults do not
consume a high enough concentration, and this may lead to
increased risk of frailty and other conditions due to the immune
effects of the vitamin (Carr and Maggini, 2017; Carr and Zawari,
2023). Past research has also found differences between serum
vitamin C concentrations in males and females, with males more
likely to have lower concentrations (Schleicher et al., 2009; Carr and
Lykkesfeldt, 2023). Several theories have been proposed to account
for this difference, including external factors such as body size and
lifestyle factors and internal or molecular factors such as sex
hormones (Travica et al., 2020). Some studies which have noted
the influence of sex hormones on vitamin C concentrations have
relied on cellular and animal models (Nathani and Nath, 1972;
Kume-Kick and Rice, 1998; Travica et al., 2020). One recent cross-
sectional study in infertile men found there was an inverse
association between serum ascorbic acid and luteinizing hormone
levels, however, the relationship between vitamin C and sex
hormones in humans needs to be further explored (Rastegar
Panah et al., 2023).

The exposome is the totality of all environmental exposures in
someone’s lifetime and how they influence disease (Wild, 2005).
One way to quantify a portion of the exposome is through the levels
of metabolites. A metabolite refers to a substance that is produced or
consumed during metabolism. Metabolites are intermediates in a
metabolic pathway and can be substrates or products. Quantifying
metabolites can bring insight into mechanisms by which the
environment affects biological/metabolic processes (Walker et al.,
2019). For example, a study by Hysi et al. (2019) used this strategy to
look at the metabolic associations of intraocular pressure (IOP)
which is an endophenotype for glaucoma (Hysi et al., 2019).

Genetic factors can influence the levels of metabolites and there
have been recently conducted large-scale genome-wide association
studies (GWAS) to identify genetic associations (Lotta et al., 2021;
Hysi et al., 2022; Yin et al., 2022; Chen et al., 2023). Chen et al. (2023)
recently conducted a GWAS to identify genetic factors associated
with all metabolites measured in participants of the Canadian
Longitudinal Study on Aging (CLSA) (Raina et al., 2019;
Michelotti et al., 2023). Among the metabolites investigated were
O-methylascorbate and ascorbic acid 2-sulfate, both of which are
involved in vitamin C metabolism (Blaschke and Hertting, 1971;
Tolbert et al., 1975). A few single nucleotide polymorphisms (SNPs)
were found to be significantly associated with these two metabolites
(Chen et al., 2023). Yin et al. (2022), conducted a similar analysis
which included both metabolites in a Finnish population and found
significant associations (Yin et al., 2022). However, it is not known
whether these genetic associations are affected by sex, which may
explain some of the sex differences in vitamin C concentrations seen
between males and females.

In this paper we aimed to investigate how sex affects the genetic
association of variants across the genome with O-methylascorbate and
ascorbic acid 2-sulfate in the CLSA data. In addition, using the
comprehensive functional annotation platform FUMA (Watanabe
et al., 2017), we aimed to uncover the functional consequences of
these genetic associations. This would help to investigate potential

molecular mechanisms for sex-differences in vitamin C concentrations
such as through an association with sex hormones. Understanding how
genetic factors affect vitamin C-related metabolites can aid in
understanding the influence of vitamin C on metabolic processes,
and in turn how vitamin C influences disease phenotypes.

2 Methods

2.1 Study population

We used baseline data from the Comprehensive Cohort of the
Canadian Longitudinal Study on Aging (CLSA) (Raina et al., 2019).
The CLSA recruited participants between 2010 and 2015 who were
between the ages of 45–85 years to investigate social, environmental,
and other factors that affect aging and disease. The Comprehensive
Cohort included 30,097 participants with baseline data collected
between 2012 and 2015 via in-home interviews and in-person
physical examinations and biospecimen sample collections at
CLSA data collection sites located in Victoria, Vancouver, Surrey,
Calgary, Winnipeg, Hamilton, Ottawa, Montreal, Sherbrooke,
Halifax, and St. John’s, Canada. Inclusion criteria required
participants to be community dwelling, be cognitively
unimpaired, and to speak English or French. Not included were
full-time members of the Canadian Armed Forces, those residing on
a federal First Nations reserve or settlement, those living in a long-
term care institution, and non-residents or citizens of Canada.

