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Introduction: Targeted single nucleotide polymorphisms (SNPs) have been used
in genomic prediction methodologies to enhance the accuracy of associated
genetic transmitting abilities in Holstein cows. The objective of this study was to
identify and validate SNPs associated with fertility traits impacting early
embryo mortality.

Methods: The mRNA sequencing data from day 16 normal (n = 9) and embryo
mortality (n = 6) conceptuses from lactating multiparous Holstein cows were
used to detect SNPs. The selection of specific genes with SNPs as preliminary
candidates was based on associations with reproductive and fertility traits.
Validation of candidate SNPs and genotype-to-phenotype analyses were
conducted in a separate cohort of lactating primiparous Holstein cows (n =
500). After genotyping, candidate SNPs were filtered using a quality control
pipeline via PLINK software. Continuous numeric and binary models from
reproductive traits were evaluated using the mixed procedure for a
generalized linear model-one way ANOVA or logistic regression, respectively.

Results: Sixty-nine candidate SNPs were initially identified, but only 23 passed
quality control procedures. Ultimately, the study incorporated 466 observations
for statistical analysis after excluding animals with missing genotypes or
phenotypes. Significant (p <0.05) associations with fertility traits were
identified in seven of the 23 SNPs: DSC2 (cows with the A allele were older at
first calving); SREBF1 and UBD (cows with the T or G alleles took longer to
conceive); DECR1 and FASN (cows with the C allele were less likely to become
pregnant at first artificial insemination); SREBF1 and BOLA-DMB (cows with the T
allele were less likely to be pregnant at 150 days in milk). It was also determined
that two candidate SNPs within the DSC2 gene were tag SNPs. Only DSC2 SNPs
had an important allele substitution effect in cows with the G allele, which had a
decreased age at first calving by 10 days.
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Discussion: Candidate SNPs found in this study could be used to develop genetic
selection tools to improve fertility traits in dairy production systems.
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1 Introduction

Until 2005, Holstein cows were under intense genetic selection for
milk yield, which inadvertently led to a decline in fertility traits (García-
Ruiz et al., 2016). This was to be expected given the negative genetic
correlations that range from 0.35 to 0.60 for these traits (Pritchard et al.,
2013). The advances in the use of genomic information have identified
associations with economically relevant traits in cattle and
revolutionized animal breeding programs (Matukumalli et al., 2009;
Amos et al., 2011; Khatkar et al., 2014). Despite the genetic
improvement in Holstein cows, the fertility performance of this
breed is still considered suboptimal when compared to other dairy
cattle breeds (Martinez-Castillero et al., 2020).

Fertility based on daughter pregnancy rate (DPR) has clearly
improved over the last 2 decades (García-Ruiz et al., 2016).
Regardless, embryo mortality (EM) is still an issue and was recently
reported to be as high as 37% from d17–33 of pregnancy in Holstein
cows (Domingues et al., 2024). Pregnancies that result in EM are
associated with multiple factors, including inadequate interferon tau
(IFNT) signaling by the conceptus (Evans et al., 2012), which plays a key
role in establishing and maintaining pregnancy by preventing
regression of the corpus luteum (Rizos et al., 2012; Hansen et al.,
2017; Moraes et al., 2018). As a result, the production of progesterone
from the corpus luteum continues to support conceptus growth and
maintain a competent uterine environment for the implanting
conceptus (Bazer et al., 1975; Bazer et al., 1997). A challenge with
EM pregnancies is that they take place during the pre-implantation
period, between days 7 and 16 of pregnancy. Therefore, pregnancy
status is unknown until determined at day 32 via ultrasound (Lonergan
and Forde, 2014). This hinders resynchronizing non-pregnant cows in a
timely manner, limits management of a cow’s reproductive
performance, and results in an annual loss of $1.6 billion for the
dairy industry in the United States and $1.28 trillion worldwide (Suthar
and Shah, 2009; Perkel et al., 2015), further providing a rationale for the
selection of Holstein cows with superior fertility traits.

Given that single nucleotide polymorphisms (SNPs) are
responsible for 84% of the variation in gene expression, their
location in DNA could affect protein structure, production, and
function and/or cause a phenotype that could vary due to the
reproductive status of an animal (El-Sayed et al., 2006; Beltman
et al., 2010; Kommadath et al., 2011; Spencer et al., 2014).
Consequently, using SNPs associated with reproductive traits in
genomic diagnostic panels may improve genomic estimates of
predicted transmitting abilities (Cochran et al., 2013a).
Diagnostics using SNP genotyping could further aid in the
culling of cattle that are reproductively inferior (Singh et al., 2014).

It was hypothesized that pregnancies with EM are associated
with missense SNPs that impair maternal-conceptus
communication. We identified 69 candidate SNPs within
lactating multiparous Holstein cows that had pregnancies with

conceptuses that were either normal (N) or EM and aimed to
validate SNP associations in a separate population of lactating
primiparous Holstein cows (n = 500).

2 Materials and methods

Figure 1 is a flow chart of the methodology from the initial
lactating multiparous Holstein cow population (n = 15). Each
cow had a day-16 conceptus collected for the discovery of genes
with candidate SNPs that may influence pregnancies to become
EM. The candidate SNPs were validated in a separate cohort of
lactating primiparous Holstein cows (n = 500) in Colorado,
United States.

2.1 Animal care

The initial group of fifteen healthy lactating multiparous
Holstein cows was located at a dairy farm in North-Eastern
Colorado and had conceptuses collected as per approval of
Colorado State University’s Institutional Animal Care and Use
Committee (IACUC protocol number 17-7539A). An additional
500 healthy lactating primiparous Holsteins from an organic
dairy farm in North-Eastern Colorado had blood samples
collected in August 2020 (IACUC protocol number 1036).
Both groups of cows were fed and milked twice daily, offered
water ad-libitum, and received a total mixed ration according to
the guidelines of the National Research Council (Council, 2001).
Cows were also housed in a free-stall barn equipped with
sprinklers, fans, and sand-beds.

