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Hypothyroidism is a common endocrine disorder whose prevalence increases
with age. The disease manifests itself when the thyroid gland fails to produce
sufficient thyroid hormones. The disorder includes cases of congenital
hypothyroidism (CH), but most cases exhibit hormonal feedback dysregulation
and destruction of the thyroid gland by autoantibodies. In this study, we sought to
identify causal genes for hypothyroidism in large populations. The study used the
UK-Biobank (UKB) database, reporting on 13,687 cases of European ancestry. We
used GWAS compilation from Open Targets (OT) and tuned protocols focusing
on genes and coding regions, along with complementary association methods of
PWAS (proteome-based) and TWAS (transcriptome-based). Comparing summary
statistics from numerous GWAS revealed a limited number of variants associated
with thyroid development. The proteome-wide association study method
identified 77 statistically significant genes, half of which are located within the
Chr6-MHC locus and are enriched with autoimmunity-related genes. While
coding GWAS and PWAS highlighted the centrality of immune-related genes,
OT and transcriptome-wide association study mostly identified genes involved in
thyroid developmental programs. We used independent populations from
Finland (FinnGen) and the Taiwan cohort to validate the PWAS results. The
higher prevalence in females relative to males is substantiated as the
polygenic risk score prediction of hypothyroidism relied mostly from the
female group genetics. Comparing results from OT, TWAS, and PWAS
revealed the complementary facets of hypothyroidism’s etiology. This study
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underscores the significance of synthesizing gene-phenotype associationmethods
for this common, intricate disease. We propose that the integration of established
association methods enhances interpretability and clinical utility.
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UK-Biobank, GWAS, Hashimoto’s thyroiditis, open targets, genotyping, PWAS, congenital
hypothyroidism, FinnGen

1 Introduction

Hypothyroidism is a disorder of the endocrine system in which
the thyroid gland does not produce enough hormones or when the
thyroid hormones act inadequately in target tissues (Almandoz and
Gharib, 2012). Hypothyroidism (EFO: 0004705) and its extreme
condition, myxedema (EFO: 1001055), are signified by impairment
in the function of the thyroid (Chaker et al., 2022). The thyroid gland
is crucial to the metabolism of all tissues and the early development
of the central nervous system (CNS) (Patel et al., 2011). While over
10% of the world’s population exhibits some level of iodine
deficiency that may lead to hypothyroidism, it does not apply to
the developed world (Taylor et al., 2018). In the United States, the
prevalence of hypothyroidism has been shown to steadily increase
over the last two decades, reaching 14.4% (clinical and preclinical)
(Wyne et al., 2022). Subclinical hypothyroidism accounts for 4%–8%
of the population (Fatourechi, 2009). It is estimated that one in eight
people will develop a functional deficiency of the thyroid in their
lifetime, with a 3-4-fold higher likelihood of females relative to males
(Uzunlulu et al., 2007; Chung, 2014).

Primary hypothyroidism is defined by a failure of the thyroid
gland itself. Secondary and tertiary hypothyroidism are caused by
dysfunction of the pituitary and hypothalamus glands, respectively
(Chaker et al., 2022). The diagnosis of hypothyroidism is determined
by free and bound thyroid hormones in the blood, the level of TSH,
and the composition of autoantibodies to thyroid markers (Evered
et al., 1973). Specifically, autoantibodies against thyroid-specific
antigens (e.g., TSHR, TG, and TPO) were found in most patients
(Brown, 2013). The majority of these cases can be assigned to
hypothyroidism with an autoimmunity component (e.g.,
Hashimoto’s thyroiditis and autoimmune hypothyroidism, Ord’s
thyroiditis) (Eriksson et al., 2012). Importantly, hypothyroidism is
linked to a higher incidence of other organ-specific autoimmune
diseases (Brown, 2013; Matzaraki et al., 2017). Hyperthyroidism
occurs in children in the form of autoimmune thyroiditis (AIT)
(Brown, 2013). AIT reflects some unknown defects in
immunoregulation, which translate into injury to thyroid tissue,
which in turn activates apoptotic cell death and thyroiditis. The
genetic basis for AIT is unknown, but it is likely to combine genetics
(estimated to account for 70% of the risk for developing AIT) and
environmental factors that interact with predisposed genetics
(Brent, 2010). An interest in thyroid function in adults and
especially in the elderly relies on the increasing links between
thyroid status and cognitive function, cardiovascular diseases,
healthy aging, and longevity (Aggarwal and Razvi, 2013). It is
imperative to identify people at higher risk and tune clinical
treatment to avoid negative impacts on quality of life (Hegedüs
et al., 2022). Moreover, the understanding of the environmental
factors that contribute to disease development is limited, and risk

factors may include hormones (e.g., estrogen), stress, smoking, and
dietary iodine consumption.

Hyperthyroidism may also be congenital, where the incidence
rate is one in every 2000–4,000 live births. Congenital
hypothyroidism (CH) is a developmental abnormality affecting
the hypothalamic-pituitary-thyroid (HPT) axis (Persani et al.,
2018). Primary CH, which is associated with a missing or
underdeveloped thyroid (dysgenesis), is the most common
neonatal disease and accounts for most CH. Most cases of CH
occur sporadically and are frequently associated with an increase in
neonatal malformations, which can result in further complications
(Léger et al., 2014). Unfortunately, the genetics of thyroid dysgenesis
are resolved in only 5% of cases (Wassner, 2020). A systematic CH
screen in Japanese (Narumi et al., 2010) and Czech (Al Taji et al.,
2007) individuals confirmed the challenge of identifying causal
mutations. While the most pathogenic variants of the TSH
receptor (TSHR) are nonsyndromic, mutated Gsα (GNAS1) and
PDE8B, which are components of TSHR signaling, are linked with
syndromic disease (Persani et al., 2010). Candidate genes that
potentially disrupt thyroid gland formation have been linked to
other rare monogenic diseases [reviewed in (Stoupa et al., 2021)].
Mutations in numerous thyroid transcription factors (TITF-1,
TITF-2, PAX-8, FOXE1, GLIS3) are mostly syndromic
(Kostopoulou et al., 2021). Additionally, mutated genes that act
in the biosynthesis and cell biology of thyroid hormones (Panicker,
2011) may cause dysfunction of thyroid hormone synthesis and
secretion (dyshormonogenesis). Among these genes are thyroid
peroxidase (TPO), thyroglobulin (TG), sodium iodide symporter
(NIS), pendrin (PDS), thyroid oxidase 2 (THOX2), and iodotyrosine
deiodinase (IYD). The iodothyronine transporter (MCT8), which is
expressed in the thyroid gland membrane, was also shown to drive
hypothyroidism, which is coupled to neurological deficits (Park and
Chatterjee, 2005). Dyshormonogenetic cases are often recessively
inherited (Makretskaya et al., 2018). Interestingly, the occurrence of
mutated CH causal genes differs substantially across populations
(Sun et al., 2018).