Of the Comprehensive Cohort, 9,992 participants had
metabolite levels quantified and 26,662 individuals were
genotyped (Forgetta et al., 2022; Michelotti et al., 2023). In this
study we focused on ~9,000 CLSA participants of European ancestry
with genetic and metabolic information and without any missing
covariate information. Written informed consent was obtained for
all participants, and research ethics board approval was obtained for
all CLSA affiliated sites. The analysis presented here was approved
by the University of Ottawa research ethics board.

2.2 Genomic data quality control

Blood samples were collected from consenting participants of
the CLSA Comprehensive Cohort, and samples were moved
to −80°C storage before shipment to the genomics facility where
they were stored at −20°C. The Affymetrix Axiom array was used to
perform genome-wide genotyping, resulting in 794,409 variants
from 26,622 participants (Forgetta et al., 2022). We followed the
genetic ancestry procedures performed by the CLSA to identify
participants of European descent (Forgetta et al., 2022). The CLSA
genomic data release included genotype data imputed using the
TOPMed reference panel, resulting in ~308 million variants
imputed (Taliun et al., 2021). Prior to GWAS, we filtered out
variants from the imputed data that had a minor allele frequency
(MAF) <0.01, an imputation quality score <0.3 and
missingness >0.1. After these filters, 8,836,359 variants remained
for analysis. Both single nucleotide polymorphisms (SNPs) and
insertions/deletions (INDELs) were included. All genomic
positions are according to the human reference genome assembly
GRCh38/hg38.
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2.3 Metabolite processing

Metabolite levels were quantified using mass spectrometry and
then identified using the Metabolon Discovery HD4TM LC-MS
platform (Michelotti et al., 2023). Metabolite values underwent
quality control measures and 1,314 metabolites were included in
the final dataset. We were interested in two metabolites:
O-methylascorbate and ascorbic acid 2-sulfate. In this GWAS we
used the CLSA data with batch normalized values and where missing
values were imputed with the lowest value recorded. Other researchers
have reported using this imputation approach for missing values, and
we assumed missing values were due to the limit of detection of the
Metabolon platform (Playdon et al., 2019). For O-methyl ascorbate,
there were no missing values, and for ascorbic acid 2-sulfate, there
were 113 missing values. Prior to analysis, metabolites levels were log-
transformed and extreme outliers (more than 3 SD away) removed
followed by normalization to a mean of 0 and an SD of one which was
done in prior studies (Chen et al., 2023).

2.4 Overall genome-wide association study

We first performed a GWAS on the complete dataset using
mixed linear models as implemented in the GCTA/fastGWA
program (Jiang et al., 2019). Briefly, the model fit by GCTA/
fastGWA is:

y � xsnpβsnp + Xcβc + g + e

where y is the vector of metabolite levels, xsnp is the vector of
genotypes of a specific genetic variant, βsnp is the coefficient of the
genetic variant, Xc is the matrix of fixed covariates with their
respective coefficients βc, g captures the total genetic effects with
g ~ N(0, πσ2g) and relatedness matrix π, and e is the residual effect
with e ~ N(0, Iσ2e). We used a sparse SNP-derived genetic
relatedness matrix (GRM) as a covariance structure to control for
population stratification and relatedness. The covariates included in
the model were age, sex, batch number, the first ten genetic principal
components, province, and hours since the last meal or drink.

After removing individuals with missing covariate values and
outlier metabolites, there were 8,916 participants for the
O-methylascorbate GWAS and 8,835 participants for the ascorbic
acid 2-sulfate GWAS. Manhattan plots and qqplots were made using
the qqman (Turner, 2018) package in R to visualize for any
statistically significant variants. We only followed up genome-
wide significant genetic variants (p-value <5 × 10−8). In our
Supplementary Tables SA1, we also provide our results for
variants meeting the suggestive level of significance (p-value <1 ×
10−5) (Duggal et al., 2008) for ease of replication in future studies.

Independent (i.e., in linkage equilibrium) genetic variants were
obtained using the GCTA/COJO program (Yang et al., 2012) which
implements a stepwise selection procedure to identify variants
within significantly associated genomic regions that remain
independently associated with the trait after conditioning on
most statistically significant variants. The program also
incorporates linkage disequilibrium (LD) structure information
from an input population, which was set as the same individuals
as those used in the GWAS analysis. Significant variant threshold
was based on the genome-wide significance level of 5 × 10−8.