2.2 Estrous cycle synchronization

After 60 days postpartum, the initial group of healthy lactating
multiparous Holstein cows (n = 15) were subjected to
synchronization of the estrous cycle and induced ovulation by
the Ovsynch protocol. Cows were exposed to timed artificial
insemination (TAI) and the same high-fertile sire’s semen. The
day of TAI was considered day 0 for cows in the pregnant group. All
were TAI at 16 h after the final intramuscular injection from
Ovsynch. If no conceptus was recovered on day 16 after the first
TAI, then new cows were assigned to the study.

2.3 Recovery and collection of conceptuses

Infusion of flushing media (30 mL of phosphate buffered saline
[PBS] and 10 mL of 0.01% of polyvinyl alcohol; Sigma) was

Frontiers in Genetics frontiersin.org02

Gonzalez Berrios et al. 10.3389/fgene.2024.1409335

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1409335


performed using a 60 mL plastic syringe (Norm-Ject) connected to a
French silicone-coated latex Foley modified catheter (size 22-Bard).
The Foley catheter was inserted transcervically into the uterine horn
ipsilateral to the corpus luteum. Recovery of conceptuses involved
using the same 60 mL syringe and placing the fluid in a sterile petri
dish. Each dish was examined under a stereoscope (Stereo Star
Zoom, American Optical) at ×7 magnification to find the conceptus.
This procedure was repeated up to six times to ensure the recovery of
the conceptus, if present. Once the conceptus was located, it was
rinsed with sterile PBS and 0.1% (v/v) of polyvinyl alcohol, measured
for length (millimeters), and photographed beside a ruler.
Pregnancies were re-classified based on conceptus morphology
and appearance as N (translucent and elongated [≥100 mm]; n =
9) or undergoing EM (pink, red, opaque and/or restricted elongation
[≤60 mm]; n = 6). All conceptuses were snap-frozen with liquid
nitrogen and stored at −80°C for RNA extraction.

2.4 Conceptus RNA isolation

Total conceptus RNA was extracted using TRIzol reagent (Life
Technologies; Carlsbad, California) following the manufacturer’s
instructions. The remaining DNA was removed with an RNase-free

DNase (Qiagen) and RNAeasy MinElute Cleanup Kit 50 (Qiagen;
catalog # 74204). RNA was quantified using a NanoDrop
2000 Spectrophotometer (Thermo Scientific, manufacture:
ND2000USCAN). The quality of each RNA sample was
determined by dividing the absorbance260 by absorbance280.
Values of 2.0 were considered high-quality RNA samples.

2.5 Preparation and normalization of RNA-
Seq library files

Total conceptus RNA was shipped to be processed for cDNA
libraries and sequencing using the Illumina HiSeq (2000) system by
Zoetis Inc. Files were single-end sequencing with 75 bp. Sequences were
trimmed and aligned to the bovine reference genome ARS-UCD 1.2
(http://bovinegenome.elsiklab.missouri.edu/node/61; (Rosen, 2018).

2.6 Identification of differentially expressed
genes in RNA sequencing

Using R studio (version 4.1.2; R core team, 2021), RNA-Seq data
were exported, organized (dplyr and plyr), and filtered (edgeR) to

FIGURE 1
Flowchart ofmethods used to identify candidate SNPs used in association analysis with reproduction traits in Holstein cows. EM, embryomortality or
N, normal pregnancy: cow’s pregnancy status; IPA, ingenuity pathway analysis.
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exclude genes with less than 10 mRNA raw counts. The
DESeq2 package (Love et al., 2014) in R used the
Benjamini–Hochberg method to control for false discovery by
adjusting p-values (Hochberg, 1995). Comparisons (1 × 1) for
conceptuses (EM vs. N) were performed using a negative
binomial distribution model. Consequently, all differentially
expressed genes (DEGs) were identified with adjusted
p-values <0.05.

2.7 Analysis of RNA-Seq data

The differentially expressed genes (DEGs) from RNA-Seq data
were submitted into Ingenuity Pathway Analysis software (IPA;
Qiagen) to gain additional biological insight into patterns of gene
expression. The core analysis of the data used p < 0.001 and ±2 log2-
fold change equivalent to a ±4-fold change in DEGs.

2.8 Identification of candidate SNPs
within genes

After collecting and processing conceptuses for RNA Seq and
aligning their sequences to the bovine reference genome, the Qiagen
CLC Genomics Workbench software (version 20.0.1; https://
digitalinsights.qiagen.com) was used to identify SNPs within the
conceptus RNA-Seq data. The SNP discovery entailed four steps. In
the first step, genes with SNPswere selected based on (a) associationwith
reproductive and fertility traits in published genome-wide association
studies such asGWAS-SNP (Cochran et al., 2013a; Cochran et al., 2013b;
Ortega et al., 2017) or QTLdb (Supplementary Table S3), and (b) DEGs
that were identified in the conceptuses of the initial group of Holstein
cows using IPA. The second step filtered genes identified in step one by
selecting only those genes that were statistically significant in the
conceptus RNA-Seq data. The third step separated SNPs into one of
two groups: diagnostic (only individuals from one type of pregnancy [N
or EM] were used to calculate the frequency of a genotype) or non-
diagnostic (individuals from both types of pregnancies [N and EM] were
used to calculate the frequency of a genotype). The fourth step consisted
of (a) evaluating the function of each gene with SNPs, the regionwithin a
gene (i.e., non-synonymous), and the functional classification of SNPs
(i.e., missense) via Ensembl Variant Effect Predictor, (b) conducting
Sorting Intolerant From Tolerant tool analyses (McLaren et al., 2016)
that predicted amino acid substitution affecting protein function by
evaluating SNP values (0.0–1.0; closer to zero was predicted to have a
significant effect in protein function), (c) verifying if the SNP location
within the gene was near (5 centimorgan = 5 million nucleotides) a
region/SNP previously associated with a reproductive or fertility trait in
the Cattle quantitative trait loci (Cattle QTL; (Hu et al., 2022)) database,
and (d) verifying the expression in Log2 fold changes of DEGs with
candidate SNPs and their adjusted p-values (<0.05) within the conceptus
RNA-Seq data.