In this study, we analyzed the genetic signatures among people
diagnosed with ICD-10 E03 (“other hypothyroidism”), with most
patients (98%) being diagnosed with E03.9 (hypothyroidism,
unspecified) that includes patients with primary, secondary, and
tertiary hypothyroidism in the UKB. We asked whether the genetic
effects of hypothyroidism andmyxedema are associated with sex. To
this end, we applied several association methods, most notably the
proteome-wide association study (PWAS) method, which detects
gene-phenotype associations through the effect of variants on
protein function (Brandes et al., 2020). By comparing results
from the PWAS (Brandes et al., 2020), TWAS (Luningham et al.,
2020), classical GWAS, and coding GWAS, we shed light on the
complex etiologies of hypothyroidism with or without an
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immunological basis. We conclude that the integration of
established association methods and partitioning the population
by sex can improve interpretability and clinical utility.

2 Materials and methods

2.1 UKB processing

The UK Biobank (UKB) is a population-based database with
detailed medical, genotyping, and lifestyle information covering
~500 k people aged 40–69 across the UK who were recruited
from 2006 to 2010. The analyses herein were based on the
2019 UKB release. We restricted the analysis to European origin
(codes 1, 1001, 1002, and 1003, respectively; and ethnic background,
data field 21000). We applied the classification according to genetic
ancestry (Genetic ethnic group, data field 22006). We further
removed genetic relatives by randomly keeping only one
representative of each kinship group.

Hypothyroidism is indexed by ICD-10 code E03. The analysis
includes individuals who have any diagnosis within the main or
secondary codes (UKB data fields 41,202 and 41,204, respectively)
and the summary diagnosis code 41270. The latter covers the distinct
diagnosis codes a participant has recorded across all their hospital
inpatient records, in either the primary or secondary position. These
fields cover ICD-10 fromE03.0 to E03.9 (total 29,478 participants), with
98.5% of them marked as “unspecified hypothyroidism”, “other
specified hypothyroidism” (E03.8, 0.7%), “hypothyroidism due to
medicaments and other exogenous substances” (0.3%, E03.2), and
CH (0.3%, E03.0-E03.1). We included “other hypothyroidism” and
excluded “iodine-deficiency-related hypothyroidism” (E00-E02) and
postprocedural hypothyroidism (E89.0). This set of E03 with
genotyping data includes 2,557 males and 11,094 females.

2.2 All GWAS and coding GWAS analyses

We processed data from the UKB as described above to perform
all GWAS and coding GWAS. UKB released genotyped data for all
participants. In genotyping data, there are ~820 k preselected genetic
variations (UKB Axiome Array). Based on the UKB imputation
protocol, the number of variants was expanded to 97, 013, 422. For
the imputed variants, we calculated the probabilistic expectations for
the alternative alleles (Brandes et al., 2020). We applied a standard
PLINK protocol to filter candidate variants for the analysis. For the
gene length (g-GWAS), we considered variants with a MAF
threshold of 0.001, a Hardy-Weinberg equilibrium (HWE), exact
test p-value of 1e-6, and genotyping coverage with a 90% call rate
(using the Geno option of 0.1). Altogether, we analyzed
10,258,628 variants. We also included as covariates sex, year of
birth, and the first six principal components (PCs) to account for
population structure. We considered variants within genes (exons
and introns) as indicators of gene association. However, we have not
discussed variants located at other functional regions beyond the
RefSeq transcript of coding genes. For E03 GWAS, we had
12,435 cases and 257,948 controls.

The coding GWAS analysis includes the human proteome
according to UniProt-SwissProt (labeled “reviewed”). Due to the

unambiguous mapping of RefSeq gene names, we cover
18,053 protein-coding genes of the ~20 k proteins that are listed
for the human proteome (see Supplementary Material S1). For all
GWAS and coding GWAS included 172 covariates that include sex
(binary), year of birth (numeric), 40 principal components (PCs)
that capture ancestry stratification (numeric), the UKB genotyping
batch (one-hot-encoding, 105), and the UKB assessment centers
associated with each sample (binary, 25).

2.3 GWAS summary statistics

We used the Open Targets Genetics (OTG) platform to select
current knowledge and GWAS results on hypothyroidism
(Carvalho-Silva et al., 2019). The OTG (release date: 6/2023)
unifies multiple sources of evidence for an inclusive list of
2007 genes, each ranked by an OT global score (range 0–1.0).
Among these genes, 702 genes are supported by genetic
association (GA) scores based on large-scale independent GWAS
summary statistics (Carvalho-Silva et al., 2019) (see Supplementary
Material S1). Other datasets from the OTG platform include
“permanent congenital hypothyroidism” with 53 associated genes,
35 of which have a GA score >0.5. This phenotype is a merger of
Orphanet: 442 (23 genes) and EFO 0016408. Most of the associated
genes were derived from ClinVar and Orphanet (Sharo et al., 2023).

2.4 PWAS functional effect score per gene of
the human proteome

The PWAS methodology assumes that causal variants in coding
regions affect phenotypes by altering the biochemical functions of
the encoded protein of a gene. In summary, the functional impact
rating at the molecular level (FIRM) from the pretrained machine-
learning (ML) model is then used to estimate the extent of the
damage caused to each protein in the entire proteome (Brandes
et al., 2019). FIRM performance was reported and validated for the
pathological variants in ClinVar, reaching an AUC of 90% and
accuracy of 82.7% (Brandes et al., 2019). The predicted effect score of
a variant is a number between 0 (complete loss of function, LoF) and
1 (no functional effect, synonymous variant). PWAS explicitly
treated in-frame indels (Brandes et al., 2020). We seek a
calibrated score for the overall protein damage at an individual
level. Thus, per-variant damage predictions are aggregated at the
gene level according to recessive, dominant and hybrid gene
heritability modes. On average, there are 35.4 nonsense and
missense mutations per gene that are considered for the gene-
based effect score. PWAS results are based on the same set of
variants as used for the coding GWAS, i.e., 639,323 variants located
within 18,053 protein-coding genes and 172 covariates.