We investigated functional significance using the platform FUMA
(Watanabe et al., 2017) for lead variants identified by COJO analysis.
To identify associated genes, positional mapping, quantitative
expression quantitative trait loci (eQTL) mapping, and chromatin
interaction mapping were used. FUMA identifies all variants in LD
(based on 1000 Genomes LD structure) with lead variants to use for
mapping. Variants were filtered prior to mapping to only those with a
Combined Annotation Dependent Depletion (CADD) (Rentzsch
et al., 2019) score above a threshold established as associated with
variants with deleterious effects (Amendola et al., 2015; Watanabe
et al., 2017) that based on research classifying the pathogenicity of
genetic variants was set at the suggested level of >12.37 (Amendola
et al., 2015). For positional mapping, we additionally only used exonic
or splicing variants. For eQTL mapping, a false discovery rate (FDR)
threshold of <0.05 was adopted. For chromatin interaction mapping
the threshold was an FDR of<1 × 10−06, in line with the default FUMA
parameters (Watanabe et al., 2017). All tissues were used for mapping.

2.5 Genetic variant-sex interaction GWAS

We performed a GWAS to test whether genetic effects were
modified by chromosomal sex. To achieve this, we used the GCTA
program fastGWA-GE (Zhong et al., 2023), which fits the
following model:

y � GβG + G+E( )βGEI + Xcβc + gρ + 

where + is the Hadamard element-wise product. In this model, y is
the n × 1 vector of phenotypes, G is the vector of genotypes of a
specific genetic variant, E is the vector of standardized
environmental variable (here chromosomal sex) and βGEI is the
gene-environment interaction (GEI) effect while Xc is the matrix of
covariates with effects βc. The vector of residuals  ~ N(0, Inσ2ϵ)
where In is an n × n identity matrix. The vector gρ is an n × 1 vector
of all combined genetic main and GEI effects with gρ ~ N(0,Kρσ2g ),
where Kρ � ρK + (1 − ρ)DKD, K is the kinship matrix (or a sparse
GRM), D is an n x n matrix where the jth diagonal entry is Ej,
ρ � σ2main

σ2g
, and σ2g � σ2main + σ2GEI. In fastGWA-GE, the variance

components σ2g and σ2ϵ , and ρ are estimated under the null
hypothesis of no genetic or GEI effects. These estimates are then
used to obtain a residualized phenotype, yresid � yadj − ĝρ, by
removing the predicted genetic effects ĝρ � σ̂2ϵV

−1yadj, where yadj �
y − Xc(XT

c Xc)−1XT
c y and V−1 is obtained from the estimates of σ2g ,

σ2ϵ , and ρ. The test of βGEI � 0 after adjusting for genetic main effects
is then performed by a Wald test with sandwich correction from the
linear regression: yresid � GβG + (G+E)βGEI + .

We adjusted for the covariates age, batch number, province,
hours since last meal and the first 10 principal components. We
used the same sparse GRM as for the main GWAS above and
filtered for MAF 0.01 using the GCTA program, leading to
8,580,042 variants.

2.6 Finding significant signals of interaction
and their functional consequences

We followed up all suggestive interaction signals based on a
p-value threshold commonly used for suggestive significance in

Frontiers in Genetics frontiersin.org03

Lelievre et al. 10.3389/fgene.2024.1411931

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1411931


GWASs (p-value of interaction test <1 × 10−05) (Duggal et al., 2008).
We used the FUMA application to select lead variants and define loci
of interest. The same parameters were used as before, such as
filtering by CADD score; however, lead variants were not
provided to FUMA externally. In this case, the application selects
lead variants and independent significant variants based on LD (r2)
information (Watanabe et al., 2017). In brief, all variants with
p-values below the suggestive threshold and independent from
each other (r2 < 0.6) were identified. Variants that were in r2 ≥
0.6 with these variants and had a p-value less than 0.05 were equally
considered for gene mapping. Lead variants were chosen from the
identified suggestive variants if they had r2 < 0.1 with other
shortlisted variants.

In a small number of cases (8), variants that were suggestive were
not recognized in the FUMA application, and required an
alternative investigation. These variant regions were visualized
using LD Link (Machiela and Chanock, 2015) and lead variants
and any additional annotated variants were selected based on similar
criteria to FUMA. The CADD score of resulting variants was
determined to filter variants that could be used for mapping.
None of the identified variants were above the CADD threshold
for deleteriousness and therefore were not mapped to genes. To
annotate the functions of the lead variants and variants that met
FUMA criteria, but which were not recognized in the platform, the
Variant Effect Predictor (VEP) platform from Ensembl was used
(McLaren et al., 2016).