2.9 Enrollment and collection of records

The SNPs identified in the conceptus RNA-Seq data from the
initial lactating multiparous Holstein cows (n = 15) needed to be

validated. A separate group of lactating primiparous Holstein
cows (n = 500) were randomly enrolled in the study at a dairy
milking approximately 9,790 cows. Data of interest were divided
into three categories. The first category consisted of health traits
that were divided into two sub-categories: reproductive disease
(mastitis, metritis, endometriosis, and pyometra) or non-
reproductive (lameness, respiratory, digestive, and ketosis).
Sub-categories of health traits were recorded on the date of
incidence, number of incidences, and type of incidence (0:
disease absence or 1: presence of disease) that occurred at or
before 60 days of milk (DIM). The second category was
comprised of reproductive trait data that were collected after
their first calving and up to four artificial inseminations (AIs),
which included age (days) at first calving, breeding, conception,
and calving date of second pregnancy, season (warm season: June
to September or cool season: October to May) that cow was bred
and calved, sire identification used for artificial insemination
(AI), AI technician identification, number of AI services,
pregnancy outcome (pregnant or non-pregnant) and
pregnancy loss (0: no pregnancy loss or 1: pregnancy loss;
recorded as an abortion after conception). The third category
encompassed production traits that were divided into predicted
first lactation milk production at 305 DIM, culling of a cow (0: no
culling or 1: culling), reason for culling, date of culling, and unit
in which cow was housed (location 1 or location 2).

2.10 Blood collection

Blood was collected from the tail vein using evacuated tubes
containing K2 EDTA (Vacutainer, Becton Dickinson, Franklin
Lakes, NJ) while cows were restrained with individual headlocks.
Blood samples were placed on ice for transport to the Animal
Reproduction and Biotechnology Laboratory facility at Colorado
State University. Upon arrival, samples were centrifuged for
30 min at 2,500 rpm to separate blood components. The buffy
coat was extracted, placed in a 1.5 mL microcentrifuge tube,
suspended up to 1 mL in 1× phosphate-buffered saline, and
stored at −20C.

2.11 DNA isolation

Genomic DNA was extracted from the buffy coat using the Qiagen
DNeasy Blood and Tissue Kit (Cat. No. 69504) according to the
manufacturer’s protocol. Sample purity and quality were quantified
using a NanoDrop 2000 Spectrophotometer (Thermo Scientific,
manufacture: ND2000USCAN) and dividing the absorbance’s
wavelength reading, absorbance260 over absorbance280. Values of
2.0 were considered high-quality DNA samples.

2.12Design of custom SNPgenotyping panel

A custom SNP genotyping panel for candidate SNPs was
designed using the Agena Plex panel (MassARRAY System with
96-well plates) from Neogen® (Lansing, Michigan), which
consisted of four steps conducted by Neogen®. The first step
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was providing a list of candidate SNPs with reference
identification (RSID) and location of the SNP (150 base pairs
up- and down-stream sequence). The second step involved
conducting an in silico assay design to verify the efficiency
and robustness of the assay based on the percentage of SNPs
without overlap (less than 150 base pairs) of other SNPs. The
SNPs that overlapped were separated into different panels. The
third step tested the custom candidate SNP primers for
robustness/efficiency by genotyping a subset of the
primiparous Holstein cow samples (n = 24). The final step
consisted of an optimized panel to genotype the remaining
samples (n = 476). Thus, all primiparous Holstein samples
(n = 500) were genotyped to validate the candidate SNPs.

2.13 Quality control pipeline for
candidate SNPs

Candidate SNPs were filtered after all primiparous Holstein
samples (n = 500) were genotyped. The candidate SNPs that were

not in minor allele frequency (MAF) of >10% and/or were
monomorphic were eliminated from the study. The remaining
candidate SNPs were evaluated by creating a five-step quality
control pipeline implemented using PLINK software (version
1.07, (Purcell et al., 2007). The first step removed SNPs with
20% missing genotypes. The second step removed individual
animals that were not genotyped for 10% of candidate SNPs.
The third step removed candidate SNPs not in
Hardy–Weinberg equilibrium at a level of significance above
1e−15. The fourth step evaluated the remaining candidate SNPs
(Table 1) for linkage disequilibrium via r2 and d′ (Supplementary
Table S1). The final step identified tag SNPs (Table 2; Figure 2). If
more than one tag SNP was identified for a group of SNPs, the tag
SNP was selected based on having the highest r2 and d′ values
(i.e., strongest relationship to the group of SNPs). Additional
animals were removed from the study due to missing
reproductive (breeding date, calving of cow, and dystocia score)
and production trait (predicted milk yield for 305 DIM during
cow’s first lactation) data. Thus, the total number of observations
used for the statistical models of the study represented 466 cows.

TABLE 1 Candidate single-nucleotide polymorphisms (SNPs; n = 23) that were non-monomorphic and passed the quality control pipeline using PLINK
software in primiparous lactating Holstein cows (n = 466).

