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Background: Osteosarcoma (OS) is highly malignant and prone to local
infiltration and distant metastasis. Due to the poor outcomes of OS patients,
the study aimed to identify differentially expressed genes (DEGs) in OS and
explore their role in the carcinogenesis and progression of OS.

Methods: RNA sequencing was performed to identify DEGs in OS. The functions
of the DEGs in OS were investigated using bioinformatics analysis, and DEG
expression was verified using RT-qPCR and Western blotting. The role of
SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then
investigated using functional assays in OS cells.

Results: In all, 8353 DEGs were screened. GO and KEGG enrichment analyses
indicated these DEGs showed strong enrichment in the calcium signaling
pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis
showed ten hub genes were related to the outcomes of OS patients. Both
SLC25A4 transcript and protein expression were significantly reduced in OS,
and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and
inflammation. SLC25A4-overexpressing OS cells exhibited suppressed
proliferation, migration, invasion and enhanced apoptosis.

Conclusion: SLC25A4 was found to be significantly downregulated in OS
patients, which was associated with poor prognosis. Modulation of SLC25A4
expression levels may be beneficial in OS treatment.
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1 Introduction

Osteosarcoma (OS) is an aggressive malignancy of bone tissues, most common in children
and adolescents. (Beird et al., 2022). The incidence of OS peaks around puberty, with an overall
incidence of 3.8 per 1,000,000 people, withmales slightly outnumbering females. (Zarghooni et al.,
2023). OS mostly occurs in the extremities, especially in the distal femur, proximal tibia, and
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proximal fibula. (Kansara et al., 2014). In recent years, neoadjuvant
chemotherapy for patients with limited OS has proved to be very
effective; however, the prognosis for patients with distant metastases
and recurrence remains dismal, with an average 5-year survival rate of
about 20%. (Lillo Osuna et al., 2019; Ji et al., 2024). Although
combination therapies including chemotherapy, radiotherapy and
immunotherapy have been increasingly used in cancer treatment in
recent years, the prognosis for patients with early metastasis and
recurrent tumors is still not optimistic. (Wu et al., 2024). The
survival outcomes of patients can be improved by early surveillance
and diagnosis of tumors. (Villani et al., 2016). In recent years, screening
for genetic changes has led to the identification of DEGs and functional
pathways involved in tumor development, providing a biological basis
for early diagnosis and treatment strategies. (Wang et al., 2022; Zhang
et al., 2022).

The ADP/ATP transporter protein, adenine nucleotide translocator
1 (ANT1) is encoded by the solute carrier family 25 member 4
(SLC25A4) gene. The SLC25A4 gene is located on the subterminal
region of chromosome 4q and is highly expressed mainly in skeletal
muscles, brain, and heart tissues. (Cimadamore-Werthein et al., 2023).
ANT1 regulates mitochondrial energy metabolism, which facilitates the
exchange of ADP and ATP between the cytoplasm and the
mitochondrial matrix. (Kunji et al., 2020). Therefore, any defect in or
dysfunction of the ANT1 protein can cause severe impairment of
mitochondrial energy metabolism, with different degrees of impact
on tissues or cells. (Kunji and Ruprecht, 2020). On the other hand,
ANT1 takes part in the regulation of programmed cell death as part of
the mitochondrial permeability transition pore (mPTP). (Vial et al.,
2020). Dysregulation of pathways associated with programmed cell
death plays a key role in cancer development and treatment
resistance; therefore, reduced levels of ANT1 expression may
contribute to disruptions in tumor cell apoptosis. (Brown and
Attardi, 2005). A study on rhabdomyosarcoma showed that reduced
ANT1 expression could affect mitochondrial function and was involved
in tumor cell metabolism and death pathways, leading to tumorigenesis,
which indicated that ANT1 might be a therapeutic target for
rhabdomyosarcoma. (Vial et al., 2020). OS and rhabdomyosarcoma
are both sarcomas; however, whether the expression levels of
ANT1 influence the development of OS is yet unknown.

Herein, we identified predictors that influenced the prognosis of
patients with OS and clarified their roles in OS development. The RNA-
sequencing data from human OS tissues and nearby non-cancerous
tissues was analyzed to identify DEGs, and we explored the expression
level of SLC25A4 inOS and the effect of changes in its expression level on
OS cell proliferation, invasion, migration, and apoptosis.

2 Materials and methods

2.1 Collection of human clinical specimens

The four OS tissue specimens along with their adjacent non-
cancerous tissues used for RNA sequencing were taken from the
primary tumor sites of patients diagnosed with OS by Qilu Hospital
of Shandong University, and their clinical chart information was
shown in Table 1. All participants provided written informed
consent, and the study received ethical approval from the review
board of the participating institution.

2.2 RNA sequencing

TRIzol (Accurate Biology, Hunan, China) was utilized for RNA
isolation and purification of the samples. Subsequently, NanoDrop ND-
1000 (NanoDrop, Wilmington, DE, USA) was employed to perform
quality control on the total RNA in terms of quantity and purity. The
mRNA containing PolyA (polyadenylate) was specifically captured via
Dynabeads Oligo (dT) beads (Thermo Fisher, CA, USA), which
underwent two series of purification. To fragment the captured
transcript under high-temperature conditions (94°C for 5–7min), we
used theNEBNext®MagnesiumRNAFragmentationModule (NEB, cat.
E6150, USA). Following this step, cDNA synthesis from the fragmented
RNA was carried out using Invitrogen SuperScript™ II Reverse
Transcriptase (CA, USA). The second strand cDNA synthesis
involved DNA polymerase I along with RNase H and DNTP in a
buffer solution; terminal repair and poly(A) were also performed.
Magnetic beads were then utilized to screen and purify fragments
based on their sizes. UDG enzyme digestion followed by PCR assay
yielded double-stranded DNAs with a fragment size of 300bp ±
50bp. Finally, LC-Bio Technologies (Hangzhou) Co., Ltd conducted
sequencing and data analysis while R package edgeR orDESeq2 analyzed
significant differences among the samples.