To follow-up on interaction results, we estimated the effect sizes
for each lead variant in linear mixed models after stratifying the
sample by sex. The models were the same as for the overall GWAS
described above and were adjusted for the same covariates. For
O-methylascorbate, the number of participants was 4,580 and
4,329 for males and females, respectively. For ascorbic acid 2-
sulfate, the number of participants was 4,310 and 4,518 for males
and females, respectively.

To illustrate the direction of effect for each lead identified variant
stratified by sex, we plotted interaction graphs using the results from the
GWAS stratified by sex.We plotted the effect size of each lead variant by
sex with a 95% confidence interval using R/ggplot.

To report the results of this study, we were informed by
Strengthening the Reporting of Genetic Associations (STREGA)
guidelines (Little et al., 2009).

3 Results

3.1 Overall GWAS results

Using the GCTA-fastGWA program we found 592 statistically
significantly associated variants (p-value <5 × 10−8) with
O-methylascorbate. For ascorbic acid 2-sulfate, we found
56 statistically significantly associated variants (p-value < 5 ×
10−8). The Manhattan plot of these results is displayed in
Supplementary Figure S1 and Supplementary Figure S2. The full
list of suggestive variants and p-values for O-methylascorbate and
ascorbic acid 2-sulfate are found in Supplementary Table S1 and
Supplementary Table S2 respectively.

Using the GCTA-COJO software to follow-up significantly
associated variants (p-value < 5 × 10−8), we identified three
independent lead variants for O-methylascorbate, all of which were
on chromosome 22. For ascorbic acid 2-sulfate, we identified two lead
variants on chromosome 16 and one lead variant at chromosome 10.
The variant positions, effect allele frequencies, GWAS p-value and
COJO-adjusted p-value are summarized in Table 1.

3.2 Functional consequences of genes

Using the FUMA platform, we determined the functional
consequences of the lead variants found in the COJO analysis
and variants in LD with those variants which met FUMA
criteria. Variants associated with O-methylascorbate were
mapped to 13 genes, which included both known and novel gene
associations (Supplementary Table S5). We subsequently used the
FUMA platform to identify the functional consequences of the
mapped genes, such as their expression levels in different tissue
types and whether the set of genes was enriched in any functional
pathways. The mapped genes were not significantly differentially
expressed in any tissue types (Supplementary Table S6). The
functional gene sets linked to some processes such as genes
which are involved in a cancer cell-death evasion mechanism
(Jinesh and Kamat, 2017). No gene sets could be directly related
to vitamin C functions (Supplementary Table S7).

Variants associated with ascorbic acid 2-sulfate were mapped to
71 genes (Supplementary Table S8). Using the same process as
before, we found that the mapped genes were not significantly
differentially expressed in any tissue types (Supplementary Table
S9). The mapped genes were linked to gene sets for chromosomal
and proximal deletions syndromes; however, they did not link to any
vitamin C functions (Supplementary Table S10). Several novel genes
were mapped to ascorbic acid 2-sulfate as well.

3.3 Genetic variant-sex interaction GWAS

We conducted a genetic variant-by-sex GWAS and found that, for
O-methylascorbate, there were no statistically significant interactions
while there were 69 suggestive interaction variants. For ascorbic acid
2-sulfate, we found two statistically significant interaction variants and
83 suggestive interaction variants. The significant variants were
rs1296721356 (chr1:13354706) and rs1301173408 (chr1:13341668).
Manhattan plots visualizing the associations are shown in Figure 1.
The full list of suggestive interaction variants and p-values for
O-methylascorbate and ascorbic acid 2-sulfate are found in
Supplementary Table S3 and Supplementary Table S4 respectively.

We investigated all the signals at statistically significant and
suggestive levels. Using the default parameters of FUMA, we
identified 25 lead variants for O-methylascorbate and 23 lead
variants for ascorbic acid 2-sulfate (Supplementary Tables S11,
S12). After conducting separate sex stratified GWAS analyses for
comparison, we saw that all interactions were qualitative in nature,
meaning that the variants had opposite effects in males and females
in the sex-stratified analyses (Figure 2).
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In Tables 2, 3, we summarized the lead variants for each
suggestive interaction loci, nearest genes, annotated functions,
and number of genes mapped at each suggestive genomic loci for
O-methylascorbate and ascorbic acid 2-sulfate respectively. Overall,
most of the genomic loci included variants in intronic or intergenic
regions, which were not mapped to any genes. However, some
regions had variants of likely functional importance which were
mapped to more than one gene.

