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This research aims to advance the detection of Chronic Kidney Disease (CKD)
through a novel gene-based predictive model, leveraging recent breakthroughs in
gene sequencing. We sourced and merged gene expression profiles of CKD-
affected renal tissues from the Gene Expression Omnibus (GEO) database,
classifying them into two sets for training and validation in a 7:3 ratio. The
training set included 141 CKD and 33 non-CKD specimens, while the validation
set had 60 and 14, respectively. The disease risk predictionmodel was constructed
using the training dataset, while the validation dataset confirmed the model’s
identification capabilities. The development of our predictive model began with
evaluating differentially expressed genes (DEGs) between the two groups. We
isolated six genes using Lasso and random forest (RF)methods—DUSP1, GADD45B,
IFI44L, IFI30, ATF3, and LYZ—which are critical in differentiating CKD from non-
CKD tissues. We refined our random forest (RF) model through 10-fold cross-
validation, repeated five times, to optimize themtry parameter. Theperformanceof
ourmodel was robust, with an average AUCof 0.979 across the folds, translating to
a 91.18% accuracy. Validation tests further confirmed its efficacy, with a 94.59%
accuracy and an AUC of 0.990. External validation using dataset
GSE180394 yielded an AUC of 0.913, 89.83% accuracy, and a sensitivity rate of
0.889, underscoring the model’s reliability. In summary, the study identified critical
genetic biomarkers and successfully developed a novel disease risk prediction
model for CKD. This model can serve as a valuable tool for CKD disease risk
assessment and contribute significantly to CKD identification.
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Highlights

1. Integration of various GEO datasets into a comprehensive sample dataset.
2. Examination of biomarkers for CKD within kidney tissue specimens.
3. A collaborative investigation utilizing Lasso and random forest methods to identify

CKD biomarkers.
4. An innovative and robust CKD disease risk prediction model was created, employing a

random forest algorithm and utilizing six critical genes (DUSP1, GADD45B, IFI44L,
IFI30, ATF3, and LYZ).

5. Thorough testing of the models using both a validation dataset and an external
validation dataset.
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Introduction

Chronic Kidney Disease (CKD) is defined by a progressive
deterioration of renal function sustained over 3 months or more,
independent of its underlying cause, eventually necessitating renal
replacement therapy, such as dialysis or transplantation (Vaidya
and Aeddula, 2023) Kidney damage encompasses pathological
irregularities, which may be indicated by imaging
investigations, renal biopsy, anomalies in urinary sediment, or
elevated urinary albumin excretion rates (Vaidya and Aeddula,
2023). The diversity in clinical manifestations of CKD can impact
various facets of bodily function, including the cardiovascular
system, electrolyte equilibrium, bone health, anemia status, and
overall metabolic wellbeing (Management of Progression, 2013;
Dhondup and Qian, 2017; Gallant and Spiegel, 2017; Hutcheson
and Goettsch, 2023). The disruption of multiple physiological
systems plays a central role in the development of CKD.
Considering that CKD encompasses a wide range of kidney
diseases, its origins can span from glomerular damage, tubular
dysfunction, and interstitial injury, to vascular impairment.
Prominent factors such as diabetes, hypertension, and
inflammation often play a substantial role in advancing and
establishing chronic kidney conditions (Vaidya and Aeddula,
2023). CKD is an irreversible condition marked by a continual
decline in kidney health, necessitating ongoing medication
management for its symptoms (Mayo Clinic, 2023a). While the
underlying mechanisms of its onset remain unclear, precise
detection of CKD is crucial as it can significantly improve
patient outcomes. Given the pivotal role of autoimmune
dysregulation in CKD, immune biomarkers have surfaced as
valuable tools for enhancing CKD diagnosis and, consequently,
enhancing disease management (Espi et al., 2020). Nonetheless,
the diverse and often ambiguous symptoms associated with CKD
pose challenges in achieving an accurate and prompt diagnosis
(Mayo Clinic, 2023b). The need for enhanced diagnostic and
treatment strategies for CKD is immediate. Over the last
10 years, advancements in microarray sequencing have
provided a reliable and thorough approach for deciphering the
genetic and epigenetic factors of various diseases. Such a plethora
of data also facilitates the prediction of a multitude of diseases
(Gunn and Smith, 2004; Wang J. et al., 2022). Wang et al.
demonstrated that utilizing multiple biomarkers in prediction
models can notably enhance predictive accuracy (Wang et al.,
2020). Selecting the right features remains a substantial obstacle in
the creation of classification models based on multiple genes.
Fortunately, this problem is being adeptly addressed by
employing a range of machine-learning strategies in modern
biological research (Kursa, 2014; Degenhardt et al., 2019).
These algorithms, whether used in isolation or in combination,
have made substantial contributions to gene expression data
classification, disease detection, and microbiome studies (Liu
et al., 2018; Hernández Medina et al., 2022; Alshammri
et al., 2023).