2.3 Screening for DEGs

DEGs were identified by comparing gene expression levels
between OS tissues and adjacent non-cancerous tissues based on
the criteria of |log fold-change (FC)| >1 .00 and p-value <0 .05. Venn
diagrams were generated to determine DEGs that overlapped among
the four pairs of specimens (http://bioinformatics.psb.ugent.be/
webtools/Venn/). Additionally, heatmaps, histograms, and
volcano plots were used to visualize gene expression levels in OS
tissues versus adjacent non-cancerous tissues.

2.4 Annotation and functional enrichment
of DEGs

The functions of the DEGs were explored using Gene Ontology
(GO), a bioinformatics resource that provides information on
biological process (BP), cellular component (CC), and molecular
function (MF). In addition, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was utilized for the identification of interactions
and response networks involving DEGs.

2.5 Protein–protein interaction (PPI) axis
analysis involving DEGs

The Search Tool for the Retrieval of Interacting Genes (STRING)
database was utilized to analyze PPIs among the DEGs. STRING
provides valuable information on protein interactions, including
confidence scores, protein domains, and 3D structures. To identify
key molecules involved in the tumorigenesis and development of OS,
a PPI network was generated with STRING and was visualized with
Cytoscape software, a tool specifically designed for PPI network
visualization. We used the MCODE plugin to identify DEGs with
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high node scores and strong connectivity within the network.
Additionally, we employed the Cytohubba plugin to identify hub
genes using various topological analysis algorithms.

2.6 Survival analysis of DEGs

To elucidate the prognostic performance of the identified
hub genes, we conducted survival analysis using the Kaplan-
Meier (KM) method. OS samples from the GEO, TCGA, and
EGA databases were classified into elevated or reduced
expression cohorts according to the median expression of the

hub genes. Subsequently, overall survival (OS) and recurrence-
free survival (RFS) curves were plotted along with hazard ratio
(HR) and 95% confidence interval (CI) calculations to assess
associations between hub gene expression profiles and
patient outcomes.

2.7 RNA isolation and RT-qPCR

Total RNA was obtained from exponentially growing cells with
TRIzol (Invitrogen, Carlsbad, CA, USA). The cDNA synthesis was
performed with the Evo M-MLV RT Mix Kit with gDNA Clean
using RT-qPCR Ver.2 from Accurate Biotechnology (Hunan) Co.,
Ltd (ChangSha, China). The primer sequences can be found in
Table 2. Each sample underwent three replicate runs of RT-qPCR
via SYBR Green Premix Pro Taq HS RT-qPCR kit [Accurate
Biotechnology (Hunan) Co., Ltd (ChangSha, China)] on a
LightCycler 96 instrument (Roche, Basel, Switzerland). GAPDH
served as the endogenous control for normalization and the relative
gene expression were computed utilizing the 2−ΔΔCT formula.

2.8 Western blot analysis

Protein samples were prepared from collected cells and
subjected to SDS gel electrophoresis before being transferred onto
nitrocellulose membranes, which were then blocked at room
temperature (RT) for 2 h in 5% skim milk, before overnight
incubation with primary antibodies obtained from ImmunoWay
Biotechnology Company (Plano, TX, USA). Subsequently, they
underwent three washes with Tween 20 in Tris-buffered saline
(TBST) before a 1–2 h incubation at RT in secondary antibodies.
After an additional three washes of the membranes,
chemiluminescence reagents were used to visualize protein
expression levels. The following antibodies were used:anti-β-actin
(1:10000; Proteintech, 66009-1-Ig); anti-Vinculin (1:10000; Abways,
CY5164); anti-SLC25A4 (1:1000; ABclonal, A15027); anti-CASQ1
(1:1000; ABclonal, A19640); anti-CASQ2 (1:2000; Proteintech,
18422-1-AP).

2.9 TCGA database

The cancer genomic atlas (TCGA) database, known for its
comprehensive functionalities such as analyzing differential
expression, survival rates, correlations, and identifying similar
genes, was utilized to assess hub gene profiles in several tumor
tissues and their matched healthy tissues based on patient data.

TABLE 1 De-identified clinical data of osteosarcoma patients.

Patient Gender Age Incidence site Amputation Metastasis

osteosarcoma patient 1 male 17 left femur YES YES

osteosarcoma patient 2 female 14 right fibula YES NO

osteosarcoma patient 3 male 10 right femur NO NO

osteosarcoma patient 4 male 17 left femur NO NO

TABLE 2 Primer sequences used for reverse transcription-quantitative PCR.