Gene RSID1 CHRM2 SNP Location Genotype n MAF3 HWE4

UMPS rs110953962 1 69148086 C/T 463 0.29 0.8

HSD17B7 rs110828053 3 6635945 C/T 464 0.19 0.5

CAST rs110914810 7 96152634 C/G 466 0.38 1

IFNGR1 rs109049057 9 75092093 C/T 466 0.29 0.3

ACAT2 rs109967779 9 96041211 A/G 464 0.40 0.6

DECR1 rs41580472 14 73708561 C/T 465 0.27 0.9

MRPL48 15 53332881 A/G 466 0.48 0.5

SREBF1 rs41912290 19 34646676 C/T 465 0.40 0.6

FASN rs41919985 19 50793357 A/G 433 0.29 1.2e-05

BOLA-DMB rs109032590 23 7249490 C/T 464 0.30 0.7

BLA-DQB rs109291107 23 25674287 A/G 409 0.20 2e-13

BOLA-NC1 rs382125666 23 28551269 A/C 401 0.22 2.68e-06

UBD rs209518868 23 29119086 A/G 465 0.11 0.007

UBD rs109295136 23 29119334 A/G 400 0.42 3e-06

DSC2 rs109300814 24 26043125 A/C 463 0.45 3.4e-12

DSC2 rs210995078 24 26048022 A/G 466 0.45 1

DSC2 rs211151260 24 26050992 A/G 466 0.36 0.3

DSC2 rs385100256 24 26057277 C/G 466 0.36 0.3

DSC2 rs109503725 24 26057282 C/T 466 0.45 1

DSC2 24 26060104-5 AA/GT 459 0.44 0.8

DSC2 rs109278906 24 26060155 A/T 463 0.44 1

DSC2 rs110651429 24 26060157 C/T 464 0.44 0.9

DSC2 rs210416248 24 26063437 A/G 466 0.36 0.3

1RSID, reference SNP identification; 2CHRM, chromosome; 3MAF, minor allele frequency; 4HWE, Hardy–Weinberg equilibrium.
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2.14 Statistical analysis

Genotype-phenotype statistical association models were
evaluated for services per conception, age at first calving, days to
conception, days to first AI, pregnant at first AI, pregnant at
150 DIM, and pregnancy loss (Table 3). The independent
variables included within each model were genotypes,
reproductive disease, non-reproductive disease, and housing unit.
Each of the reproductive traits used as models was evaluated for
mean, standard deviation, minimum, and maximum via the means

procedure of SAS (SAS, 2023) (Table 4). Continuous numeric traits
(services per conception, age at first calving, days to conception, and
days to first AI) and binary models (i.e., 1: event occurred or 0: event
did not occur; pregnant at first AI, pregnant at 150 DIM, and
pregnancy loss) were evaluated for statistical significance with and
without a single genotype term from candidate SNPs by using the
generalized linear model-one way ANOVA or logistic regression,
respectively. The r2 was calculated using McFadden’s r squared,
which is calculated by the proc glm command and evaluated with
and without the genotype term to demonstrate the amount of

TABLE 2 Candidate single-nucleotide polymorphisms (SNPs; n = 8) with a tag SNP using PLINK software in primiparous lactating Holstein cows.

Gene RSID1 CHRM2 SNP location Tag SNP Tag SNP RSID Tag SNP location

DSC2 rs210995078 24 26048022 DSC2 rs109278906 26060155

DSC2 rs109503725 24 26057282 DSC2 rs109278906 26060155

DSC2 rs110651429 24 26060157 DSC2 rs109278906 26060155

DSC2 24 26060104-5 DSC2 rs109278906 26060155

DSC2 rs385100256 24 26057277 DSC2 rs211151260 26050992

DSC2 rs210416248 24 26063437 DSC2 rs211151260 26050992

DSC2 rs210995078 24 26048022 DSC2 rs109278906 26060155

RSID1, reference SNP identification; CHRM2, chromosome. DSC2, desmocollin-2.

FIGURE 2
Candidate single-nucleotide polymorphisms (SNPs) and published SNPs associated with quantitative trait loci (QTL, orange lines) within fertility for
each chromosome (Chr) in Holstein cows. CR, conception rate; D2C, days to conception; P1AI1, pregnant at first artificial insemination. Orange lines
represent published SNPs associated with quantitative trait loci; purple lines represent candidate SNPs. Created with Biorender.com.
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variation explained by the model’s inputs. Only statistically
significant models with a single genotype term from candidate
SNPs were evaluated using the means separation test within
LSMEANS, which included the Bonferroni adjustment for
p-values to minimize false discovery error from the mixed
procedure (Weir, 2001). Interactions between genotype terms and
other fixed effects were also evaluated but only among those sharing
the same reproductive trait model. Furthermore, we evaluated the
effect of genotype additive and dominance allele effects on candidate
SNPs (Luna-Nevarez et al., 2011). Linear and quadratic contrasts
were executed to confirm or reject such additive or dominant allele
effects. Statistical procedures were conducted in SAS OnDemand for
academic software, and statistical significance was defined as
P ≤ 0.05.

3 Results

3.1 Quality control pipeline for candidate
SNP

Sixty-nine candidate SNPs were discovered within the RNA-Seq
data of EM compared to N conceptuses from a multiparous
population of Holstein cows (n = 15). All candidate SNPs were
validated in a separate population of primiparous Holstein cows
(n = 500). Only 30 of the 69 candidate SNPs were in MAF and were
non-monomorphic. The remaining candidate SNPs were evaluated
through a five-step quality control pipeline using PLINK software.
The final number of candidate SNPs and individual animals for this
study were 23 and 466, respectively (Table 1). Eight of the
23 candidate SNPs were in linkage disequilibrium via r2 and d′

(Supplementary Table S1), and two within the DSC2 gene were
identified as tag SNPs (Table 2; Supplementary Figure S1).

3.2 Statistically associated SNPs

All candidate SNPs were in proximity (<5 centimorgans) of at
least one SNP associated with fertility traits reported in the Cattle
QTL database (Figure 2). All models were evaluated for reproductive
traits with single genotype terms and nine instances that
differed (p < 0.05; Table 6; Supplementary Table S2; Figure 3).
The R2 of a model was greater when the genotype term was
significant (p < 0.05; Table 5).