We established a novel disease risk prediction model for CKD
utilizing transcriptome data, focusing on the critical genes
identified within the GEO database. Initially, we employed
Lasso and RF techniques to identify influential genes for CKD
classification. Subsequently, through grid search, we selected the

optimal “mtry” parameter for the RF model, leading to the
development of a genetic disease risk prediction model for
CKD based on these key genes. We assessed the model’s
performance using a validation dataset to validate its accuracy
and discriminative capabilities.

Materials and methods

Data sources

The data utilized in this study were sourced from the Gene
Expression Omnibus (GEO) database, an established repository
for gene expression information managed by the National Center
for Biotechnology Information (NCBI) (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi). To conduct the study, we conducted
an extensive search within the NCBI database platform using
the keyword “chronic kidney disease.” The selected dataset
fell under the category of array expression profiling, featured
the organism Homo sapiens, and comprised kidney
tissue samples.

The datasets GSE35488, GSE32591, GSE66494 and
GSE47184 were obtained. GSE35488 is a dataset containing
25 CKD patient samples and six healthy samples. The kidney
tissue samples were obtained from the University of Michigan.
The gene expression was analyzed using the Affymetrix
GeneChip Human Genome HG-U133A Array (using custom
CDF). GSE32591 is a dataset containing 64 CKD patient
samples and 29 healthy samples. The kidney tissue samples
were obtained from the University of Michigan. The gene
expression was analyzed using the Affymetrix GeneChip
Human Genome HG-U133A Array (using custom CDF).
GSE66494 is a dataset containing 53 CKD patient samples and
eight healthy samples. The kidney tissue samples were obtained
from Kyushu University Hospital. The gene expression was
analyzed using the Agilent-014850 Whole Human Genome
Microarray 4 × 44K G4112F (Probe Name version).
GSE47184 is a dataset containing 60 CKD patient samples and
four healthy samples. The kidney tissue samples were obtained
from the University of Michigan. Gene expression was analyzed
using the Affymetrix GeneChip Human Genome HG-U133A
(using custom CDF). GSE180394 (external dataset) is a dataset
containing 50 CKD patient samples and nine healthy samples.
The kidney tissue samples were obtained from the University of
Michigan. Gene expression was analyzed using the Affymetrix
Human Gene 2.1 ST Array. The information about the four
datasets and the external validation dataset (GSE180394) is
displayed in Table 1; Supplementary Table S1.

These datasets were chosen for their breadth of chronic kidney
disease (CKD) stages and types, aiming to develop a model that
generalizes CKD across these stages. GSE35488 contains primary
glomerulonephritis and IgA nephropathy, covering both early and late
stages. GSE32591 contains lupus nephritis, covering both early and
late stages. GSE66494 contains chronic kidney disease, covering both
early and late stages. GSE47184 contains diabetic nephropathy,
minimal change disease, thin membrane disease, focal and
segmental glomerulosclerosis, hypertensive nephropathy, IgA
nephropathy, membranous glomerulonephritis, and rapidly
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progressive glomerulonephritis, covering both early and late stages.
GSE180394 contains focal and segmental glomerulosclerosis, chronic
glomerulonephritis, diabetic nephropathy, IgA nephropathy,
interstitial nephritis, hypertensive nephrosclerosis, light-chain
deposit disease, lupus nephritis (various WHO classes), minimal
change disease, membranous nephropathy, and chronic kidney
disease with moderate to severe interstitial fibrosis, covering both
early and late stages.