Gene Primer sequences (5′-3′) Product size, bp

CASQ2 F: GCCTCTACTACCATGAGCCG 20

R: GCATCCACCATCACAAAGCC 20

DES F: AGGACCGATTTGCCAGTGAG 20

R: CTTGAGGTGCCGGATTTCCT 20

KLHL31 F: ACAGAGTGTACGTGATGGGC 20

R: CTTCTTCTCGCCCTCGTTCC 20

MYBPC2 F: TGTGTTCAAGTGCGAGGTGT 20

R: CAGCTTGTGGAACCTGCCTA 20

SYNPO2L F: CGGCATCAGCCCTATCAACT 20

R: AGTGGAAAACCGGCGAATCT 20

TNNT1 F: TCAAGGCAGAACAGAAGCGT 20

R: GCTGTTCCTCCCCCATGTAG 20

CASQ1 F: CCCTACATCCCCTTCTTCGC 20

R: GCTCCTCCACGAAGTTGACA 20

SLC25A4 F: GTTCCTCACCGCAGCTACTT 20

R: CAATGATGGTATGGCGTGCG 20

PDLIM3 F: GACAAATGTGGGAGTGGCATAGT 23

R: TGCAGAGACTTAAGCTTTGGGAT 23

MYL3 F: ACACCTGAGCAGATTGAAGAGTT 23

R: GGCAGGAAAGTTTCAAAGTCCAT 23

GAPDH F: GCACCGTCAAGGCTGAGAAC 20

R: TGGTGAAGACGCCAGTGGA 19

F, forward; R, reverse
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2.10 Protein expression and cellular
localization

The HPA database offers valuable information regarding the
distribution of proteins within different cancer types based on
cellular and histopathological characteristics. This resource was
employed for bioinformatics data mining purposes to present
confocal images showcasing the cellular localization of hub genes.

2.11 Analysis of the mutation and CNVs
in DEGs

To explore genetic alterations, mutations, and associated
prognosis related to SLC25A4, we utilized the cBioPortal for
Cancer Genomics (http://cbioportal.org). This web resource
allows for multidimensional analysis and visualization of
genomics data alongside clinical features from diverse cancer
samples. For our study, we chose the whole genome pan-cancer
analysis (ICGC/TCGA, Nature 2020). We obtained information
about copy number variations (CNVs) in hub genes found in
both cancerous tissues and cell lines.

2.12 Gene set enrichment analysis (GSEA)

Transcriptional data from GSE238110 was downloaded and
the subjects were divided into elevated and reduced expression
cohorts according to the median SLC25A4 contents, and then the
inter-cohort differences were assessed by limma. Next, we
employed GSEA to identify the DEG-associated signaling
networks that are significant between the elevated- and
reduced-SLC25A4 expression cohorts. (Subramanian
et al., 2005).

2.13 Cell culture and transfection

The human OS cell lines MG-63, HOS, and Saos-2 were
purchased from Genechem Co., Ltd (Shanghai, China), Procell
Life Science & Technology Co., Ltd. (Wuhan, China), and
BOSTER Biological Technology Co., Ltd (Wuhan, China),
respectively. The human osteoblast cell line hFOB1.19 was
obtained from the Institute of Biochemistry and Cell Biology,
Chinese Academy of Sciences (Shanghai, China). MEM (Procell,
Wuhan, China) was used for HOS and MG-63 cell culture, and
McCoy’s 5A medium (BOSTER, Wuhan, China) was used for the
culture of Saos-2 cells. Moreover, DMEM/F12 medium (Gibco,
MA, USA) was employed for the hFOB1.19 cell culture. All
media contained 10% fetal bovine serum (FBS, Gibco) and were
grown in an atmosphere containing 5% CO2. OS cells were
maintained at 37°C, while the hFOB1.19 cells were cultured at
34°C. Transient transfection of siRNA (RiboBio, Guangzhou,
China), plasmids and the control was conducted with
Lipofectamine 2000 (Invitrogen) following the provided
directions. Both RT–qPCR and Western blotting were used to
verify the transfection efficiency.

2.14 Cell counting kit (CCK)-8 assays

CCK-8 assays (Yeasen Biotechnology, Shanghai, China) were
used to assess the proliferation of OS cells. HOS and MG-63 cells
(1 × 105 per well) were seeded in 96-well plates and incubated for 24,
48, 72, 96, or 120 h. CCK-8 solution (10 μL per well) was then added
and incubated at 37°C for 1 h. Absorbances at 450 nm were read in
an Epoch microplate spectrophotometer (SpectraMax i3x).

2.15 EdU assays

Cell proliferation rates were assessed by the Cell Light™ EdU
Apollo567 In Vitro Kit (RiboBio). Briefly, cells cultured in 96-well
plates were transfected for 48 h. Next, EdU (50 μM)was added to the
cells and incubated (2 h, 37°C). The cells were then fixed in 4%
formaldehyde for 0.5 h, followed by incubation with glycine (2 mg/
mL) for 5 min and a 10-min cell permeabilization with 0.5% Triton
X-100, before washing in PBS, incubation with the Apollo reaction
cocktail for 30 min incubation, and washed twice with 0.5% Triton
X-100. The cells were then stained with Hoechst 33342 for 30 min
and evaluated under fluorescence microscopy (Olympus, Japan).

2.16 Wound healing assessment

After transfection, cells were plated into 6-well plates and grown
to 100% confluency. Wounds were operated with 200 μL tips in the
middle of the wells, rinsed three times using PBS, and then the
medium was changed with serum-free medium immediately. Image
capture utilized an inverted phase-contrast microscope (OLYMPUS,
Japan) at 0 h and 24 h, respectively.

2.17 Transwell evaluation

Transwell chambers (8 µm pore size; Corning, NY, USA) were
used to examine migration and invasion in OS cells. Cells (1 × 10)
were placed in the top chamber which was precoated with 50 µL 1:
8 diluted Matrigel (Corning) (to test invasion) or not (to test
migration). Cells in the top chamber were in 200 µL of serum-
free culture medium whereas cells in the bottom chamber were
cultured in medium with 10% FBS. Following 37 °C incubation for
24 h, the cells in the lower chamber were fixed with 4%
paraformaldehyde followed by staining with crystal violet for 1 h
at RT. Cell numbers in five randomly selected fields were recorded.
All the above experiments were repeated three times.