Variants rs1470819913 and rs1296721356 were not available in
FUMA and were annotated separately. No genes were mapped to
these regions, and the summary of their functions is included in
Tables 2, 3.

3.4 Functional consequences of
interaction signals

The variants that interacting with sex were significantly
associated with O-methylascorbate levels, were mapped to
23 different genes (Supplementary Table S13). Looking at tissue
expression data, the set of genes is statistically significantly
differentially expressed (corrected p-value <0.05) in testis
(Supplementary Table S14).

The variants that interacted with sex for ascorbic acid 2-sulfate
were mapped to 59 genes (Supplementary Table S15). Looking at
tissue expression data, the set of genes is statistically significantly

TABLE 1 Lead variants from overall GWAS analysis selected using GCTA-COJO. Details of chromosome, position, effect allele frequency, p-value from
GWAS, and COJO-adjusted p-value. Variants were selected using the GCTA-COJO program.

O-methylascorbate

Chr Variant Effect Allele Frequency p-value COJO-adjusted p-value

22 chr22:19953481:A:G 0.95 4.62 × 10−22 8.24 × 10−09

22 chr22:19959676:CTCT:C 0.15 4.35 × 10−11 1.13 × 10−29

22 chr22:19963748:G:A 0.52 5.20 × 10−214 3.24 × 10−204

Ascorbic Acid 2-sulfate

Chr Variant Effect Allele Frequency p-value COJO-adjusted p-value

10 chr10:87718088:G:A 0.38 3.42 × 10−08 3.61 × 10−08

16 chr16:30343759:C:T 0.02 1.31 × 10−12 2.94 × 10−11

16 chr16:30374516:T:C 0.73 2.12 × 10−11 4.70 × 10−10

FIGURE 1
O-methylascorbate and ascorbic acid 2-sulfate interaction with sex results. Results from the GWAS analysis using the FastGWA-GE program from
GCTA in the form of a Manhattan plot. GWAS conducted using a mixed linear model adjusted for age, batch number, province, 10 principal components,
and hours since last meal or drink which incorporated a genetic relatedness matrix to account for population stratification. The models also included an
interaction term for sex. Each point represents the p-value of the interaction between sex and the variant on the associated chromosome. The red
line is the significant (5 × 10−8) threshold and the blue line is the suggestive (1 × 10−5) threshold.
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differentially expressed (correct p-value <0.05) in the stomach
(Supplementary Table S16). One of the mapped genes was AGRP
which is a neuropeptide which controls feeding behavior as a
stimulating hormone antagonist (Deem et al., 2022). Another
gene mapped was HSD11B2, which is an enzyme involved in

cortisol metabolism, and which has been shown to be controlled
by sex hormones (Garbrecht et al., 2007). The significant genomic
loci identified on chromosome one was not mapped to any genes
and we did not find evidence of a potential functional consequence
of this region based on our criteria. For both O-methylascorbate and

FIGURE 2
O-methylascorbate (A) and ascorbic acid 2-sulfate (B) effect sizes of lead interacting variant by sex. Effect sizes and 95% confidence intervals from
the GWAS stratified by sex. GWAS conducted using a mixed linear model adjusted for age, batch number, province, 10 principal components, and hours
since lastmeal or drinkwhich incorporated a genetic relatednessmatrix to account for population stratification. The list of variants are the lead variants for
each suggestive locus found in the interaction GWAS analysis. Red represents female values and blue represents male values.
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ascorbic acid 2-sulfate, no gene-sets related to vitamin Cmetabolism
or sex hormones were identified (Supplementary TableS S17, S18).

4 Discussion

In the present study, we investigated associations and the
functional consequences of genetic variant-metabolite associations
for two specific metabolites related to vitamin C: O-methylascorbate
and ascorbic acid 2-sulfate. In addition, our study is the first to
investigate potential genetic variant-sex interactions influencing

these two metabolites by conducting a gene by sex GWAS. We
also examined the functionality of these variants of interest and
found some associations with hormone-related genes.