Data processing

Next, we initiated a sequence of data processing procedures on
our merged gene expression dataset to ensure accuracy and
consistency. To begin, we implemented quantile normalization
across the entire expression dataset, ensuring a consistent
distribution of probe intensities. Following this, we introduced a
log2 transformation to improve the interpretability and
comparability of expression values. Finally, to address and rectify
any potential batch effects that could arise from differences in
experimental platforms, we employed the ComBat function from
the sva package. This method efficiently harmonized the data,
mitigating discrepancies between the batches (Supplementary
Figure S1). By removing noise and potential biases in the data, this
process enhanced the model’s generalization ability and ensuredmore
reliable predictions across different experimental conditions.

Stratified random sampling

To enhance themodel’s ability to accurately reflect its robustness
in disease risk prediction, we employed a stratified random sampling
approach to ensure an equitable sample distribution. Utilizing the
“createDataPartition” function from the R package caret, we
partitioned the array expression spectrum datasets (GSE35488,
GSE32591, GSE66494, and GSE47184) into both a training
dataset and a validation dataset, maintaining a sample size ratio
of 7:3. Subsequently, we utilized the training dataset for the
development of the disease risk prediction model, while the
validation dataset was employed to assess the model’s effectiveness.

Screening for DEGs

Weconducted differential expression analysis on the training dataset
to identify Differentially Expressed Genes (DEGs) using conventional

Bayesian approaches via the limma package. Significance criteria for
DEGs were established with a false discovery rate (FDR)
threshold <0.05 and an absolute log2 fold change (log2FC) > 1.
Subsequently, we generated a heatmap of the DEGs utilizing the
pheatmap package and created a volcanomap using the ggplot2 package.

Gene enrichment analysis

The analysis of Differentially Expressed Genes (DEGs) was
undertaken with the application of Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Disease
Ontology (DO). Specifically, for GO and KEGG analysis, we
employed the clusterProfiler package, and for DO analysis, we
utilized the DOSE package. The interpretation of Gene Ontology
primarily focused on biological processes (BP). This analysis allows
us to gain valuable insights into the biological functions and pathways
associated with the DEGs.

Feature selection

We conducted Lasso regression using the glmnet package as
part of our feature selection process. Lasso regression is a robust
feature selection algorithm known for effectively addressing
collinearity issues and identifying representative variables. By
constraining the sum of the absolute values of the model
parameters, Lasso helps in shrinking some coefficients to
zero, thereby facilitating the selection of a simpler, more
interpretable model. This technique is particularly
advantageous in high-dimensional datasets, where
multicollinearity can be a significant issue. Lasso regression’s
ability to penalize the coefficients and minimize overfitting
makes it a suitable choice for identifying key biomarkers in
our study. To further refine our feature selection, we employed
the recursive feature elimination (RFE) method in conjunction
with a random forest classifier, a step facilitated by the caret
package. RFE iteratively removes the least important features
based on the model’s performance, thus narrowing down the
feature set to the most impactful variables. This approach
enhances the model’s interpretability and robustness by
ensuring that only the most relevant features are retained.
Additionally, RFE’s integration with a random forest classifier
leverages the inherent feature importance metrics of the
ensemble method, providing a comprehensive assessment of
each feature’s contribution to the predictive model. We

TABLE 1 The data regarding the gene expression datasets related to Chronic Kidney Disease (CKD) within the Gene Expression Omnibus (GEO) repository.