2.5 Transcriptomics association studies
(TWAS) analysis

We used the webTWAS database (Cao et al., 2022), which
integrates publicly available GWAS summary data with
transcriptomics association (TWAS) models. We used TWAS for
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hypothyroidism/myxoedema based on 22,141 cases and
452,264 controls of European origin (Roslin Institute, Study
AT034). We utilized the UTMOST model with cross-tissue
expression imputation (Hu et al., 2019). UTMOST uses a multi-
tasking learning method to impute gene expression in 44 human
tissues simultaneously. Combination of multiple single-tissue
association scores into a joint-tissue test is expected to improve
the quantify of gene-disease association. Notably, TWAS provides a
rich collection of models for disease associations with genomic loci
(Gusev et al., 2016). Often, a single locus is associated with many
genes (e.g., >10 genes/locus), therefore, TWAS may suffer from an
expansion in gene candidates. We have not explored the coherence
between the different TWAS models.

2.6 Validation scheme

An independent cohort of FinnGen was used for the validation
of genes identified as statistically significant by the PWAS method
(ICD10: E03). The analysis is based on a recent version of FinnGen
with ~350,000 individuals with no overlap with UKB participants
(Kurki et al., 2023). For additional details on FinnGen validation, see
Supplementary Material S1. We further extended the validation
according to GWAS analysis from Taiwan with about 2,700 cases
and ~32,000 controls (Traglia et al., 2017). Interestingly, as many of
the associated variants were associated with non-coding RNA,
antisense and pseudogenes, we filtered the data to associated
variants within coding genes (824 variants).

2.7 Statistical tests

2.7.1 Effect size statistics
To determine the effect size of a gene on hypothyroidism, we

applied a measure of Cohen’s d values. Cohen’s d, also known as
standardized mean difference, measures the difference between two
means divided by a standard deviation (SD) for the data. In this
study, Cohen’s d is the (normalized) difference in mean gene effect
scores between cases and controls (calculated independently for
both dominant and recessive effect scores). For GWAS, the variant
association and effect size were calculated by PLINK 2.0 default
logistic regression, which produces the z score to specify the effect
size and its directionality. Note that in GWAS, a positive z score
indicates a positive correlation between hypothyroidism and the
number of alternative alleles, thereby indicating a risk variant. In
PWAS, positive values indicate a positive correlation with the gene
effect scores, whose higher values mean less functional damage.
Thus, negative values are indicative of protective variants in GWAS
versus risk genes in PWAS.

2.7.2 PRS calculation
We applied a procedure for assessing the possibility that the

difference in the UKB cohort sizes (2,557 males and 11,094 females)
is due to sex-specific effects. To this end, we calculated PRS by the
PRSice-2 protocol (Choi and O’Reilly, 2019). Predictive PRS models
for coding GWAS, and all GWAS were based on a standard partition
of 80:20 for the training and test sets. For all GWAS, we used 10.2 M
common variants (MAF >1e-03, a p-value for HWE test larger

than >1e−06 and 90% call rate using geno option). In addition, we
applied covariates of sex, age, UKB assessment centers, and genotype
measurement batch. We performed predictive PRS for
hypothyroidism E03 by the liability scale R2 and the AUC-ROC
(i.e., the area under the receiver operating characteristic curve) (Choi
and O’Reilly, 2019) for both sexes, male and female groups. While
the R2 assesses the amount of explained variation in the regression
models, the AUC-ROC evaluates the ability of the set of used
variants to discriminate between the classes (E03 vs. controls).

2.8 Bioinformatics tools

For gene connectivity and protein‒protein interaction (PPI)
maps, we applied STRING at a high PPI connectivity score
(Szklarczyk et al., 2021). For functional enrichment of GO
annotation and KEGG pathways, we applied the Gene2Func
function of FUMA-GWAS using default parameters and a set of
genes as input (Watanabe et al., 2017). All values are reported by
their adjusted p-values, using the human proteome as background.

2.9 Resource and availability

FIRM model and prediction of variant-centric effect score
(https://github.com/nadavbra/firm). The PWAS is available in
https://github.com/nadavbra/pwas. Exclusion and inclusion rules
per outcomes and phenotypes from FinnGen are found in
https://risteys.finngen.fi/endpoints/. For summary statistics
GWAS comparison we utilize the compilation from Open
Targets Genetics (OTG) with https://genetics.opentargets.org/
study-comparison/NEALE2_20002_1226 as an anchor. All
supporting data is provided in Supplementary Material S1,
Supplementary Material S2: Supplementary Tables S1–S10,
Supplementary Material S3: Supplementary Figures S1–S3.

3 Results

3.1 Comparative GWAS results for
hypothyroidism

Large-scale GWAS that was performed on several cohorts for
hypothyroidism (see Methods) is compiled in the Open Targets
Genetics (OTG) platform. A comparative study compiling six of the
largest studies is shown in Figure 1. The comparison is performed
with a GWAS of “Hypothyroidism/Myxoedema (noncancer, self-
reported)” from Neale v2, 2018 that covers non-Finnish Europeans
with ~17.5 k cases and ~345 k controls from UKB. This study
reports on 115 significant (p-value <5e-8) variants. Each of the
leading variants is reported along with its most likely
associated genes.

We identified 21 intersecting lists for all 6 GWAS
(Supplementary Material S3: Supplementary Table S2). Note that
the individual GWAS may include overlapping participants. While
accurate mapping of variants to genes is inconclusive, we observed
significant functional connectivity among these overlapping
associated genes (STRING PPI enrichment p-value of 7.4e-07;
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Figure 1B). For example, the TPO and FOXE1 genes (Figure 1B, blue
cluster) are involved in thyroid hormone production and secretion.
Specifically, TPO is a key enzyme in thyroid peroxidase that acts in
the iodination of tyrosine residues in thyroglobulin and thyroid
hormones, while FOXE1 is implicated in thyroid gland
morphogenesis (Table 1). The clusters in Figure 1B list genes
active in the regulation of T-cell receptors (yellow), thyroid
hormone production (blue), transcriptional regulation (red), and
chromatin modifiers (green). We observed that the genes associated
with hypothyroidism partition genes by their cellular properties in
relation to immunity, DNA-binding proteins, and numerous
enzymes (Figure 1C).