Past research has studied the genomic associations of these
metabolite levels, and Chen et al., 2023, conducted their study
using the CLSA metabolite and genomic data. We aimed to have
a more focused analysis with a less stringent threshold to gain a
deeper understanding of the two vitamin C-related metabolites
specifically. We report the same associations, with rs144009214
for ascorbic acid 2-sulfate and rs61484427 and rs4680 for
O-methylascorbate (Chen et al., 2023). We also examined

TABLE 2O-methylascorbate suggestive interaction loci functions. Lead variants for each suggestive interaction locuswere selected based on FUMA criteria.
For each locus, variants in LD of the lead variant were analyzed to note down the nearest gene and function. The number of genes mapped to each locus is
based on FUMA criteria. Loci that did not register in FUMA, and whose functions and nearest gene information were retrieved using VEP are marked.

Locus Locus lead
variant RSID

Locus lead
variant
position

Nearest gene Function # Genes
mapped

Interaction
p-value

1 rs561458908 chr1:187758900:T:C RP5-925F19.1 Intergenic 0 9.61 × 10−6

2 rs6673444 chr1:230192587:C:T GALNT2 Intronic/Exonic 0 9.86 × 10−6

3 rs74527587 chr1:239110287:G:A RP11-307O1.1 Intergenic 0 9.91 × 10−6

4 rs13427429 chr2:23371693:C:A AC012506.4 Intergenic 0 2.58 × 10−6

5 rs183979544 chr2:181724699:G:A CERKL/AC013733.5/
RUN6ATAC19)/PDE1A

Intronic/UTR5/Intergenic 0 8.81 × 10−7

6 rs6775014 chr3:42166013:T:G TRAK1 Intronic 0 9.86 × 10−6

7 rs139707525 chr3:149520106:G:A WWTR1 UTR3 0 5.15 × 10−6

8 rs74597555 chr4:113095111:T:C ANK2 Intronic 0 8.44 × 10−7

9 rs2656901 chr5:175120419:G:A CTC-281M20.1/
ARL2BPP6

Intergenic 0 9.06 × 10−6

10 rs783146 chr6:160717816:C:G PLG Intronic/Intergenic 0 8.10 × 10−6

11 rs3823198 chr6:166583971:G:T RPS6KA2 Intronic 0 4.60 × 10−6

12 rs11764886 chr7:53711776:G:A GS1-179L18.1 Intergnic/ncRNA_intronic/ 3 6.43 × 10−6

13 rs6952090 chr7:130282658:T:C RP11-190G13.4/CPA2 NcRNA_intronic/Intergenic/
Downstream/Intronic/Upstream

13 3.59 × 10−7

14 rs2922384 chr8:135933748:A:T Several NcRNA_intronic/Intergenic/
NcRNA_exonic/Intronic/

Upstream

2 5.08 × 10−7

15 rs116934390 chr9:37450622:T:A ZBTB5 Intronic 0 4.33 × 10−7

16 rs10882762 chr10:96247971:A:G BLNK Intronic 0 3.07 × 10−6

17 rs79414703 chr11:12018283:G:T RP13-631K18.2/DKK3 Intergenic/Intronic 0 2.93 × 10−6

18 rs79157408 chr11:17628511:T:C OTOG Intronic 0 8.56 × 10−6

19 rs80136724 chr11:95203556:C:T RP11-712B9.2:SESN3 NcRNA_Intronic 0 4.53 × 10−6

20 rs7331036 chr13:9,7812069:A:G snoU13 Intergenic 1 7.38 × 10−6

21 rs75638828 chr14:30193101:T:C PRKD1:CTD-2251F13.1 NcRNA_intronic 2 1.85 × 10−6

22 rs74665914 chr17:51951876:A:C CA10 Intronic 2 9.33 × 10−6

23 rs76958646 chr19:58050989:C:T ZNF135/ZSCAN1 Intronic 0 8.00 × 10−6

24 rs6041909 chr20:1386731:G:C FKBP1A Intronic 0 6.03 × 10−6

25a rs1470819913 chr5:122241471:C:T ZNF474 Intergenic 0 5.92 × 10−6

aFeatures annotated using VEP, platform, genetic region not available in FUMA.
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additional lead variants than was previously reported due to our less
stringent significance threshold of 5 × 10−8 (not corrected for
examining all measured metabolites). Chen et al. also identified
COMT as the closest protein coding genes to the O-methylascorbate
variants, which we also identified using FUMA. Using this platform,
we were able to find several novel genes that were mapped to our
GWAS results and should be investigated more thoroughly. Yin
et al., 2022 also identified variant rs4680 as significant with
O-methylascorbate in their analysis (Yin et al., 2022).