Cows that were older at first calving were associated with
carrying an A allele in the desmocollin-2 (DSC2; rs211151260;
Table 6) SNP. Meanwhile, cows that carried a T allele e in sterol
regulatory element-binding transcription factor 1 (SREBF1;
rs41912290) or a G allele in ubiquitin d (UBD; rs209518868;
Table 6) were associated with having longer intervals to become
pregnant after calving. Cows might experience such intervals due to
reproductive diseases impacting the health of the animal, the unit in
which cows were housed, or their interactions, but that was not the
case for both the SREBF1 and UBD SNPs. Moreover, no interactions
were found between the SREBF1 and UBD SNPs. For the SNPs of
uridine monophosphate synthetase (UMPS; rs110953962) and
SREBF1 (rs41912290), cows that carried a T allele were
associated with being AI’d later than other cows (Table 6). For
both models, age and reproductive diseases were significant
(p < 0.001). Age and disease interactions between UMPS or
SREBF1 SNPs were not different in days to first AI. Cows
associated with being less likely to become pregnant at first AI

TABLE 3 Basic model, and qualitative and quantitative covariate class variables used to predict the categorical traits.

Statistical model

Yijklm = μ + genotypei + age at first calvingj + reproductive diseasek + non-reproductive diseasel + housing unitm + eijklm

caYijkmqr = qualitative trait (services per conceptionb, age at first calvingb, days to conceptionb, days to first AIb, pregnant at first AIc, pregnant at 150 DIMc, or pregnancy lossc) for the rth cow in

the (i, j, k, l, m)th cell; μ, general mean for the reproductive trait; genotypei, fixed effect of genotypes; age at first calvingj, covariate effect of the age at first calving; reproductive diseasek, fixed

effect of the reproductive disease; non-reproductive diseasel , fixed effect of the non-reproductive disease; housing unitm, fixed effect of the housing unit; eijklm, random error term. bNon-binary

models that were evaluated with GLM one-way ANOVA.CBinary models that were evaluated with logistic regression.

TABLE 4 Summary statistics for study populations, including MEANS, GLMa, and Logisticb for conception, age at calving, and pregnancy in primiparous
lactating Holstein cows.

Trait n Mean +SD1 Min2 Max3 p-value X2 test
p-value

Services per conceptiona 466 3.8 ± 2.8 1 13 0.001*

Age at first calving, daysa 466 751.2 ± 62.1 560 993 0.1

Days to conceptiona 417 159.2 ± 102.5 45 579 0.0105*

Days to first AIa 466 75.7 ± 32.4 37 266 <0.0001*

Pregnant at first AIb 466 0.2 ± 0.4 0 1 0.1

Pregnant at 150 DIMb 466 0.5 ± 0.5 0 1 0.008*

Pregnancy lossb 466 0.07 ± 0.2 0 2 0.6

aNon-binary models that were evaluated with GLM one-way ANOVA.
bBinary models that were evaluated with logistic regression. *Models that were statistically significant (P≤ 0.05) without genotype term. SD1 = standard deviation; Min2 = minimum; Max3 =

maximum. AI, artificial insemination; DIM, days in milk.
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had a C allele in 2, 4-dienoyl-CoA reductase 1 (DECR1; rs41580472)
or an A allele in fatty acid synthetase (FASN; rs41919985; Table 6).
No differences were observed for other variables except for the
genotype term of the DECR1 and FASN SNPs (p < 0.05). In
addition, interactions (p < 0.05) were found between the
DECR1 and FASN SNPs. Cows were less likely to become
pregnant before or at 150 DIM with a T allele in SREBF1
(rs41912290) or in the major histocompatibility complex, class II,
DM beta (BOLA-DMB; rs109032590; Table 6) when compared to
those that had at least one C allele. No differences were found for

variables except for the genotype terms of SREBF1 and BOLA-DMB
SNPs (p < 0.05). Interactions (p < 0.01) were also found between the
SREBF1 and BOLA-DMB SNPs in pregnant cows at 150 DIM.

All of the potential functional SNPs were non-synonymous and
classified as missense. Three of the seven potential functional SNPs
were predicted to influence the protein function of the gene (p <
0.05; Table 7). All seven potential functional SNPs had an additive
effect (p < 0.05) due to a linear trend observed when the genotype
term was a fixed effect within the model (Table 8). Conversely, the
DSC2 and SREBF1 SNPs had allele substitution effects (p < 0.05;

FIGURE 3
Seven potential functional single-nucleotide polymorphisms (SNPs) within exons (E) and nucleotide (nt) position in each gene: (A) uridine
monophosphate synthetase (UMPS), (B) 2,4-dienoyl-CoA reductase 1 (DECR1), (C) sterol regulatory element-binding transcription factor 1 (SREBF1), (D)
fatty acid synthetase (FASN), (E)major histocompatibility complex, class II, DM beta (BOLA-DMB), (F) ubiquitin d (UBD), and (G) desmocollin-2 (DSC2) in
their designated chromosome (Chr) for Holstein cows. Created with Biorender.com.
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Table 8), while only the DECR1 SNP tended (p < 0.10; Table 8) to
yield differing levels among genotypes. Cows with allele G in DSC2
(p < 0.05) had a 10-day decreased age at first calving (Table 8).
Meanwhile, cows with a C allele in SREBF1 impaired the trait level
and had a 6% decreased (p < 0.05) probability of becoming pregnant
at 150 DIM (Table 8).

4 Discussion

4.1 Functional SNPs

The discovery of functional SNPs could contribute to improving
breeding value estimation and genetic improvement of Holstein
cows despite the low heritability of fertility traits. Improvement of
these strategies could also have a direct impact on the economic
efficacy and culling practices of the dairy industry (Pryce et al., 1997;
Inchaisri et al., 2010). Among the seven reproductive traits (services

per conception, age at first calving, days to conception, days to first
AI, pregnant at first AI, pregnant at 150 DIM, and pregnancy loss)
that were evaluated in this study, five SNPs may be expected to
change amino acids and, based on the substitution effects, could be
predicted to be damaging to protein function. Additional
biochemical research into these proteins is needed to fully
understand how these SNPs influence the variance of these traits.