GEO accession Expression profiling Tissue CKD Control Total

GSE35488 Array Kidney tissue 25 6 31

GSE32591 Array Kidney tissue 64 29 93

GSE66494 Array Kidney tissue 53 8 61

GSE47184 Array Kidney tissue 60 4 64

GSE180394 Array Kidney tissue 50 9 59
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complemented this process with a 10-fold cross-validation to
ensure the reliability and validity of our feature selection. Cross-
validation involves partitioning the data into ten subsets,
training the model on nine subsets, and validating it on the
remaining subset, repeating this process ten times. This
technique helps in mitigating overfitting and provides a more
accurate estimation of the model’s performance on unseen data.
By combining RFE with cross-validation, we ensure a robust
feature selection process that balances model complexity and
predictive accuracy, ultimately enhancing the overall efficacy of
our chronic kidney disease risk prediction model.

Subsequently, we employed a grid search to pinpoint the optimal
mtry parameter for fitting the random forest dataset. This was followed
by a process of 10-fold cross-validation, which included five iterations
and several rounds of training. Using the caret and randomForest
packages, we then proceeded to evaluate the significance scores of the
feature genes. In our final step, we focused on the signature genes,
identifying those with importance scores >25 as the most important.

It is important to emphasize that the mtry parameter,
representing the count of variables randomly sampled when
building decision tree branches in random forest models, is
crucial. Its appropriate selection is key to minimizing prediction
errors and boosting the overall performance of the model.

Constructing random forest predictive
model for CKD

In our CKD disease risk prediction model, we incorporated the
chosen signature genes using a random forest model. Random forest, an
ensemble learning method, is highly effective for classification tasks due
to its robustness and ability to handle large datasets with higher
dimensionality. By constructing multiple decision trees during
training and outputting the mode of the classes (classification) or
mean prediction (regression) of the individual trees, random forest
mitigates overfitting and improves predictive accuracy. The integration
of random forest in our model ensures that we leverage its strengths in
capturing complex interactions between features and enhancing the
overall stability and performance of the prediction model.

To achieve an optimally fitted random forest dataset, we applied a
grid search technique, using the caret and randomForest packages, to
determine the best mtry parameter. This was followed by a 10-fold cross-
validation procedure, involving five rounds of repetition and numerous
training cycles. The primary goal of this process was to improve the
model’s performance and reduce the risk of overfitting, with a focus on
evaluating accuracymetrics. Ultimately, we constructed theCKD random
forest diagnostic model, equipped with the optimal mtry parameters. To
determine its robustness, we subjected this model to 5-fold cross-
validation on the training dataset and assessed the accuracy of the
results using the confusionMatrix function. Additionally, we computed
the area under the receiver operator characteristic (ROC) curve (AUC)
using the pROC package to gauge the model’s discriminatory capability.

Verification using validation datasets

The validation dataset, as well as the external validation dataset
(GSE180394), provided robust confirmation of the efficacy of our CKD

disease risk prediction model built through random forest. To account
for potential batch effects between GSE180394 (Supplementary Figure
S2) and the training dataset, we once again applied the Combat function
for adjustment before conducting model testing.

To further validate the reliability of our biomarkers, we
ascertained the optimal parameter mtry, assessed the area
under the curve (AUC), and evaluated the accuracy of our
optimal disease risk prediction model for CKD using random
forest. The AUC was computed using the pROC package, while
accuracy measurements were obtained through the
confusionMatrix function.

Statistical analysis

We conducted all statistical analyses using R software (version
4.3.1), and statistical significance was defined as p < 0.05.

Results

Study design

Figure 1 illustrates the complete study process.

Identification of DEGs

We employed a stratified random sampling method to partition
the data into a training dataset (70%) and a validation dataset (30%).
In the training dataset, there were 141 CKD samples and 33 healthy
samples, while the validation dataset comprised 60 CKD samples
and 14 healthy samples. Subsequently, we conducted differential
expression analysis on the training dataset to identify differentially
expressed genes (DEGs) associated with CKD. We identified a total
of 35 significant DEGs based on predefined significance criteria. To
visualize the expression patterns of all DEGs, we generated a volcano
plot (Figure 2A), which revealed a nearly equal distribution of
upregulated and downregulated genes. The heat map analysis
(Figure 2B) further illustrated significant differences in the
expression levels of DEGs between the CKD (designated as ‘1′)
and control group (designated as ‘0′).