Table 1 summarizes the variants (based on the overlap of six
large-scale GWAS, Figure 1) along with the most likely associated
genes. Most variants are common, with allele frequencies (AFs)
ranging from 0.17 to 0.89. Note that for many of the variants, linkage
disequilibrium (LD) identifies a large number of genes within the
same haplotype block. In these cases, no conclusive assignment to a

particular gene is possible without finemapping. In fact, only 3 of the
21 lead variants are associated with a definitive gene (Table 1).

The listed shared variants are quite stable and remain valid in
view of additional large-scale GWAS. For example, addition of
GWAS for autoimmune thyroid disease with 755 k participants
from Iceland (93 associated variants) (Saevarsdottir et al., 2020)
had only a minor influence on the overall number of intersected
variants (19 of 21 listed variants shared by all 7 studies). Under the
assumption of accurate mapping of variants to genes (Table 1), the
results expose the genetic signal of CH. Specifically, TPO was
reported as causal for thyroid dyshormonogenesis 2 (OMIM
274500). In the Chinese population (Wang et al., 2017),
abnormal expression of FOXE1 was linked to CH-based thyroid
dysgenesis (OMIM 218700). Similarly, polymorphisms in the listed
genes VAV3, SH2B3, FOXE1 and PTPN22 were identified in the
23andMe database to be associated not only with hypothyroidism
but also with other autoimmune diseases (Eriksson et al., 2012). We
conclude that the shared GWAS results identified pleiotropic effects

FIGURE 1
Summary of independent loci identified from major GWAS results as compiled in the OTG portal. (A) The number of participants in each study and
the number of hypothyroidism cases are indicated by N (all) and n (cases). There are 21 variants that are shared by all six studies (colored red). The
chromosomal position is shown (bottom, light blue). (B) STRING analysis of the 21mapped associated genes resulted in a network of 13 genes (interaction
score >0.4). The nodes are colored by PPI clusters. Evidence of connectivity between the clusters is indicated by dashed lines. (C)Connectivity of the
21 associated genes (Table 1) and their major functional annotations.
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of genes involved in autoimmunity and gene developmental
alterations that underlie CH.

3.2 GWAS enriched with genes within the
MHC extended locus

We performed GWAS on UKB for ICD-10 E03 and considered
10.2 M variants across the entire genome (Figure 2). Results from
GWAS were partitioned into variants that are positioned within the
position of coding genes (refer to g-GWAS) and the rest of the
variants that are intergenic. Among the 21,127 associated variants
with a p-value <5e-05, 81% are intergenic. The rest of the analysis
was restricted to the 10,583 associated variants that met the accepted
threshold of significance (p-value <5e-08, Figure 2A, green
horizontal line).

These variants are partitioned into intergenic regions (87%) and
variants are located within genes (1,409 variants, assigned to
134 genes, Supplementary Material S2: Supplementary Table S3).
Importantly, the intergenic variants were clustered at 32 loci
(each <1M, Figure 2A), with an exceptionally significant number
of variants in chromosome 6. Actually, 86% of all variants were in
the extended region of MHC spanning ~6 M in chromosome 6

(Chr6: 27.5 M–33.5 M, Figure 2B). A similar trend was also applied
to variants located within gene length (g-GWAS), where the
majority (58%) of the associated variants are located within the
extended MHC region (Chr6: 27.5 M–33.5 M). Figure 2C shows the
QQ plot for the expected and observed statistical values associated
with all 10,583 associated variants (p-value <5e-08). The significant
deviation from the expected line supports the view that there is a
strong genetic basis for hypothyroidism. We conclude that most
GWAS-associated variants are located in the gene-dense
immunological region within the MHC locus.

3.3 Coding GWAS highlights the abundance
of genes in the MHC extended locus

GWAS results (Figure 2) supported the importance of a gene
view for functional interpretation and to overcame the difficulty of
variant-to-gene mapping. We have performed GWAS on the coding
region using ~640 k coding variants. Figure 3 shows the results of the
analysis for ~18 k coding genes (Supplementary Material S2:
Supplementary Table S4). We report 2813 variants with a relaxed
p-value of <1e-02 and 406, 149 and 61 variants by setting the
significant thresholds for p-values of 1e-04, 1e-08 and 1e-16,

TABLE 1 The intersection variants (total 21) from six large-scale hypothyroidism GWAS results.

# SNP rsID Band Variant Closest gene AFa # LD genesb

1 rs78765971 1p13 1_107819547_GAC_G VAV3 0.09 3

2 rs484959 1p13 1_109823461_T_C GSTM3 0.50 23

3 rs2476601 1p13 1_113834946_A_G PTPN22 0.89 15

4 rs11675342 2p25 2_1403856_C_T TPO 0.44 3

5 rs1534430 2p24 2_12504610_C_T TRIB2 0.41 1

6 rs2111485 2q24 2_162254026_A_G FAP 0.62 6

7 rs7582694 2q32 2_191105394_C_G STAT4 0.78 7

8 rs76897057 3q28 3_188407079_TA_T LPP 0.48 1

9 rs34046593 4p15 4_26109971_G_A RBPJ 0.31 6

10 rs546532456 4q31 4_148724495_C_CTT PGR 0.19 1

11 rs2445610 8q24 8_127184843_A_G POU5F1B 0.35 2

12 rs2123340 9p21 9_21589042_G_A IFNE 0.65 19

13 rs7850258 9q22 9_97786731_A_G FOXE1 0.66 14

14 rs71508903 10q21 10_62020112_C_T ARID5B 0.18 4

15 rs736374 11p13 11_35245397_G_A CD44 0.37 7

16 rs4409785 11q21 11_95578258_T_C SESN3 0.17 5

17 rs3184504 12q24 12_111446804_T_C SH2B3 0.52 17

18 rs61759532 17p13 17_7337072_C_T ACAP1 0.23 59

19 rs10424978 19p13 19_4837545_C_A TICAM1 0.59 21

20 rs145429422 22q12 22_30125266_CCAG_C LIF 0.48 23

21 rs229540 22q12 22_37195250_T_G C1QTNF6 0.42 25

aAF, Allele frequency for non-Finnish European population.
b# LD genes, the number of associated mapped genes resulting from the variant to gene (V2G) OTG, protocol.
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respectively. Importantly, the fraction of variants associated with the
extended region of MHC in chromosome 6 (Chr6: 27.5 M–33.5 M)
increased as the p-value was more significant, reaching 95% of the
significant variants at p-value <1e-16 (Figure 3A). The 61 most
significant variants are associated with 19 unique genes from the
MHC locus and only three genes from other chromosomal locations
(Supplementary Material S2: Supplementary Table S4). As the
statistical thresholds became more significant (from p-value <1e-
02 to <1e-16), a shift towards a larger fraction of variants that
decrease the risk for hypothyroidism was recorded (Figure 3B).