2.18 Flow cytometry

Apoptosis was assessed in treated OS cells after staining with
Annexin V-FITC/PI. After cell precipitation and resuspension, the
cells were exposed to 5 μL Annexin V-FITC and 10 μL PI Staining
solution, and incubated in the dark at RT for 10–15 min. Then,
samples were resuspended in 400 μL 1×Binding Buffer, placed on
ice, and evaluated by flow cytometry (BD LSRFortessa) within 1 h.
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2.19 Statistical analysis

All data were statistically analyzed using GraphPad Prism eight
software. Analysis of the differences between the two groups was
determined by Student’s t-test. A p-value of <0.05 was considered
statistically significant.

3 Results

3.1 RNA sequencing analysis of tumor tissues
and adjacent non-cancerous tissues

In this study, we combined RNA sequencing, bioinformatics,
and experimental results for multilevel verification of the
identification of key genes in OS. The study design is shown
in Figure 1. The RNA-sequencing results of OS and adjacent
non-cancerous tissues were analyzed and DEGs were identified
using the criteria of |Log2 FC| >1 and p-value <0.05 (Figure 2A).
A total of 8353 DEGs were identified between OS and normal
tissues, of which 5,056 were upregulated and 3,297 were
downregulated (Supplementary Figure S1). There were
4,706 DEGs in OS 1, including 3,348 upregulated and
1358 downregulated genes. In all, 4,173 DEGs were identified
in OS 2, of which 2,819 were upregulated and 1354 were
downregulated. Additionally, 5,228 DEGs were identified in
OS 3, including 3,642 upregulated and 1586 downregulated
genes, while 5,662 DEGs were found in OS 4, with
4,207 upregulated and 1455 downregulated (Figure 2B). The
top 100 DEGs were visualized using a heatmap, with red color
indicating upregulation and blue downregulation (Figure 2C).
The Venn diagrams showed that among the top 100 DEGs, there
were 81 genes that were common to the four pairs of
specimens (Figure 2D).

3.2 KEGG and GO enrichment analyses
involving DEGs

The biological roles of DEGs in OS tumorigenesis and
metastasis were explored using KEGG and GO enrichment
analyses. The BP, CC, and MF were analyzed using GO
enrichment analyses (Figure 3A; Table 3). In BP analysis,
DEGs showed predominant enrichment in muscle
contraction, cell adhesion, and muscle filament sliding
(Figure 3B). The CC analysis indicated that the DEGs played
a role in Z disc, collagen-containing extracellular matrix, and
sarcoplasmic reticulum (Figure 3C). Moreover, the MF analysis
revealed that the DEGs showed major contribution in protein
interaction, extracellular matrix structural component, and
actin-binding (Figure 3D). KEGG network enrichment
assessment revealed that most DEGs contributed to the
calcium, cancer-related, Rap1 and PI3K-Akt networks
(Figure 3E; Table 4). The above results indicated that these
DEGs were potential regulators of OS initiation and progression.

3.3 Screening hub genes using
protein–protein interaction (PPI) and
module assessment

The interactions among the DEGs were further explored via
the STRING database. A PPI of three upregulated and
94 downregulated genes was constructed; this consisted of
97 nodes and 377 edges (Figure 4A). Various algorithms for
topological analysis, including MCC, DMNC, MNC, degree,
EPC, bottleNeck, EcCentricity, closeness, radiality, and
betweenness, were used to predict and identify key nodes in
the PPI network using Cytohubba. This led to the identification
of 50 top genes (Figure 4B). The interactions between these

FIGURE 1
Design of the study. DEGs, differentially expressed genes; PPI, protein-protein interaction.
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genes were then evaluated, identifying 22 hub genes, including
SLC25A4, ACTN2, TTN, MYL3, MYH7, MYOM2, MYOZ1,
UNC45B, SYNPO2L, KLHL31, MYLPF, NRAP, CASQ1,
PDLIM3, MYL6B, FLNC, MYH7B, MYO18B, SRL, TXLNB,
MYOZ3, and HSPB7 (Figure 4C; Supplementary Figure S2).

Hub genes were recognized via the MCODE plugin in
Cytoscape, with the most important module containing
16 hub genes (Figure 4D). Among them, seven genes
coincided with the hub genes in the Cytohubba
plugin (Figure 4E).

FIGURE 2
Identification of DEGs in osteosarcoma. (A) Volcano plots of DEG distribution. (B) DEG distribution in four pairs of tissues. (C) Heatmap of the top
100 DEGs. (D) Venn diagram showing the intersection of four pairs of tissues. Red and blue colors represent upregulated and downregulated DEGs,
respectively. DEGs, differentially expressed genes.
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3.4 Hub genes-associated overall survival
assessment

K-M survival curves were used to confirm the associations
between the hub genes and OS patient survival outcomes

(Figure 5; Supplementary Figure S3). The findings showed that
increased expression of CASQ1 (HR = 0.63 [0.42–0.94], p = 0.024),
CASQ2 (HR = 0.45 [0.3–0.69], p = 0.00017), DES (HR =
0.53 [0.33–0.84], p = 0.0064), PDLIM3 (HR = 0.62 [0.4–0.95],
p = 0.026), and SLC25A4 (HR = 0.56 [0.34–0.92], p = 0.02) had

FIGURE 3
DEG functional enrichment analysis. (A) DEG GO enrichment assessment in the BP, CC, and MF categories. (B) Top 20 enriched BPs. (C) Top
20 enriched CCs. (D) Top 20 enriched MFs. (E) DEG KEGG pathway enrichment assessment. DEGs, differentially expressed genes; GO, Gene Ontology;
BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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better overall survival, while those with higher expression of
KLHL31 (HR = 1.68 [1.1–2.58], p = 0.016), MYBPC2 (HR =
1.7 [1.14–2.54], p = 0.008), SYNPO2L (HR = 1.9 [1.12–3.21],
p = 0.015), TNNT1 (HR = 1.71 [1.11–2.64], p = 0.015), and
MYL3 (HR = 1.5 [1.01–2.23], p = 0.044) had worse overall

survival (Figure 5). The abbreviations, full names, and functions
of these 10 genes are provided in Supplementary Table S1. In
conclusion, these results suggested that the expression of these
genes can be indicative of prognosis in OS patients and might
act as significant prognostic biomarkers for OS patients.