Enrichment analysis

We conducted enrichment analyses for the 35 differentially
expressed genes (DEGs), including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Disease
Ontology (DO) analyses. Regarding biological processes (Figure 3A),
the results revealed significant enrichment of DEGs in response to viral
and immune responses. In the context of KEGG analysis (Figure 3B),
our findings indicated prominent enrichment in pathways related to
viral-associated diseases, specifically those involving MAPK, NF-κB,
and IL-6, along with cytokine receptor signalling pathways. As for DO
analysis (Figure 3C), it suggested a close association between crucial
genes linked to CKD and autoimmune diseases such as intestinal
disease, mouth disease, and atherosclerosis.
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Key gene selection

To identify key genes, we first employed Lasso regression with a
10-fold cross-validation on the initial set of 35 DEGs. Using Lambda
as the criterion (Figures 4A, B), we selected 16 candidate genes by
reducing the feature variables. We proceeded with feature selection
using RF-RFE, as shown in Figure 4C. This process revealed that
incorporating all 16 candidate genes resulted in the highest accuracy
for the model. In the concluding phase, we refined the model by
incorporating these 16 genes into a random forest classifier and
performing 10-fold cross-validation five times. To ensure robust
predictive capability while minimizing the number of features, we
focused on six genes with importance scores above 25, designating
them as the key genes. Figure 4D displays the significance of these
genes, with DUSP1 being the most pivotal, followed by GADD45B,
IFI30, IFI44L, ATF3, and LYZ.

Development of the random forest model

We included DUSP1, GADD45B, IFI30, IFI44L, ATF3, and LYZ
in the random forest classifier. To enhance model performance, we

conducted a grid search for the mtry parameters and assessed model
accuracy for each mtry through 10-fold cross-validation repeated
5 times. Subsequently, we established the optimal random forest
disease risk prediction model with an mtry of 2. We then conducted
a robustness assessment using a 5-fold cross-validation, representing
results with ROC curves (Figure 5), and presenting accuracy values
in Table 2. The average AUC from the 10-fold cross-validation
results exceeded 0.97, confirming the model’s reliability. Finally, we
evaluated the AUC and accuracy for the entire training dataset,
resulting in an AUC of 1% and 100% accuracy (Figure 6A).

Random forest validation

In the validation dataset, the ROC curve analysis yielded an
AUC value of 0.990, and the confusion matrix estimated an accuracy
of 94.595%. These results underscore the model’s robustness in
identifying CKD (Figure 6B). This demonstrates the successful
development of a CKD disease risk prediction model based on
differential gene expression between CKD and normal samples.
Moreover, we constructed models with and without DUSP1,
resulting in respective AUCs of 0.880 and 1.00 (Supplementary

FIGURE 1
This study’s process is outlined as follows. In the first step, datasets GSE35488, GSE32591, GSE66494, and GSE47184 were merged into a single
comprehensive dataset. The second step involved dividing this extensive dataset into training and validation sets using stratified random sampling,
adhering to a 7:3 ratio. The third step focused on the training dataset, where differential expression analysis was performed, Lasso regression and RF-RFE
(Random Forest - Recursive Feature Elimination) were executed, and the feature importance score of RF was used to pinpoint essential genes. In the
fourth step, these key genes were integrated into a random forest prediction model. The fifth step entailed evaluating the model’s effectiveness through
5-fold cross-validation on the training set. Additionally, the model’s robustness was tested using the validation set and an external validation dataset
(GSE180394), with performance measured in terms of the area under the curve (AUC), accuracy, and sensitivity.
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Figure S3). Interestingly, adding the most crucial gene, DUSP1,
enhanced rather than diminished model performance, as evident
from the AUC values in the previous validation set of the six-gene
disease risk prediction model. In addition, on the validation dataset,
the model achieved a precision of 0.916, a recall of 0.786, and an
F1 score of 0.846.