We conclude that the coding gene view is driven by the signature
within the gene-dense immunological region of the MHC locus with
the effects of genes on hypothyroidism is bidirectional with equal
importance for reducing or elevating the risk.

3.4 Gene-based analysis using PWAS

The majority of GWAS results are intergenic (Supplementary
Material S2: Supplementary Table S3), and the identified variants

within the coding regions (c-GWAS protocol) are independent of
each other. To overcome this limitation, we applied PWAS as a
gene-based method. PWAS exclusively focuses on alterations in
the coding gene and assesses the impact of damaging variants on
the protein biochemical function (Brandes et al., 2020). Based on
the UKB cohort for ICD-10 E03, we identified 77 statistically
significant PWAS genes (FDR-q-value <0.05). We analyzed
significant genes based on their risk directionality (Figure 4).
Among the top-range genes (FDR q-value, <1e-07; 26 genes,
Figure 4A), genes with increased risk for hypothyroidism
(colored red) dominate.

As expected from other complex diseases, most genes have a
rather limited effect size (calculated by Cohen’s d values). There are
six genes that have Cohen’s d values >|0.06| and p-values <1.0e-16
(Figure 4B). Among these genes, five genes are associated with
elevated risk, and SH2B3 is a strong protective gene. A large effect
size is associated with GPR174, G protein-coupled receptor 174, a
ChrX gene that plays a role in autoimmunity pathogenesis (Napier
et al., 2015). PWAS also model genes according to their inheritance
modes. While for 53%, compelling evidence suggests dominant

FIGURE 2
GWAS results for hypothyroidism (ICD-10, E03) with ~10.2 M variants. (A) Manhattan plot covering Chr. 1 to Chr. 22. For visualization clarity we
capped the p-value at <1e-60. Red frame indicates the MHC extended locus on Chr6. (B) Zoom in of the Manhattan plot covering part of the extended
region of MHC from Chr 6. The significant threshold of 5e-05 and 5e-08 are marked by the red and green horizontal lines, respectively. (C) Quantile-
quantile (Q–Q) plot based on the results of GWAS using 10.2 M variants. The red line shows that there is no signal in the data, the inflation factor
l = 1.089.
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FIGURE 3
Partition of the significant coding GWAS variants at different thresholds. (A) Position of the variants in the Chr6 MHC locus and in other locations. We
consider the MHC locus to span 6 M based in the MHC region of Chr6. (B) Partition according to the trend of variants that are protective or increase the
risk for hypothyroidism.

FIGURE 4
Associated genes from PWAS results. (A) Statistically significant genes from PWAS for ICD-10 E03 with q-value <1e-07 (total 26 genes). Genes with
an increased and decreased risk are colored purple/red and blue, respectively. (B) Effect size (Cohen’s d) for PWAS results for the dominant model. The
genes within the dashed frames are associated with Cohen’s d >|0.06|. Positive (green font) and negative (red font) Cohen’s d values are associated with
reduced and increased risk, respectively. Supplementary Material S2: Supplementary Table S5 lists all genes and their statistics.
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FIGURE 5
Venn diagram for the overlapping genes according to multiple association studies protocols. (A) Venn diagram of gene-length GWAS (g-GWAS,
134 genes), coding GWAS (c-GWAS, 72 genes with p-value <5E-07) and PWAS. Each of the overlap section is shown by label the gene as part of the MHC
locus (blue) or others (orange). (B) Venn diagram of PWAS (77 genes), GWAS (OT, by genetic association score >0.5 (138 genes), and transcription-based
association study (TWAS, see Methods) for hypothyroidism/myxedema by UTMOST model (71 genes; Supplementary Material S2: Supplementary
Table S7). The subsets of overlapping genes are color-coded according to their main functional annotations.
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inheritance, 12% of the genes show clear recessive inheritance
(Supplementary Material S3: Supplementary Figure S1).

3.5 Overlapping genes by complementary
genetic association methods

PWAS method explicitly considers (using FIRM, see Methods)
the degree of damage to the protein biochemical function caused by
the observed variants per each individual. The scores per each gene
are then assessed for significance in a case-control setting for
hypothyroidism. PWAS and coding GWAS utilizing the identical
variants set in a case-control setting. It is often the case that no single
variant is significant in GWAS (e.g., negligible effect size), but
following gene aggregation by PWAS the relevance of a gene as a
disease-candidate can be confirm (Brandes et al., 2020). We
compared the list of significant genes from PWAS and two
versions of GWAS (gene-length and coding GWAS) (Figure 5A).
Most PWAS genes (69%) overlap with either gene length GWAS or
coding GWAS (g-GWAS and c-GWAS, respectively). Inspecting the
nature of the overlapping sets between the three tested association
methods confirmed the dominant fraction of genes from the MHC
locus (Figure 5A, pie charts).

As the vast majority of associated variants occur in noncoding
regions (Edwards et al., 2013), we tested the genetic signal that
resulted from the transcriptome-wide association study (TWAS)
(Luningham et al., 2020). Figure 5B emphasizes the overlap of
association studies for hypothyroidism that relied on UKB entries
of European origin: the PWAS (77 genes), the external GWAS subset
from Open Targets (OT) filtered by genetic association (GA)
score >0.5 (138 genes, Supplementary Material S2:
Supplementary Table S6), and the TWAS significant expression-
trait associations of hypothyroidism (71 genes, Supplementary
Material S2: Supplementary Table S7). We show that the gene
overlap between PWAS and OT or between TWAS and OT is
limited (Figure 5B). Only a few of the overlapping genes between the
OT list and TWAS compilation are enriched with cellular immunity
genes. Surprisingly, the UTMOST model from TWAS reports that
only 4% of the associated genes belong to the MHC locus (3 genes;
Supplementary Material S2: Supplementary Table S7). Instead, the
overlapping genes belong to diverse aspect of cellular biology
including transcription, signaling, trafficking, translation, DNA
stability and more (Figure 5B).