TABLE 3 Top 15 enriched GO terms of DEGs.

Category Term Count Adjusted p-value

BP muscle contraction 78 6.35093887884101E-18

BP cell adhesion 277 2.89817618033311E-14

BP muscle filament sliding 35 2.05144935275006E-13

BP multicellular organism development 427 1.00611226412926E-12

BP extracellular matrix organization 125 6.46066513499453E-11

CC Z disc 84 4.58043759857695E-16

CC collagen-containing extracellular matrix 179 4.57418130860211E-15

CC sarcoplasmic reticulum 48 1.3010896884917E-13

CC endoplasmic reticulum lumen 146 2.05144935275006E-13

CC myofibril 38 0000000000017214363

MF protein binding 3,910 3.64993423987298E-23

MF extracellular matrix structural constituent 79 6.46066513499453E-11

MF actin binding 169 1.33271772180396E-10

MF actin filament binding 97 2.16177351583286E-07

MF integrin binding 73 2.95877318627355E-07

BP, biological process; CC, Cellular component; GO, Gene Ontology; MF, molecular function

TABLE 4 Top 15 enriched KEGG pathway terms of DEGs.

Pathway ID Gene count Adjusted p-value

Hypertrophic cardiomyopathy hsa05410 50 2.31333E-06

Dilated cardiomyopathy hsa05414 53 2.31333E-06

Arrhythmogenic right ventricular cardiomyopathy hsa05412 42 2.31333E-06

Calcium signaling pathway hsa04020 82 4.8789E-05

Adrenergic signaling in cardiomyocytes hsa04261 68 9.46452E-05

Pathways in cancer hsa05200 189 0.0005978319

Rap1 signaling pathway hsa04015 83 0.000578319

PI3K-Akt signaling pathway hsa04151 134 0.000578319

Cardiac muscle contraction hsa04260 39 0.000578319

Oxytocin signaling pathway hsa04921 65 0.001017813

Arginine and proline metabolism hsa00330 27 0.001017813

Proteoglycans in cancer hsa05205 83 0.001017813

Alanine, aspartate and glutamate metabolism hsa00250 21 0.001017813

Protein digestion and absorption hsa04974 45 0.001017813

Regulation of actin cytoskeleton hsa04810 84 0.001055331
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3.5 Validation of hub gene mRNA and
protein contents in OS

Table 5 showed the transcript profiles of the ten genes
obtained by RNA sequencing. Differences among hub gene

transcript expressions in OS were further explored by RT-
qPCR. The results showed that DES, CASQ1, CASQ2,
MYBPC2, SYNPO2L, TNNT1, SLC25A4, and MYL3 had
reduced expression in OS tissues, which consistent with our
RNA sequencing results. Whereas PDLIM3 and KLHL31 were

FIGURE 4
Construction of the PPI network, evaluation of important modules, and identification of hub genes. (A)Whole PPI betwork. (B)Hub genes identified
via intersection of 50 genes from 10 algorithms using Cytohubba, namely, MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness,
Radiality, and Betweenness. (C)Hub genes identified by Cytohubba. (D)Module 1 PPI netowrk. (E) Venn diagram showing the intersection of 22 common
genes using Cytohubba and genes within the most significant module. PPI, protein-protein interaction.
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significantly upregulated at the expression levels in OS tissues
(p < 0.05; Figure 6A). Moreover, we also validated the ten gene
expression profiles in OS cell lines. Expression levels of CASQ1,
CASQ2, SLC25A4, and TNNT1 were significantly lower in all
human OS cells, including MG-63, HOS, and Saos-2, relative to

the human fetal osteoblast cell line (hFOB1.19) (Figure 6B).
Furthermore, their contents in OS and normal tissues were also
demonstrated with TCGA. The expression levels of CASQ1,
CASQ2, and SLC25A4 were downregulated in OS, and these
results corroborated with the RT-qPCR data (Supplementary

FIGURE 5
Prognostic assessment of hub genes via the Kaplan-Meier plotter. Changes in DES, CASQ1, CASQ2, KLHL31, MYBPC2, SYNPO2L, TNNT1, PDLIM3,
SLC25A4, and MYL3 genes were intimately linked to OS patient overall survival (p < 0.05).
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Figure S4A). In addition to the expression levels of mRNA, the
hub gene protein expressions in hFOB1.19, MG-63, HOS, and
Saos-2 cells were further verified using Western blot. We
revealed that the SLC25A4 protein expression in MG-63,
HOS, and Saos-2 were lower relative to hFOB1.19, while the
CASQ1 and CASQ2 protein contents did not decrease
significantly (Figure 6C; Supplementary Figure S4B). Then,
we validated the expression levels of SLC25A4 in four paired
OS samples with adjacent normal tissues. Based on these
findings, SLC25A4 was strongly diminished among the tumor
group (Figure 6D).