Random forest model validation using
external dataset

For additional validation, we applied our model to an external
dataset (GSE180394). Analysis of the ROC curve from this dataset
resulted in an AUC of 0.913, as shown in Figure 6C, reflecting the
model’s robust diagnostic discrimination. Through the confusion

matrix, we calculated an accuracy rate of 89.83% and a sensitivity of
0.889. This sensitivity rate is particularly significant as it underscores
the model’s enhanced ability to accurately identify CKD in
individuals.

Discussion

Chronic Kidney Disease (CKD) is a medical condition
marked by the progressive and irreversible deterioration of
renal function, stemming from the gradual breakdown of
kidney tissue (PACE Hospital, 2023). Accurate prediction and
early detection play a pivotal role in enhancing the survival rates
of individuals with CKD (Shlipak et al., 2021). Despite ongoing
research, the exact process of CKD’s development is not fully

FIGURE 3
Enrichment Analysis. (A) This section features a bar plot representing biological processes derived from GO enrichment analysis. (B) It includes a bar
plot depicting the results of KEGG enrichment analysis. (C) The section concludes with a bar plot showing the findings from DO enrichment analysis.

FIGURE 2
Differentially expressed genes. (A) In the volcano plot, 35 genes are highlighted for their significant differential expression, with green dots indicating
upregulated genes, black dots for genes with no notable differences, and red dots for downregulated genes. (B) The heat map illustrates the expression
patterns of these 35 genes, clearly showing trends of both upregulation and downregulation.
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understood. At present, standard diagnostic methods for CKD
rely primarily on serum creatinine tests, which include
assessments of Glomerular Filtration Rate (GFR) and urine
Albumin-to-Creatinine Ratio (ACR) (Chen et al., 2019).
Clinical diagnosis of CKD is rarely made promptly because of
its relatively slow-developing nature (Rosenberg, 2021), CKD
patients are often asymptomatic, and definitive confirmation

typically requires specific laboratory tests and monitoring over
an extended period to establish a consistent pattern of kidney
dysfunction (Chen et al., 2019). It is essential to identify
biomarkers that have a strong correlation with CKD. Thanks
to machine learning advancements and publicly available gene
expression data, we can now more effectively identify biomarkers
strongly linked to diseases (Aromolaran et al., 2021).

FIGURE 5
The ROC curve results were confirmed by a 5-fold cross-validation.

FIGURE 4
Feature selection. (A) Lasso regression curve depicting the 35 DEGs. (B)Options for the λ parameter in the 10-fold cross-validation. (C) RMSE values
for the 10-fold cross-validation of the RF-RFE-selected signature gene combination. (D) Importance scores of genes in the random forests model.
Development of the random forest model.
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In our research, we developed a CKD disease risk prediction model
using the random forest algorithm to distinguish between CKD patient
renal tissue and normal renal tissue. With the rapid advancement of
bioinformatics, we now have strong evidence to support disease
classification like CKD. To identify CKD’s Differentially Expressed
Genes (DEGs), we integrated data from four GEO datasets
(GSE35488, GSE32591, GSE66494, and GSE47184) and utilized
stratified random sampling to divide the dataset into training (70%)
and validation (30%) sets. Following this, we carried out enrichment
analyses using GO, KEGG, and DO, which showed that the
differentially expressed genes (DEGs) are linked to a diverse range of
biological processes and pathways. This indicates the complexity of the
underlying mechanisms in CKD pathogenesis. Numerous research
efforts align with our results, and prior studies have demonstrated
MAPK, NF-κB, Interleukin-6 (IL-6) and cytokine-receptor pathways
are key in the pathogenesis of CKD (Bruggeman, 2007). A recent study
by Kristen Kurtzeborn et al. (Kurtzeborn et al., 2019) explored the role
of MAPK/ERK signalling in renal differentiation, shedding light on the
pathway’s involvement in nephrogenesis and its relevance to kidney
degradation. Yuan et al. (Yuan et al., 2022) identified MAPK as a key
signalling pathway linked to chronic kidney disease (CKD),
contributing to lipotoxicity and oxidative stress. Inflammatory
pathways like NF-κB, and Cytokine receptor signaling were also
identified as central to CKD progression. In their study, Su et al. (Su
et al., 2017) highlighted kidney resident cells, specifically podocytes
secrete IL-6 under certain conditions to promote proliferation; affecting