Only SH2B3 (SH2B Adaptor Protein 3) was shared by all three
orthogonal association studies. Notably, SH2B3 is involved in a
range of signaling activities by cytokine receptors and was
implicated as a pleiotropic gene. In addition to SH2B3, only four
additional overlapping genes between the PWAS and OT lists were
identified (Figure 5B). These genes play a role in innate immunity,
but none are located within the MHC locus. For example, CTLA4
(cytotoxic T-lymphocyte associated protein 4; Chr 2q33.2) with a
missense mutation in rs231775 was also implicated in the
autoimmune alopecia areata disease. The C1QTNF6 gene is
known to carry two coding mutations, rs229527 (22:37,185,445:
C,A) and rs229526 (22:37,185,382:G,C), that are associated with
hypothyroidism-related phenotypes. This gene was identified within
a locus that is associated with a large number of thyroid-related
pathologies (Supplementary Material S3: Supplementary Figure S3).

The list of genes from the Venn diagrams is compiled in
Supplementary Material S2: Supplementary Table S8).

3.6 Validated hypothyroidism PWAS
significant genes

To further validate the findings from gene-based PWASmethod,
we sought an independent population that could validate the gene
discovery. To this end, we investigated the Finnish Biobank
(FinnGen). Recall that there is no overlap between UKB and
FinnGen participants (see Methods). Table 2 lists nine genes
(DCLRE1B, CTLA4, TLR3, HLA-DPB1, TRMO, PCSK7, SH2B3,
THOC5, and C1QTN) that were validated from the FinnGen data
and shared with the PWAS discovery. Notably, PWAS only refers to
coding variants, while like any standard GWAS, FinnGen identifies
mostly noncoding variants (Table 2).

Table 2 also shows genes associated with “Hypothyroidism
(congenital or acquired) (38.6 k cases, 263.7 k controls;
122 genes, phenotype a), “Hypothyroidism, strict autoimmune”
(33.4 k cases, 227.4 k controls, 105 genes, phenotype b), and a
more general term of “Disorders of the thyroid gland” (45.5 k
cases, 263.7 k controls, 80 genes, phenotype c). Further validation
is based on the independent cohort of 23&me (Eriksson et al., 2012).
Several of the replicated genes were supported by fine-mapping
(TLR3, Supplementary Material S3: Supplementary Figure S2).

We further extended the validation according to GWAS analysis
from Taiwan, reporting on about 2,700 cases and ~32,000 controls
(Traglia et al., 2017). A collection of 824 variants (assigned to
66 coding genes) were associated with hypothyroidism. We identified
18 overlapping genes (23%) with PWAS gene list, and 26% with coding
GWAS (Supplementary Material S2: Supplementary Table S8). We
conclude that hypothyroidism in different genetic populations
probably share similar genetic mechanisms for hypothyroidism.

3.7 Autoimmunity-associated genes are
enriched in PWAS results for hypothyroidism

We asked whether the identified PWAS genes could highlight on
the underlying mechanisms for hypothyroidism. To this end, we
reconstructed a connectivity map among the 77 PWAS genes as
represented by STRING (Szklarczyk et al., 2021) (Figure 6A).

The connectivity map is statistically significant and of high
confidence (p-value 3.68e-10; with a PPI STRING score >0.9).
The network (21 nodes) is mostly associated with cellular
immunity, including antigen presentation, processing, and T-cell
regulation. Moreover, 36 of 77 genes (47%) are located at the
Chr6p22.1-p21.32 locus that specifies the MHC locus
(hypergeometric distribution test, p-value 7.3e-57).

Relationships between MHC variants involved in autoimmunity
determine diverse aspects of immunity, such as responses to
infectious diseases and inflammation (Figure 6A). Extreme
enrichment in coding genes identified within the MHC locus
(Figure 6B, >60-fold higher than expected) strongly argues for
the dominant genetic signal that combines hypothyroidism and
autoimmune complex diseases. The enrichment observed in Gene
ontology (GO) sheds light on the relevance of the genes involved in
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antigen recognition, chemokine binding, and multiple aspects of
autoimmunity as revealed by the functional enrichment of KEGG
pathways (Figure 6B).

3.8 Open Targets (OT) highlights the genetic
basis of congenital hypothyroidism

The OT platform provides a knowledge-based resource that
converts the association of genes to diseases by including rich

biological knowledge from multiple sources (e.g., literature,
animal models, pathways, and drugs). Altogether, over 700 genes
were scored by their genetic association (GA score ranges 0–1.0, see
Methods; Supplementary Material S2: Supplementary Table S6). We
estimated the significant of the overlap gene sets of the GA-list and
PWAS. Using the cumulative distribution function (CDF) of the
hypergeometric distribution showed that it is highly significant
(p-value 6.38e-25; 10.5-fold enrichment). A stronger fold
enrichment was observed for the subset of genes selected with
higher GA score (total top 222 genes with score >0.3, p-value

TABLE 2 Validation of the PWAS gene by FinnGen Fz7 for Hypothyroidism phenotypes.

Symbol FGa (a,b,c) p-value rsID Chr (M) Gene effect AIDb Pubc More evidence Riskd

C1QTNF6 a,b,c 8.7E-19 rs229541 22:37 Intergenic + Frederiksen et al. (2013) Fine-map
23&me

I

CTLA4 a,b,c 1.1E-44 rs3087243 2:203 missense + Braun et al. (1998) Fine-map
23&me

I

DCLRE1B a 2.0E-10 rs12127377 1:113 intron + Ban et al. (2010) Japan D

HLA-DPB1 a,b,c 4.8E-31 rs9277535 6:32 downstream + Huang and Jap (2015) Taiwan D

PCSK7 a,b,c 8.5E-11 rs76169968 11:117 intron - Donertas et al. (2021) D

SH2B3 a,b,c 3.3E-55 rs7310615 12:111 intron + Auburger et al. (2014) 23andMe D

THOC5 a 2.5E-06 rs8140060 22:29 intron - D

TLR3 a,b,c 2.6E-10 rs3775291 4:186 missense + Caturegli et al. (2007) Fine-map D

TRMO a,b,c 6.1E-06 rs8140060 9:97 intron - D

aFG, FinnGen.
bAID, autoimmune disease.
cPub, Specific publication.
dRisk, increasing (I) or decreasing (D) risk for hypothyroidism.