Chen et al., identified CD2BP2 as the closest protein coding
genes to the ascorbic acid-2 sulfate associated variant, which we also
identified in FUMA, among several other genes (Chen et al., 2023;
Schlosser et al., 2023 conducted a GWAS on plasma and urine
metabolite levels with individuals with chronic kidney disease. In
their analysis, ascorbic acid-2 sulfate was associated with
rs111894927 which is in the genetic region of the MAPK3 gene,
which we also identified in FUMA (Schlosser et al., 2023). Yin et al.
found some genetic associations with ascorbic acid-2 sulfate,

TABLE 3 Ascorbic acid 2-sulfate suggestive interaction loci functions. Lead variants for each suggestive interaction locus were selected based on FUMA
criteria. For each locus, variants in LD of the lead variant here analyzed to note down the nearest gene and function. The number of genes mapped to each
locus is based on FUMA criteria. Loci that did not register in FUMA, andwhose functions and nearest gene informationwere retrieved using VEP aremarked.

Locus Locus lead
variant RSID

Locus lead
variant
position

Nearest gene Function # Genes
mapped

Interaction
p-value

1 rs1192803 chr2:101241563:C:T Several Intergenic/Intronic/Downstream/Exonic 0 6.29 × 10−6

2 rs142867333 chr2:168670174:T:C CERS6 Intronic 0 1.70 × 10−6

3 rs12692923 chr2:169769528:T:C KLHL23/KLHL23:
PTCHD3P2

Intronic/ncRNA_exonic/UTR3 0 9.45 × 10−6

4 rs7720392 chr5:31170278:T:C RP11-152K4.2 NcRNA_intronic 1 8.03 × 10−6

5 rs114959781 chr5:66695069:C:T MAST4 Intronic 0 8.76 × 10−6

6 rs28579435 chr5:84618856:G:T CTD-2269F5.1 Intergenic 3 9.58 × 10−6

7 rs4976655 chr5:176854168:C:G UNC5A/HK3 Intronic/UTR3 3 5.23 × 10−6

8 rs13204324 chr6:164631587:G:A RP11-300M24.1 Intergenic 0 7.83 × 10−6

9 rs62526542 chr8:102940178:G:C AZIN1:KB-
1507C5.2/KB-
1507C5.2

Intronic/Intergenic/Upstream 0 3.03 × 10−6

10 rs1048471 chr8:133476306:T:C ST3GAL1 Intronic/Exonic/UTR5 0 5.64 × 10−6

11 rs11792574 chr9:20281438:C:T AL512635.1 Intergenic 0 7.38 × 10−6

12 rs117196678 chr9:83269239:T:A RP11-439K3.1/
FRMD3

NcRNA_intronic/Intronic 0 8.81 × 10−6

13 rs117271698 chr10:52697952:C:T RP11-556E13.1/
MBL2

ncRNA_intronic/Intergenic 0 1.01 × 10−6

14 rs117414281 chr12:69125538:C:T AC139931.1 Intergenic 0 2.03 × 10−7

15 rs10859572 chr12:76300471:G:T RP11-54A9.1 ncRNA_intronic/ncRNA_exonic 0 2.31 × 10−7

16 rs10162161 chr13:19078361:G:T RNA5SP24 Intergenic/Downstream 0 2.34 × 10−6

17 rs76250049 chr14:43804083:A:G RP11-305B6.3 Intergenic 0 1.59 × 10−6

18 rs35031569 chr16:67527768:G:A Several Exonic/Intronic/Upstream/Downstream/
Intergenic/UTR3/ncRNA_exonic/

ncRNA_Intronic

49 7.65 × 10−6

19 rs148001569 chr16:69972590:G:A NFAT5/PDXDC2P/
ST3GAL2

Intronic/Intergenic 0 9.92 × 10−6

20 rs4334353 chr17:55374378:G:A RP11-
515O17.3/MMD

Intergenic 3 3.79 × 10−7

21 rs75565227 chr19:51030764:C:T KLK/CTC-518B2.10 NcRNA_Intronic/Upstream/Intergenic 0 1.13 × 10−6

22 rs9609471 chr22:32257728:C:T RFPL2/RP1-
90G24.10:SLC5A4

Intergenic/Downstream/Intronic/
ncRNA_intronic

0 1.93 × 10−6

23a rs1296721356 chr1:13354706:C:T Several Upstream/Downstream/Intron/
Intergenic/UTR

0 2.61 × 10−8

aFeatures annotated using VEP, platform, genetic region not available in FUMA.
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however none of their identified putative causal genes were found in
our analysis (Yin et al., 2022).