Identification of at least one QTL associated with fertility traits
was found in proximity to this study’s candidate SNPs. Others have
shown that QTL has an association with causing an effect over
nearby SNPs that control similar traits (Khatkar et al., 2004;
Daetwyler et al., 2008). When conducting genotype-to-phenotype
association studies, SNPs that are associated with QTL(s) may be
helpful when implemented into breeding programs to improve the
prediction of traits of low heritability (Spelman and Garrick, 1997;
Van Tassell et al., 1999; Abdel-Azim and Freeman, 2002).

All candidate SNPs that were statistically significant (p < 0.05)
within the models demonstrated a larger R2 value (Table 5). The

TABLE 5 Summary of R2 of the model without and with potential functional candidate single-nucleotide polymorphisms (SNPs; n = 7) in primiparous
lactating Holstein cows.

Trait Gene RSID1 n R2 without SNP p-value n R2 with SNP p-value

Age at first calving, days DSC2 rs211151260 466 0.01 0.1 466 0.02 0.04*

Days to conception SREBF1 rs41912290 417 0.03 0.01* 416 0.04 0.003*

UBD rs209518868 417 0.03 0.01* 416 0.05 0.001*

Days to first AI SREBF1 rs41912290 466 0.06 <0.0001* 465 0.08 <0.0001*

UMPS rs110953962 466 0.06 <0.0001* 463 0.07 <0.0001*

Pregnant at first AI DECR1 rs41580472 466 0.01 0.1042 465 0.03 0.02*

FASN rs41919985 466 0.01 0.1042 433 0.03 0.01*

Pregnant at 150 DIM SREBF1 rs41912290 466 0.02 0.008* 465 0.04 0.001*

BOLA-DMB rs109032590 466 0.02 0.008* 464 0.04 0.002*

*Candidate SNPs that were statistically significant (p < 0.05) within models. RSID1, reference SNP identification; AI, artificial insemination; DIM, days in milk. DSC2, desmocollin-2; SREBF1,

sterol regulatory element-binding transcription factor 1; UBD, ubiquitin d; UMPS, uridine monophosphate synthetase; DECR1, 2, 4-dienoyl-CoA reductase 1; FASN, fatty acid synthetase;

BOLA-DMB, major histocompatibility complex, class II, DM beta.

TABLE 6 Least square means ± standard error for fertility traits among genotypes within genes with candidate single-nucleotide polymorphisms (SNPs) in
primiparous lactating Holstein cows.

Trait Gene RSID1 n Allele combination

Age at first calving, days DSC2 rs211151260 466 AA: 761.9 ± 8.7 AG: 757.8 ± 5.7 GG: 744.1 ± 5.7

Days to conception SREBF1 rs41912290 416 CC: 176.3 ± 10.9 CT: 162.5 ± 10.09 TT: 197.7 ± 14.04

UBD rs209518868 AA: 173.1 ± 9.008 AG: 175.7 ± 12.5 GG: 481.83 ± 101.2

Days to first AI SREBF1 rs41912290 465 CC: 80.08 ± 3.1 CT: 80.5 ± 2.8 TT: 91.4 ± 3.9

UMPS rs110953962 463 CC: 83.01 ± 2.7 CT: 79.2 ± 3.04 TT: 93.03 ± 5.3

Pregnant at first AI DECR1 rs41580472 465 CC: 0.2 ± 0.03 CT: 0.2 ± 0.04 TT: 0.4 ± 0.07

FASN rs41919985 433 AA: 0.01 ± 0.09 AG: 0.2 ± 0.03 GG: 0.1 ± 0.04

Pregnant at 150 DIM SREBF1 rs41912290 465 CC: 0.4 ± 0.04 CT: 0.4 ± 0.04 TT: 0.3 ± 0.06

BOLA-DMB rs109032590 464 CC: 0.4 ± 0.04 CT: 0.5 ± 0.04 TT: 0.3 ± 0.08

*Candidate SNPs that were statistically significant (p < 0.05) within models. RSID1, reference SNP identification; AI, artificial insemination; DIM, days in milk. DSC2, desmocollin-2; SREBF1,

sterol regulatory element-binding transcription factor 1; UBD, ubiquitin d; UMPS, uridine monophosphate synthetase; DECR1, 2, 4-dienoyl-CoA reductase 1; FASN, fatty acid synthetase;

BOLA-DMB, major histocompatibility complex, class II, DM beta.
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optimum age of cows at first calving averages between 23 and
24 months because of the cost of rearing replacement heifers in
dairy herds (Heinrichs, 1993; Hoffman, 1997; Gabler et al., 2000;
Tozer and Heinrichs, 2001; Boulton AC, 2015). In the context of
this study’s DSC2 SNP, cows with the G allele were older during
their first calving. The DSC2 gene is known for its role in cell junction
and adhesion (Lewin et al., 2022); therefore, it has been studied for its
potential role in the development and function of bovine embryos via
compaction and cavitation (Wrenzycki et al., 2001). The DSC2 SNP has
only been studied in an Iranian Bos taurus breed, and no associations to
age at first calving were identified in Holstein cows. Only a different
SNP within DSC2 has been associated with fertility traits of daughter
pregnancy rate in Holstein cows (Cochran et al., 2013a).