3.6 Localization and function of
SLC25A4 in OS

SLC25A4 expression in pan-cancer was then explored, which
indicated a decrease in the SLC25A4 expression in most tumors
(Figure 7A). As the functions of proteins are often determined by
their subcellular localization, the subcellular localization of
SLC25A4 in OS was explored using the HPA database. The
confocal images revealed that SLC25A4 was present in the
mitochondria (Figure 7B). Whole genome pan-cancer analysis
(ICGC/TCGA, Nature 2020) was performed to identify the
genetic alterations and mutations in SLC25A4 via the
cBioPortal database. The frequencies of SLC25A4 mutations
in pan-cancer were 3%, and they were typically missense
mutation, splice mutation, truncating mutation, amplification,
and deep deletion (Figure 7C). Moreover, the frequencies of
SLC25A4 mutations were significantly higher in OS patients,
accounting for 5.71% (Figure 7D). The data also suggested that
the overall SLC25A4-mutated patient survival was worse relative
to those with no mutations, indicating that the genetic
alterations in SLC25A4 genes was significantly associated with
the prognosis of OS patients (Figure 7E). To further elucidate
SLC25A4 significance in OS, we employed GSEA to screen the
leading 10 networks that showed enrichment in the elevated-
and reduced-SLC25A4 expression cohort (Figure 7F). GSEA
showed that the high expression of SLC25A4 may potentially
mediate certain inflammation, apoptosis and immune-related

pathways, such as Oxidative Phosphorylation, TNFα Signaling
Via NFκB, IL6/JAK2/STAT3 Signaling. On the other hand, the
low expression of SLC25A4 was enriched in the G2M checkpoint,
suggesting a possible association with cell proliferation.
Therefore, GSEA revealed that SLC25A4 was associated with
cell cycle, apoptosis, immune response, cell proliferation and
inflammation. In order to further explore the functionality of
this molecule, we conducted molecular basic experiments.

3.7 Effects of SLC25A4 knockdown on OS
cell proliferation, migration, invasion
and apoptosis

In order to investigate the effects of SLC25A4 knockdown onOS,
the HOS and MG-63 cells were selected to establish the SLC25A4
knockdown cells. Small interfering (si) RNAs, targeting SLC25A4
and negative control siRNA (siNC) synthesized by RiboBio were
transfected into HOS and MG-63 cells. RT-qPCR and Western blot
assessments were performed to verify the effects of SLC25A4
knockdown. Based on our results, siSLC25A4-3 exhibited the
optimal knockdown effects (Figures 8A,B). Therefore,
siSLC25A4-3 was selected for subsequent experiments to validate
the effects of SLC25A4 knockdown on OS.

First, we explored the SLC25A4 knockdown-mediated effect
on OS cell proliferation. CCK-8 assay was used to evaluate OS
cell proliferation, which showed that the SLC25A4 knockdown
cell growth rate, including both HOS and MG-63 cells, was
significantly increased (Figure 8C). Furthermore, consistent
with the CCK-8 data, EdU assessment showed that the
downregulation of SLC25A4 expression significantly increased
the proliferation rates of HOS and MG-63 cells (Figure 8D).
Together, these findings indicated that SLC25A4 deficiency
could enhance the proliferative ability of HOS and MG-63 cells.

Given the importance of migratory and invasive features of
tumor cells in tumor development and metastasis, wound healing
and Transwell assessments were next conducted on SLC25A4
knockdown cells. The wound healing assay revealed that
SLC25A4 knockdown enhanced the HOS and MG-63 cell
migration (Figure 8E). Furthermore, the Transwell assay, which

TABLE 5 Differential expression of hub genes between osteosarcoma tissues and adjacent non-cancerous tissues.

Gene Gene ID Adjusted p-value Log (FC) Regulation

DES ENSG00000175084 0 −6.24 Hypo

CASQ1 ENSG00000143318 0 −8.05 Hypo

CASQ2 ENSG00000118729 0 −5.11 Hypo

KLHL31 ENSG00000124743 0 −5.73 Hypo

MYBPC2 ENSG00000086967 0 −5.79 Hypo

SYNPO2L ENSG00000166317 0 −7.28 Hypo

TNNT1 ENSG00000105048 0 −8.89 Hypo

PDLIM3 ENSG00000154553 0 −5.25 Hypo

SLC25A4 ENSG00000151729 0 −4.21 Hypo

MYL3 ENSG00000160808 0 −5.76 Hypo
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can be used to explore both cell migration and cell invasion, revealed
that SLC25A4 knockdown predominantly promoted the migration
and invasion abilities of HOS andMG-63 cells, which were related to
the metastasis of OS (Figure 8F).

ANT1, as a component of mPTP, was closely associated with
apoptosis; therefore, its effect on OS cell apoptosis was assessed via
flow cytometry. Knockdown of SLC25A4 decreased the overall
apoptosis rates of HOS and MG-63 cells (Figure 8G).

FIGURE 6
Hub gene transcript and protein expressions in OS. (A) Transcript levels of DES, CASQ1, CASQ2, KLHL31, MYBPC2, SYNPO2L, TNNT1, PDLIM3,
SLC25A4, andMYL3 in OS tissues relative to surrounding non-cancerous tissues were verified using real-time qPCR. (B)mRNA expression levels of DES,
CASQ1,CASQ2, KLHL31,MYBPC2, SYNPO2L, TNNT1, PDLIM3, SLC25A4, andMYL3 in humanOS cell lines (MG-63, HOS, and Saos-2) compared to human
fetal osteoblast cell line (hFOB1.19) were verified using real-time qPCR. (C) Basal expression of SLC25A4 in OS cells and normal cell line HFOB
examined by Western blot. (D) Results of Western blot on SLC25A4 expression in OS tissues compared to surrounding healthy tissues. n ≥ 3, *p < 0.05,
**p < 0.01, ***p < 0.001.
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3.8 SLC25A4 overexpression-mediated
regulation of OS cell proliferation,migration,
invasion and apoptosis

Since SLC25A4 knockdown played an inhibitory role in
tumorigenesis and progression of OS, we further investigated
whether SLC25A4 overexpression might have the opposite effect.
The SLC25A4-overexpressing plasmid was used to upregulate
SLC25A4 expression in HOS and MG-63 cells. SLC25A4
overexpression efficiency was verified using RT-qPCR and
Western blot (Figures 9A,B).