FIGURE 6
Network relationship and functional enrichment of PWAS results (77 genes). (A) The STRING network represents the genes connected at an
interaction score >0.9. Dashed lines mark the connections between clusters. The unified function for each cluster is colored and annotated (e.g., antigen
processing). (B) Enrichment analysis using the FUMA-GWAS Gene2Func protocol. In red, the fraction of genes in the gene set; blue, the adjusted p-value;
orange, the overlapping genes for each term. The top 13 KEGG pathways and bottom, the GO_MF annotations. Note the enrichment of MHC genes
(HLA-DPA1, HLA-DRB1, HLA-DRB5, HLA-B, HLA-DPA1, HLA-G) in KEGG and GO-MF analyses.

Frontiers in Genetics frontiersin.org11

Zucker et al. 10.3389/fgene.2024.1409226

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1409226


5.28e-13, 14.7-fold enrichment; Figure 7A). Inspecting the functions
of these 222 genes revealed many enzymes, membranous receptors,
secreted proteins, and genes that act in the development, synthesis,
and secretion of thyroid hormones. Surprisingly, 58% of the PWAS
genes were not identified by the GWAS results reported by OT.
Interestingly, none of the top-ranked genes for “hypothyroidism”

according to the OT global score (25 genes; Supplementary Material
S2: Supplementary Table S6) were identified as significant by PWAS.

We confirmed an extreme overlap with 19 of these top 25 genes
as a CH-exclusive gene set, defined as “permanent congenital
hypothyroidism” (Orphanet: 442; EFO: 0,016,408). Figure 7B
shows that the genes associated with permanent CH are
functionally linked (STRING enrichment, p-value <1e-16).
Validation of the CH causal genes was confirmed by independent
studies analyzing patients from Korea (Jung et al., 2020) and China
(Wang et al., 2020) (colored blue, Figure 7B).

3.9 Gene-based association studies by sex

Following filtration of the UKB population (see Methods), there
were 2,557 males (19%) and 11,094 females (81%) with high quality
genotyping data and E03 diagnosis. The strong sex imbalance of
ICD-10 E03 raised the question of whether hypothyroidism is
signified by sex-dependent genetics. To this end, we applied the
PWAS gene-aggregative approach separately for males and
females (Figure 8).

The polygenic risk score (PRS) was calculated as a weighted sum
of allele dosages multiplied by their corresponding effect sizes for
females, males and both groups. PRS reflects the cumulative effect of
the genetic variants, thus allows for predicting individual
predisposition for hypothyroidism. Figure 8A (all GWAS) and
Figure 8B (coding GWAS) show the distribution for the entire
population and, according to the sex partition. Figure 8C shows the

prediction power of the PRS as calculated by the R2 and AUC-ROC
for the test set (set aside 2,492 cases and 51,630 controls). We
conclude that the majority of the PRS predictive power is captured
by variants within the coding regions. Moreover, the separation of
the population by sex validated that most genetic signals for the
calculated AUC-ROC were captured within the female group.

4 Discussion

In this study, we sought to identify the genetic basis of
hypothyroidism (ICD-10, E03) in the adult population of the
UKB. The complex origin of primary hypothyroidism is
associated with the differentiation between congenital and
acquired conditions. Moreover, diseases such as Hashimoto’s
thyroiditis and Graves’ disease (GD) are linked to
hypothyroidism through the immune system. Other forms of
hypothyroidism may be associated with organ resistance to
thyroid hormone (Persani et al., 2010). Although the elevated
prevalence of the condition in older females is well-established
(Dunn and Turner, 2016), the underlying genetics is only
partially resolved.

In this study, we exhaustively compared different association
study methods and protocols. In a routine GWAS, variants are
statistically tested within case‒control setting under and the additive
model (Tam et al., 2019). However, PWAS also detects non-additive
effects and allows the aggregated effect of variants that may occur at
different locations within the same gene (i.e., compound
heterozygosity). Although only a small fraction of the PWAS
identified genes have been identified with a clear recessive signal
(Supplementary Material 2: Supplementary Table S5,
Supplementary Material S3; Supplementary Figure S1), such
inheritance modes have been mostly overlooked by routine
GWAS approaches (Edwards et al., 2013; Tam et al., 2019). The

FIGURE 7
Genetic association with GWAS compiled by OT. (A) Ranked genes by their genetic association (by GA score, total of 715 genes). The overlap of
77 PWAS genes and 222OT genes with GA scores >0.3 for all 715 genes. (B) A network relation of genes that are ranked by theOT global score >0.5 for the
phenotype of permanent CH (total 36, 22 are connected, STRING PPI confidence score >0.7). The nodes are colored according to the match with the
findings of CH causal genes from independent cohorts from India (Kollati et al., 2020) and China (Wang et al., 2020).
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vast majority of the associated variants in GWAS occur in the
noncoding regions of the genome, and thus, the relevance of a SNP
function to the studied phenotype is mostly lacking [discussed in
(Edwards et al., 2013)]. Along with the effort to capture gene
causality due to regulation, TWAS was developed to identify
variants that affect gene expression level (e.g., eQTL) using
tissue-based data and Bayesian considerations. Significant
variants from TWAS are located in regions that may alter the
expression levels of transcripts, with cis or trans regulation
modes. As expected, TWAS exposed quite different results
relative to PWAS or OT compilation of GWAS findings
(Figure 5B). Much of the functions of genes identified by TWAS
and or by the OT are linked to thyroid development and hormone
secretion (e.g., PAX8, FOXE1, STAT4, TG). Interestingly, TWAS
and OT display a minimal signal of immunity (Khan et al., 2021).

The genetic basis for congenital hypothyroidism (CH) was
exposed from population studies, where dysregulation of
transcription factors (TFs) characterizes individuals with CH
(Grasberger and Refetoff, 2011). A comprehensive screening of
CH in family pedigrees from China identified DUOX2 as the
most frequently mutated gene (Sun et al., 2018). CH, combined

with neonatal diabetes mellitus, is caused by mutations in the TF
GLIS3 gene (Fu et al., 2018). Other TFs, such as NR1D1 and PAX8,
which are exclusively expressed in thyroid cell types, were identified
by GWAS and TWAS. TFs such as FOXE1 and STAT4 were
consistently identified by all large-scale GWAS. These genes act
during embryogenesis to establish the pituitary, hypothalamus, and
thyroid axes (Table 1). Thyroid signaling were highly represented by
TWAS. For example, PDE8B is expressed primarily in the thyroid to
execute the TSH effects.