The interval of conception after calving is often used as a
parameter to determine the reproductive performance of dairy

cows (Harman et al., 1996), and, ideally, conception takes place
prior to 85 days post calving (Grimard et al., 2006; Tillard et al.,
2008). However, the interval for average days of conception after
calving is highly dependent on diverse factors such as season
(i.e., summer), peripartum disorders (i.e., metritis and
endometritis), and cow management (Grimard et al., 2006;
Tillard et al., 2008; Siddiqui et al., 2013). Minimizing the number
of days that a cow is not pregnant (open) is crucial to decreasing
costs (i.e., food, labor, breeding) through increasing culling rates as
well as the number of calves and longevity of the animal (González-
Recio et al., 2004; Inchaisri et al., 2010; Cabrera, 2014). Within our
data, we identified the T allele in SREBF1 and the G allele in UMD
SNP as being associated with cows having longer intervals of
conception after calving. The SREBF1 gene function has been
documented as an important regulator for the transcription of

TABLE 7 Variant effect predictor analysis for SNPs within genes with candidate single-nucleotide polymorphisms (SNPs) in primiparous lactating Holstein
cows.

Coding region Type of SNP Gene RSID1 Exon Codon change Amino acid change SIFT

Non-synonymous Missense DSC2 rs211151260 11 GAA/AAA E/K 0.01*

SREBF1 rs41912290 2 CCT/CTT P/L 0.03*

UBD rs209518868 2 AAG/AGG K/R 0.4

UMPS rs211151260 3 CGT/TGT R/C 0.01*

DECR1 rs41580472 5 ATA/GTA I/V 0.06

FASN rs41919985 18 ACC/GCC T/A 0.7

BOLA-DMB rs109032590 3 ATC/GTC I/V 0.5

*Candidate SNPs that were statistically significant (p < 0.05) within models. RSID1, reference SNP identification. DSC2, desmocollin-2; SREBF1, sterol regulatory element-binding transcription

factor 1; UBD, ubiquitin d; UMPS, uridine monophosphate synthetase; DECR1, 2, 4-dienoyl-CoA reductase 1; FASN, fatty acid synthetase; BOLA-DMB, major histocompatibility complex,

class II, DM beta.

TABLE 8 Allele substitution estimates and fixed effect estimates of additive and dominance of the genes with candidate single-nucleotide polymorphisms
(SNPs) in primiparous lactating Holstein cows.

Trait Gene n Allele substitution effects Fixed effects

p-valuea Estimateb SE1 p-valuec Additive effectd Dominant
effecte

A1C, days DSC2 466 0.01* −10.09 4.1 0.03* 8.9 748.9

D2C SREBF1 416 0.4 5.8 7.2 0.04 10.7 151.8

UBD 416 0.4 9.7 11.7 0.01 308.7 132.9

D21AI SREBF1 465 0.02* 4.7 2.08 0.01* 5.6 74.8

UMPS 463 0.5 1.2 2.2 0.04 5.01 74.2

P1AI DECR1 465 0.05 0.06 0.03 0.01 0.1 0.1

FASN 433 0.7 −0.01 0.03 0.01 0.08 0.1

P150
DIM

SREBF1 465 0.04* −0.06 0.03 0.01* 0.08 0.1

BOLA-DMB 464 0.3 0.03 0.03 0.04 −0.07 0.07

ap-values obtained from allele substitution analysis in SAS, which included the term genotype as a covariate. bEstimates of the effect expressed in units of the traits. cBonferroni corrected p-values

for fixed effects were obtained from the substitution of favorable allele analysis, which included the genotype term as a fixed effect. dAdditive effect was estimated as the difference between the

two homozygous genes means divided by 2. eDominant effect was calculated as the deviation of the heterozygous genes from the mean of the two homozygous. *Candidate SNPs that were

statistically significant (p< 0.05) within models. SE1 = standard error. AIC, age at first calving; D2C, days to conception; D21AI, days to first artificial insemination; P1AI, pregnant at first

artificial insemination; P150DIM, pregnant at 150 days in milk. DSC2, desmocollin-2; SREBF1, sterol regulatory element-binding transcription factor 1; UBD, ubiquitin d; UMPS, uridine

monophosphate synthetase; DECR1, 2, 4-dienoyl-CoA reductase 1; FASN, fatty acid synthetase; BOLA-DMB, major histocompatibility complex, class II, DM beta.
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genes that synthesize milk fat and its secretion in the mammary
epithelial cells of dairy cows (Harvatine and Bauman, 2006; Ma and
Corl, 2012; Oppi-Williams et al., 2013; Li et al., 2014). The
SREBF1 SNP discussed in this study has been submitted to the
ENSEMBL SNP database and is associated with fatty acid indexes
that influence milk fat and protein percentage in Holstein cows
(Rincon et al., 2012; Cochran et al., 2013a). Despite this, associations
for the SREBF1 SNP and its impact on days to conception have not
been reported in Holstein cows. The UMD gene has general roles in
DNA replication, recombination and repair, and cell development,
assembly, maintenance, survival, and death (Salehi et al., 2016).
Other discovered SNPs within UBD have mainly been reported to
regulate responses by the immune system (Russell et al., 2012;
Thompson-Crispi et al., 2014). Although our study’s UBD SNP
has been reported in fourteen different cow and bull populations, no
association with days to conception has been made in Holstein cows.

The average days to first AI measure was reported to range from
67 to 84 (Esslemont, 1992; Darwash et al., 1997; Royal et al., 2000;
Waldmann et al., 2001; Yusuf et al., 2011), favoring an extension of
DIM due to higher conception rates being obtained in later rather
than earlier stages of lactation (Dohoo, 1983; Royal et al., 2000;
Quintela Arias et al., 2004; Bouchard E, 2008). Our data revealed
that cows that carried a T allele for UMPS or SREBF1 SNPs were
associated with being AI’d 10 days later than cows who carried at
least 1 C allele (Table 7). Studies on the UMPS gene have suggested
that it has a role in the synthesis of nucleotides in both DNA and
RNA (Healey and Shanks, 1987). Deficiency (inactivation) of UMPs,
also known as DUMPs, is an inherited recessive disorder that causes
arrested growth and development of pregnancies, which leads to EM
in Holstein cows (Shanks and Robinson, 1990; Shanks and Greiner,
1992; Robinson et al., 1993; Kuhn and Shanks, 1994). Furthermore,
carriers of DUMPs have been found to remain non-pregnant for
longer periods of time (Čítek and Barbora, 2004). Prevention of this
condition consists of early detection of defect carriers by screening
herds routinely through haplotype tests (VĂTĂŞEscu-Balcan et al.,
2006). The UMP SNPs identified herein have only been reported
within an Iranian B. taurus breed, but no associations have been
made to days to first AI in Holstein cows. Likewise, no associations
of the SREBF1 SNP identified in this study were made in other
studies with days to first AI in Holstein cows.