the differentiation of kidney cells. The concentration of various
inflammatory signalling pathways and diseases related to
inflammation in CKD patients suggests a link between CKD
pathogenesis and autoimmune irregularities, a viewpoint widely
accepted among CKD researchers (Berthier et al, 2012; Chen et al.,
2023). Among them, viral infections, lipids, and atherosclerosis were
positively correlated with CKD, which suggests that CKD patients are
prone to cardiovascular and autoimmune diseases (Gorenjak, 2009;
Olechnowicz-Tietz et al., 2013), and the development of such diseases is
closely related to immune responses. We found that necrosis is
upregulated in CKD patients and that necrosis is closely associated
with damage-associated molecular patterns (DAMPs), resulting in an
excessive immune reaction (Green et al., 2009; Sarhan et al., 2018).
Notably, pathways involvingMAPK, IL-6, andNF-kB have been shown
to play significant roles in immune responses. For instance, soluble CRT
can activate the MAPK and NF-κB pathways, leading to the production
of pro-inflammatory cytokines like TNF-α and IL-6 in macrophages
(Montico et al., 2018). Furthermore, NF-κB, known for its pro-survival
transcriptional activity, can upregulate antiapoptotic genes, contributing
to cell survival (Verzella et al., 2020), thereby promoting a heightened
immune response as a defence mechanism against tumour growth.
Additionally, during a typical immune response, dendritic cells (DCs)
capture antigens and release cytokines, including IL-6, that shape
immune cell responses, such as those of Natural Killer cells (NK)
and T cells, which receive survival signals and stimulation through
cytokines like IL-6 (Showalter et al., 2017). It has also been recently
proposed that the process of necroptosis might play a role in the
pathogenesis and progression of CKD and that elevated IL-6/NF-κB/
MAPK signalling in CKD increases necroptosis, which leads to tissue
damage (Tanaka et al., 2014). However, the study of necroptosis in CKD
is still poorly studied, and its contribution to the disease’s pathogenesis
and progression requires more in-depth investigation.

Further performance of the RF classifier importance score
screened for six key genes, namely, DUSP1, GADD45B, IFI30,
IFI44L, ATF3, and LYZ. Previous studies support our findings.
Dual-Specificity Phosphatase 1 (DUSP1), one of the enzymes for
mitogen-activated protein kinases (MAPKs), plays a key role of
initiating MAPK cascade (Li et al., 2021). Growth Arrest and DNA

FIGURE 6
The performance of the random forest model was evaluated across the training (A), validation (B), and external validation (C) datasets, utilizing ROC
curves and analyzing their respective AUC values.

TABLE 2 The 5-fold cross-validation results.