Combining results from multiple classical GWAS identified TFs
that have strong links to thyroid function (e.g., NKX2-1;
NK2 homeobox 1). It is likely that the strong effect size of rare
variants dominated their discovery (see OMIM lists of 34 genes for
CH (Amberger et al., 2019), Supplementary Material S2:
Supplementary Table S10). None of the top-scoring OT genes
were identified by PWAS. We attribute this discrepancy in gene
findings to the relatively small effect sizes of the most common
variants in coding genes. Recall that GWAS identifies strong
functional elements that are ignored by PWAS. For example, a
cluster of variants on chromosome 9, including rs10759927,
rs7850258 and rs7030280, was significantly identified by classical

FIGURE 8
Gene-based association analysis by sex (A)Distribution of a polygenic risk score (PRS) among individuals with and without E03 diagnosis, marked as
cases (pink) and controls (blue). PRS scores were calculated for all GWAS (A) and coding-GWAS (B) for the entire cohorts (both), females and males. (C)
PRS prediction by the coefficient of determination (R2, left) AUC-ROC (right) for coding GWAS (orange) and all GWAS (blue) for the entire cohort (both)
and by sex. Coding GWAS variants partitioned by sex are listed in Supplementary Material S2: Supplementary Table S9.
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GWAS for hypothyroidism (with a p-value ranging between 1e-82
and 2e-100). These variants occur within the introns of PTCSC2, a
noncoding RNA (ncRNA) that is expressed exclusively in the
thyroid. Furthermore, accumulated data propose that CH is not
restricted to monogenic dominant mutations. Biallelic effects were
suggested based on the sporadic occurrences of CH within families
(Fu et al., 2018). Additionally, evidence of parents with clinical
manifestations of thyroid (functional or morphological) supports
the notion of predisposition with recessive inheritance (Leger et al.,
2002). In this study, we have not explicitly studied rare variants from
whole genome or whole exomes (Backman et al., 2021). We argue
that applying a recessive model in PWAS and including a
comprehensive analysis of rare variants can expose overlooked
genetics with pathological variants that display relatively strong
effect size.

The strongest signature of explainable hyperthyroidism is caused
by dysregulation of the immune system. This signature was revealed
by applying PWAS and, to a lesser extent, coding GWAS. Testing the
genetic variations associated with thyroid autoimmunity identified a
strong interaction with pathways driving the immune response (Khan
et al., 2021; Luo et al., 2021). The findings agree with a clinical
investigation that explains the mechanisms underlying thyroid
autoimmunity. Hashimoto’s thyroiditis is the most common form
of hypothyroidism. The autoimmune facet of hypothyroidism is
characterized by the infiltration of T lymphocytes into the thyroid
gland and autoantibodies against thyroid-specific genes (e.g., thyroid
peroxidase, thyroglobulin, and TSH receptor). AIT-associated genes
were also identified in thyroid autoimmune Graves’ disease (GD).
Among these shared genes are HLA class II (HLA-DR), protein
tyrosine phosphatase 22 (PTPN22), and cytotoxic T lymphocyte
antigen 4 (CTLA4) (Jacobson and Tomer, 2007). The genetic
signals of autoimmune thyroiditis are shared with other immune-
mediated diseases, such as T1D, celiac disease, rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and psoriasis. PWAS
exposes many immune-related genes that carry coding variants
(e.g., PTPN22, SH2B3, and genes in the class 1 MHC region).
Thus, it can help to assess the risk prediction for autoimmunity
that overlaps with hypothyroidism (Eriksson et al., 2012).
Importantly, for a large collection of common diseases (Brandes
et al., 2020; Brandes et al., 2021; Zucker et al., 2023), we found no
evidence for associations within the Chr 6 MHC locus by PWAS or
coding GWAS. Therefore, we argue that an immune-related signature
is a genuine contributing signal for hypothyroidismwith gene-specific
interpretability.

The gene-based analysis performed in this study raised the
question of whether genetic effects are distinguished by sex. For
hypothyroidism, a ratio of >3.6:1 for females and males was
reported in the UKB. This bias in prevalence was also validated in
the Finnish population, which reported 37,942 affected females
and 9,616 males. Clinical observations indicate the relevance of
sex-dependent risk assessment for E03. The average age of
diagnosis for females and males was different in UKB (50 and
58 years for females and males, respectively). Sex also was shown
to vary the calculated risk. For example, the occurrence of
multiple variants for CTLA4 gene in the Taiwan cohort
increased the risk for hypothyroidism (odds ratio (OR)
1.4–1.9). But, the risk was much higher for overweigh males
(OR 4.4–5.3) with such CTLA4 variants (Liu et al., 2022).

In this study, we showed that the sex stratification of
hypothyroidism provided no support for genuine genetic
differences between the sexes, despite the large gap in prevalence.
This agrees with most human traits and diseases that do not support
a mechanistic difference between the sexes (Traglia et al., 2017). We
recently showed that for primary hypertension (ICD-10 I10) and
phenotypes of blood pressure most of the genetic signal was
attributed to females, despite a higher prevalent in males (Zucker
et al., 2023). With the continuous increase in statistical power due to
cohort sizes, more cases of sex-dependent genetics have been
revealed (Pirastu et al., 2021).

Notably, the presented pipeline is applicable to other complex
diseases with unresolved etiology. Nevertheless, the association
methods used in this study are sensitive to cohort size. Therefore,
the methods are mostly suitable for diseases that are signified by
relatively high heritability and sufficient cohort size. Another
limitation concerns the fact that while most variants occur
outside of the coding region in regulatory regions, PWAS, and
coding GWAS are restricted solely to coding regions and
primarily to common variants (Brandes et al., 2022).
Furthermore, this study focuses on Caucasian-white ethnicity.
It would be of great importance to apply the pipeline on
populations of other origins.

We conclude that comparison results that rely on capturing
different aspects of the genetic signal allowed us to reveal the
complex etiology of hypothyroidism, covering recessive signals,
CH, and acquired chronic damage to thyroid functionality. The
discovery benefited from the use of complementary association
studies and utilizing the same set of variants for comparison. We
suggest that the framework is applicable and can be generalized
to other polygenic diseases with unknown etiologies. It is likely
that complex diseases for which the age of diagnosis, sex
prevalence, and diseases that are subjected to (wrong)
alternative diagnoses could benefit from integrating genetic
association schemes. Moreover, using coding GWAS and
PWAS, we illustrate the clinical benefits of gene-based
genetics by improving interpretation, which can benefit
unexplored therapeutic targets.
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