Pregnancy at first AI, which is similar to the trait of days to
conception, depends on the time of year, voluntary waiting period,
reproductive/peripartum disorders, and reproductive management
(Grimard et al., 2006; Tillard et al., 2008; Siddiqui et al., 2013). It
has also been proven that dairy cows serviced more than once have
reduced pregnancy rates at first AI (77.3% vs. 35.7%) and a 4.5%
decreased probability of becoming pregnant for each previously
unsuccessful service (Barrett, 1948; Sprott et al., 1998). Our data
suggested that the probability of cows becoming pregnant at first AI
was lower when they had a C allele in the DECR1 SNP or an A allele in
the FASN SNP. The DECR1 gene acts as a mitochondrial enzyme
involved in beta-oxidation that regulates the rate of fatty acid
metabolism, which contributes to energy production (Kunau and
Dommes, 1978; Wathes et al., 2012). The SNP within DECR1 was
associated with an effect on lipid metabolism, milk production, back fat
thickness, days to first service, and calving interval in beef cattle
(Marques et al., 2009; Clempson et al., 2012). Boussaha et al. (2015)
submitted the DECR1 SNP within a GWAS data set, but no other

publications have associated this submission with pregnancy at first AI
in Holstein cows.

The FASN gene role has been associated with catalyzing the
production of long-chain fatty acids and has been evaluated as a
candidate for improving fat levels in both milk and muscle of cattle
(Roy et al., 2006; Schennink et al., 2009; Matsumoto et al., 2012; Li
et al., 2016). The SNP within FASN was found to be associated with
lactation traits, composition of fatty acids within milk, and
reconstitution of body reserves during gestation (Matsumoto
et al., 2012; Elis et al., 2013; Mauric et al., 2019) but not with
pregnancy at first AI.

Pregnancy that takes place before or at 150 DIM is contingent on
reproductive diseases, detection of estrus, voluntary waiting period,
and season (Grimard et al., 2006; Tillard et al., 2008; Siddiqui et al.,
2013). Timing when pregnancy occurs in dairy cows is critical in
sustaining profitability in the industry (Giordano et al., 2011). Both
SREBF1 and BOLA-DMB were found to have SNPs in our data
associated with a lower probability of becoming pregnant before or
at 150 DIM. In the case of the SREBF1 SNP, no associations with
pregnancy at 150 DIM have been made. The BOLA-DMB gene is
part of the bovine immune system’s major histocompatibility
complex in the class IIb region, and it is responsible for aiding
with the loading of peptides in antigen-presenting cells (Pathak
et al., 2001; La Rocca et al., 2014). Interestingly, the regulation of
BOLA-DMB is different in the endometrium of cows that are
pregnant compared to non-pregnant cows (Cerri et al., 2012).
Associations for this study’s BOLA-DMB SNP were made for
daughter pregnancy rate, cow conception rate, heifer pregnancy
rate, and milk yield (Cochran et al., 2013a; Ortega et al., 2016; Ortega
et al., 2017; Ortega, 2018) but not specifically to pregnancy
at 150 DIM.

For allele substitution and additive effects, cows with the
beneficial G allele within DSC2 had improved age of first calving,
which decreased by 10 days (Table 8). Eastham et al. (2018) reported
that cows that were younger during their first calving had an
association with udder health, increased longevity, milk yield,
improved reproductive performance, and increased probability of
calving for a second time. Cows’ age at first AI was demonstrated to
be dependent on the management of the herd and was unique to
each individual dairy (Esslemont, 1992; Darwash et al., 1997; Royal
et al., 2000; Waldmann et al., 2001; Yusuf et al., 2011). Moreover, it
has also been shown that cows had higher conception rates when AI
occurs at later stages of lactation (Dohoo, 1983; Royal et al., 2000;
Quintela Arias et al., 2004; Bouchard E, 2008). Pregnancy occurring
before or at 150 DIM is of importance to sustain profitability within
the industry, and it optimally occurs between 90 and 130 DIM
(Giordano et al., 2011). Thus, the candidate SNPs associated with
pregnant at 150 DIM may somewhat be unique to the reproductive
management practices of an organic farm, causing longer times for
each lactation cycle (Sorge et al., 2016).

This study validated the SNPs identified within the conceptuses
(EM and N) of the initial herd of Holstein cows by using an
independent herd through genotype-to-phenotype associations.
Validation of candidate SNPs using blood samples to evaluate
gene expression of reproductive phenotypes has proven useful for
genetic panels/evaluations performed in cattle, such as expected
progeny differences, predictive transmissibility, or genomic
breeding values (i.e., Clarifide from Zoetis). Therefore, developing
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breeding values that encompass fertility traits is of great value when
predicting the expected fertility of replacement Holstein heifers and
cows that should remain in the herd (Weigel, 2006; García-Ruiz
et al., 2016).

5 Conclusion

Genotype-to-phenotype analysis of 69 candidate SNPs
suggested that seven SNPs were associated with fertility traits
that are of economic importance within Holstein cows that are
reproductively inferior. Additional research should be conducted to
determine the utility of these candidate SNPs in genome-enhanced
predictive transmissibility abilities estimations and (or) commercial
genotyping tools for early life sorting of heifers. Thus, future use of
said SNPsmight be useful for culling decisions upon validation upon
validation if they are predictive.
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