Accuracy (%) AUC

Cross-Validation Fold 1 88.235 0.976

Cross-Validation Fold 2 88.235 0.933

Cross-Validation Fold 3 94.118 0.989

Cross-Validation Fold 4 94.118 1.000

Cross-Validation Fold 5 91.176 1.000
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Damage Inducible Beta (GADD45B) is also often implicated in the
pathogenesis of CKD (Moon et al., 2020). GADD45B serves as an
anti-apoptotic factor, exerting its effects by directly binding to
MKK7. Through this interaction, GADD45B effectively suppresses
the MKK7-dependent phosphorylation of JNK1/2, thus preventing
apoptosis (Yamamoto et al., 2010). Gamma-interferon lysosomal
thiol reductase (IFI30) is an enzyme that is expressed constitutively
in antigen-presenting cells (NCBI, 2024a), having been shown to
reduce protein disulfide bonds in endocytosis-mediated protein
degradation. An IFI30 deficiency impaired endothelial cells and
macrophages, including cell proliferation and migration (Wang X.
et al., 2022). Interferon-induced Protein 44 Like (IFI44L) acts as a
feedback regulator of IFN responses (DeDiego et al., 2019), which
are a group of signalling proteins secreted by host cells in reaction
to the presence of multiple viruses (Murira and Lamarre, 2016).
Functional enrichment analysis has revealed that IFI44L might be
involved in numerous immune-related pathways, including
inhibiting the NF-κB signalling pathway (DeDiego et al., 2019;
Zeng et al., 2022). Activating transcription factor 3 (ATF3) plays a
vital role in modulating immunity. When ATF3 is activated, it
forms a complex with c-Jun. Subsequently, this complex attaches
to the promoters of cytokine genes, such as IL-1β, thereby inducing
heightened cytokine production (Ku and Cheng, 2020). LYZ
encodes for human lysozymes. Furthermore, it exhibits
antibacterial properties against various bacterial species, playing
a key role in the innate cellular antiviral response (NCBI, 2024b).
While the identified genes have all been previously reported in
CKD cases, this serves to demonstrate the efficacy of machine
learning in pinpointing critical genes.

A significant feature of our study is the unique integration of
Lasso and RF methods, which resulted in remarkable predictive
performance. The feature selection method of Lasso (Ghosh and
Chinnaiyan, 2005; Tsagris et al., 2018) and RF (C et al., 2023;
Toth et al., 2019) has become a prevalent approach in biology for
more effectively identifying essential biomarkers. Until now, no
research has created a CKD prediction model utilizing gene
sequencing, particularly due to the scarcity of kidney tissue
samples from CKD patients, which are challenging to obtain.

Our model exhibited impressive AUC values of 1, 0.990, and
0.913 for the training dataset, validation dataset, and external
validation dataset (GSE180394), respectively, within the context
of array expression data. These results underscore the robustness
of our model. Additionally, in the external validation dataset
(GSE180394), our model displayed a commendable CKD
sensitivity of 0.889. We investigated the accuracy and
reliability of machine learning in predicting CKD risk at the
gene transcriptome level. Consequently, we have successfully
crafted an innovative CKD disease risk prediction model that
can serve as a valuable tool for CKD risk assessment and disease
identification.

Nonetheless, our study does have certain limitations: 1) Some of the
publicly available datasets lack detailed clinical information about
patients and control samples, limiting our ability to consider distinct
CKD stages and additional comorbidities comprehensively. 2) Despite
our efforts tomergemultiple datasets to create a larger dataset formodel
building, the number of samples available for machine learning still falls
short of ideal. Future work could involve including more research data
in the training dataset to enhance model performance. 3) Addressing

the challenge of model overfitting is a complex task, and while we
employed a 10-fold cross-validation approach during model
construction to mitigate overfitting, it may not completely eliminate
the problem. Real-world data often contains noise, and the model’s
generalization ability may not be as strong as indicated by validation
results. 4) Themodel has yet to undergo testing in practical applications
for predicting CKD patients. Therefore, additional research data will be
essential in the future to assess the model’s robustness and its ability to
generalize effectively.

Conclusion

In summary, our comprehensive analysis of the CKD dataset
from the GEO database revealed that the critical biomarkers DUSP1,
GADD45B, IFI30, IFI44L, ATF3, and LYZ, which exhibited
significant associations with CKD, collectively formed a robust
disease risk prediction model for CKD using the random forest
algorithm. Notably, this study marks the first use of random forest
machine learning techniques to develop a robust predictive model
for CKD based on these six genes.
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