SLC25A4 expression-mediated regulation of OS cell proliferation,
migration and invasion was investigated by constructing SLC25A4-
overexpressing HOS and MG-63 cells. After the overexpression of
SLC25A4, HOS and MG-63 cells showed a dominant inhibition of
proliferation ability, whichwas confirmed using CCK-8 and EdU assays
(Figures 9C,D). From the perspective of cell migration, wound healing
assay confirmed that elevated SLC25A4 expression levels impaired the
migration ability of OS cells (Figure 9E). Additionally, the Transwell
assay showed that SLC25A4 overexpression strongly suppressed OS cell
migratory and invasive abilities (Figure 9F); moreover, flow cytometry
revealed that the overexpression of SLC25A4 significantly accelerated
HOS andMG-63 cell apoptosis, confirming the promise of SLC25A4 as
a potential therapeutic target for OS (Figure 9G).

4 Discussion

OS is a highly lethal tumor with a high incidence in children and
adolescents. (Heng et al., 2024). Despite advances in the treatment of OS,
including surgery and chemotherapy, overall patient survival has not
improved significantly due to the unclear molecular mechanisms
associated with OS tumorigenesis. Therefore, OS contributes
significantly to cancer-associated mortality in children and
adolescents. (Lin et al., 2017). As established biomarkers play a
major role in the diagnosis and prognosis of patients, multiple
investigations have been conducted to explore the potential
therapeutic targets to improve prognosis. (Colli et al., 2021; Bai et al.,
2023; Newhook et al., 2023). For instance, the whole-genome and RNA-
sequencing data of 316 patients, obtained from theTCGAdatabase, were
employed to analyze the genomic and transcriptomic status of DNA
damage response (DDR) gens in oral squamous cell carcinoma (OSCC),
leading to the identification of eight hub genes, which could predict the
treatment response of OSCC to novel anti-tumor compounds, thereby
improving patient outcomes. (Pomella et al., 2023). Tian et al. identified
DEGs between mice with subarachnoid hemorrhage (SAH) and control
mice using two datasets, GSE167110 and GSE79416, from the GEO
database and also explored the expression levels and functional pathways
of the hub gene CCR2. (Tian et al., 2022). Hou et al. explored the CD74/
STAT1 signaling pathway in trastuzumab-induced cardiotoxicity using
GO and KEGG analysis. (Hou et al., 2023). It has been found that
FBXO9 affects the metastasis of lung cancer cells by participating in the
assembly process of the Vacuolar-type H + -ATPase (V-ATPase), thus
influencing the prognosis of lung cancer patients. (Liu et al., 2024).
Therefore, it is critical to utilize genomic-level research in the clinical
practice of cancer treatment.

In this study, using comprehensive bioinformatics analysis of RNA
sequencing data from OS tissues and adjacent non-cancerous tissues,

we demonstrated that the mRNA and protein expression of SLC25A4
was markedly downregulated in OS patients. Furthermore, pan-cancer
analysis revealed that SLC25A4 expression was reduced inmost tumors,
and the cBioPortal database indicated that genetic alterations in
SLC25A4 were strongly linked to OS patient prognosis. GSEA
revealed that SLC25A4 was associated with the cell cycle, apoptosis,
the immune response, cell proliferation, and inflammation. In addition,
HOS and MG-63 cells with SLC25A4 knockdown showed significantly
increased proliferation, migration, and invasion, as well as a significant
decrease in apoptosis. Here, we explored the transcriptional status,
protein levels, functional pathways, mutations, and prognostic
associations of SLC25A4 in OS. It is hoped that these findings may
enhance an understanding of the mechanisms associated with OS
occurrence and development and help in improving the accuracy of
prognosis prediction for OS patients. Hence, the current study may
provide a potentially effective target for OS diagnosis and intervention.