The FUMA analysis from the initial GWAS identified several
new genes that were associated with metabolite levels. However, this
comprehensive evaluation did not provide any new evidence of
mechanisms or pathways through which these gene associations
influence metabolite levels. In addition, none of the novel genes
associated could be connected to vitamin C metabolism.

Of the mapped genes, COMT is a known factor in vitamin C
metabolism. O-methylascorbate is a product of O-methylation by
the COMT gene (Krumsiek et al., 2012). Therefore, this work
strengthens an existing connection and further emphasizes the
potential importance of this gene in vitamin C metabolism.

Our analysis of a potential sex effect on the gene associations seen for
each metabolite found two significant interactions and several suggestive
interactions. The effect of sex is an important factor to consider in disease
etiology, and in this case, the sex differences of vitamin C concentrations
between males and females and not completely understood. One of the
proposed theories for the sex differences seen between vitamin C
concentrations in males and females is due to influence by sex
hormones (Travica et al., 2020). We explored all suggestive interactions
to determine their functional significance as well as if there are any
connections to genes related to hormone signaling or sex hormones.

For both ascorbic acid 2-sulfate and O-methylascorbate, there
were no gene-sets which are enriched and may be related to vitamin
C metabolism or sex hormones. Interestingly, the set of genes
mapped for ascorbic acid 2-sulfate was significantly differentially
expressed in stomach tissues while the set of genes mapped for
O-methylascorbate was differentially expressed in testis tissues.

The variants that interacted with sex for ascorbic acid 2-sulfate were
mapped to several genes, one of which was AGRP, which produces a
peptide agonist molecule important for initiating hunger cues. In
general, the AGRP neurons signal for increased food intake (Deem
et al., 2022). In one animal study using a bird model, researchers found
that this protein was differentially expressed between male and female
chickens (Caughey et al., 2018). Since vitamin C intake is heavily
influenced by dietary exposures, this association with a hunger-driving
signal protein may be something of further consideration.

Other variants that interacted with sex for ascorbic acid 2-sulfate
were mapped to HSD11B2. The role of 11-β hydroxysteroid
dehydrogenase type 2, the enzyme encoded by the HSD11B2 gene,
is to oxidize cortisol, a glucocorticoid, into its inactive version cortisone
(Chapman et al., 2013). Several animal and in vivo studies have shown
that the activity of this enzyme is regulated by various sex hormones
(Darnel et al., 1999; Garbrecht et al., 2007; Wang et al., 2009). In
addition, cortisol may potentially affect vitamin C concentrations in the
body; however, it is unclear whether this acts in a sex dependentmanner
(Travica et al., 2020). Overall, this may point to an important
mechanism for future research.

This study has several strengths, including the use of high quality
genetic and metabolic datasets. In addition, the use of such a
comprehensive tool to annotate variant functions allowed us to
use several bioinformatics tools to identify novel associations and
areas for future research.

This study also had some limitations to consider. One limitation is
the sample size, which may have hindered the ability to find more
statistically significant associations, especially in the interaction analysis.
However, these findings showed several associations at the suggestive

level, which could be followed up by other researchers. Future studies
should replicate these findings ideally with a larger sample size. Another
limitation is that this study was only conducted using participants of
European descent to avoid problems with population stratification. The
CLSA had a very high percentage of participants of European descent so
using populations from other ancestries would not provide enough
power for an accurate analysis in those groups. Finally, because we
decided to use the suggestive threshold for the interaction signals to
follow up with for functional annotation and mapping, there is a
possibility that some of these associations represent type I error. As this
represents the first analysis of a potential sex interaction, future studies
should evaluate these regions with larger sample sizes to determine if
they are true associations.

In conclusion, our study found potential evidence for an effect
modification by sex of genetic associations with two vitamin C
related metabolites. In addition, a comprehensive analysis of the
functions of genomic regions showing suggestive evidence of genetic
variant-sex interactions led to some insight into potential
mechanisms for these differences. Future studies are needed to
expand on this analysis and further understand the different
mechanisms which influence vitamin C concentrations in the
body. Mechanisms influencing vitamin C concentrations have
several implications for different disease phenotypes (Age-Related
Eye Disease Study Research Group, 2001; Villagran et al., 2021) and
are an especially important consideration for older adults.
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