The SLC25 carrier superfamily, the largest solute transport family
expressed on the inner mitochondrial membrane (IMM), plays a role in
transporting compounds, including amino acids, fatty acids, and
nucleotides during metabolism. (Kunji et al., 2020; Ruprecht and
Kunji, 2020). Therefore, the SLC25 carrier superfamily is closely
related to various biological pathways including metabolite
trafficking, signal transmission, and substance metabolism. (Chen
et al., 2022). Several studies have reported the role of SLC25 in
pathophysiological conditions as well as disease progression and
showed that it was associated with abnormal tumor metabolism.
(Ruprecht and Kunji, 2020). SLC25A4 encodes a protein also known
as adenine nucleotide translocator 1 (ANT1), that participates in ATP/
ADP exchange on the IMM. (Klingenberg, 2008; Lu et al., 2017; Zhang
et al., 2017). Bertholet et al reported that ANTwas a key protein required
for mitophagy in several cell types and showed that ANT played a novel
function as an essential mediator of mitophagy in normal and disease
conditions. (Hoshino et al., 2019).Mitochondrial permeability transition
pore (mPTP), a structure formed in the IMM, is thought to be the basis
for regulating apoptosis, and ANT has been found to be a pore-forming
component of mPTP. (Bround et al., 2020). It has been reported that the
expression of ANT1 is associated with several apoptotic processes,
including caspase activation, mitochondrial membrane potential
collapse, phenotypic alteration, DNA degradation, and other features
of apoptosis. (Bauer et al., 1999). ANT is a multifunctional protein that
plays a key role in several processes, including tumorigenesis,
participates in tumor anabolism, controls oxidative phosphorylation
and glycolytic homeostasis, and regulates cell death. (Zhao et al., 2021).
For instance, Jang et al revealed that ANT1 overexpression induced
apoptosis in breast cancer cells and strongly suppressed tumor
development both in vitro and in vivo, suggesting that ANT1 might
be an effective target for breast cancer treatment. (Jang et al., 2008).
Some chemotherapeutic drugs, including lonidamine (LND), can
directly or indirectly stimulate ANT and affect the opening of
mPTP, thereby inducing tumor cell death. (Decaudin et al., 1998;
Abdel-Wahab et al., 2019). LND possesses anti-cancer effects;
however, clinical trials showed the presence of significant toxic side
effects. (Wang et al., 2023). ANT can regulate energy metabolism by
converting its c-state to m-state to complete the ADP/ATP cycle.
(Ruprecht et al., 2019). When ANT is in the c-state, ADP is
transported from the cytoplasm to the mitochondrial matrix along
with the transport of inorganic phosphate (Pi) and H+. On the other
hand, when ANT is in the m-state, ATP is transported from the
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mitochondrial matrix to the cytoplasm. (Springett et al., 2017). ANT is a
potentially robust target for drug development; however, it should be
noted that different subtypes of ANT play different roles in cancer.
(Zhang et al., 2018). For example, ANT1 and ANT3 accelerate tumor
cell apoptosis, while ANT2 and ANT4 inhibit apoptosis. (Li et al., 2020).

Therefore, ANT1 might also be considered a promising target to study
novel anticancer agents and might be a novel biomarker for tumor
diagnosis and intervention. (Rochette et al., 2020).

Comprehensive bioinformatics analysis showed that the expression
of SLC25A4wasmarkedly downregulated in both OS tissues and OS cell

FIGURE 7
Expression of SLC25A4 in different cancers and function of the SLC25A4 in the OS. (A) Expression of SLC25A4 across TCGA cancers. (B) The
confocal images of the cellular localization of SLC25A4 in U2OS cells (scale bar: 20 µm). (C)Genetic alterations andmutations of SLC25A4 in pan-cancer.
(D) Genetic alterations and mutations of SLC25A4 in OS. (E) Genetic alterations and mutations in SLC25A4were strongly associated with overall survival
(p < 0.05). (F) Functional and Pathway Enrichment Analysis of SLC25A4 by GSEA.

Frontiers in Genetics frontiersin.org14

Zhang et al. 10.3389/fgene.2024.1410145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1410145


lines, and the decrease in its profile was closely associated with worse OS
patient prognosis. Furthermore, cell function assays revealed that
increased expression of SLC25A4 significantly reduced OS cell
proliferation, migration, and invasion, while enhancing apoptosis,

indicating that SLC25A4 was involved in tumorigenesis, tumor
progression, and metastasis. Therefore, SLC25A4 might be a potential
key gene for OS and provide a new target for its treatment, thereby
contributing to OS diagnosis, treatment, and patient prognosis.

FIGURE 8
Influences of SLC25A4 deficiency on OS cell proliferation, migration, invasion and apoptosis. Verification of transfection efficiency of siRNAs by
Western blot (A) and RT-qPCR (B). CCK-8 (C) and EdU (D) revealed that SLC25A4 knockdown significantly accelerated OS cell proliferation (scale bar:
100 µm). (E) Wound healing assessment revealed that the SLC25A4-deficient migratory cells were considerably more than siNC groups (scale bar:
500 µm). (F) Transwell assessment revealed that SLC25A4 deficiency strongly accelerated OS cell migration and invasion (scale bar: 200 µm). (G)
SLC25A4 knockdown inhibited apoptosis rate of HOS. n ≥ 3, *p < 0.05, **p < 0.01, ***p < 0.001.
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However, the present study has several limitations. First, due to
limitations in surgical indications for OS patients and continuous
improvements in chemotherapy regimens, the number of samples

collected for RNA sequencing was relatively small. Second, the role
and function of SLC25A4 were studied in vitro, and in vivo
investigations involving SLC25A4 are thus needed. Finally, the

FIGURE 9
Influences of SLC25A4 overexpression on OS cell proliferation, migration, invasion and apoptosis. Verification of transfection efficiency of plasmid
by Western blot (A) and RT-qPCR (B). CCK-8 (C) and EdU (D) revealed that SLC25A4 overexpression significantly inhibited proliferation of OS cells (scale
bar: 100 µm). (E)Wound healing assessment revealed that the SLC25A4-overexpressedmigratory cells were considerably less compared to siNC groups
(scale bar: 500 µm). (F) Transwell assessment revealed that SLC25A4 overexpression significantly suppressed OS cell migration and invasion (scale
bar: 200 µm). (G) SLC25A4 overexpression promoted apoptosis rate of HOS. n ≥ 3, *p < 0.05, **p < 0.01, ***p < 0.001.
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specific pathways and regulatory mechanisms associated with
SLC25A4 in OS still require further investigation.

5 Conclusion

In conclusion, this study revealed that the expression of
SLC25A4 was significantly downregulated in patients with OS
and was strongly associated with prognosis. We also revealed
that the prognosis of patients with enhanced SLC25A4 expression
was superior to that of patients with reduced SLC25A4 expression.
Low SLC25A4 expression significantly promoted OS cell
proliferation, migration, and invasion, and inhibited apoptosis,
thus participating in OS development. The study suggested that
SLC25A4 might be a therapeutic target for predicting OS patient
prognosis, and whether it contributes to OS diagnosis, treatment,
and prognosis still requires further investigation.
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