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N4-acetylcysteine (ac4C) is a chemical modification in mRNAs that alters the
structure and function of mRNA by adding an acetyl group to the N4 position of
cytosine. Researchers have shown that ac4C is closely associated with the
occurrence and development of various cancers. Therefore, accurate
prediction of ac4C modification sites on human mRNA is crucial for revealing
its role in diseases and developing new diagnostic and therapeutic strategies.
However, existing deep learning models still have limitations in prediction
accuracy and generalization ability, which restrict their effectiveness in
handling complex biological sequence data. This paper introduces a deep
learning-based model, STM-ac4C, for predicting ac4C modification sites on
human mRNA. The model combines the advantages of selective kernel
convolution, temporal convolutional networks, and multi-head self-attention
mechanisms to effectively extract and integrate multi-level features of RNA
sequences, thereby achieving high-precision prediction of ac4C sites. On the
independent test dataset, STM-ac4C showed improvements of 1.81%, 3.5%, and
0.37% in accuracy, Matthews correlation coefficient, and area under the curve,
respectively, compared to the existing state-of-the-art technologies. Moreover,
its performance on additional balanced and imbalanced datasets also confirmed
the model’s robustness and generalization ability. Various experimental results
indicate that STM-ac4C outperforms existing methods in predictive
performance. In summary, STM-ac4C excels in predicting ac4C modification
sites on humanmRNA, providing a powerful new tool for a deeper understanding
of the biological significance of mRNA modifications and cancer treatment.
Additionally, the model reveals key sequence features that influence the
prediction of ac4C sites through sequence region impact analysis, offering
new perspectives for future research. The source code and experimental data
are available at https://github.com/ymy12341/STM-ac4C.
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1 Introduction

Since the first discovery of RNA chemical modifications 60 years
ago, more than 170 types of RNA modifications have been
characterized (Zhang Y. et al., 2022). These modifications mainly
exist in non-coding RNAs, such as ribosomal RNA (rRNA), transfer
RNA (tRNA), and small nuclear RNA (snRNA) (Shi et al., 2020).
They are essential for correctly translating the eukaryotic genome
and can regulate the same RNA transcript to produce different
mRNA and protein products (Schaefer et al., 2017; Cui et al., 2022).
Among them, n4-acetylcytidine (ac4C) is a common modification
that widely regulates various aspects of RNA metabolism (Karthiya
et al., 2020). ac4C mainly occurs in the coding region of mRNA and
is catalyzed by the NAT10 enzyme (Jiang et al., 2023; Hu et al.,
2024). ac4C modification can affect mRNA’s stability and
translation efficiency, and its mechanism is to change the
structure and interaction of mRNA and enhance its affinity with
ribosome, tRNA, protein, and other RNA (Jin et al., 2020). There
have been studies that have found that ac4C plays a role in DNA
damage repair, and there have been studies that have found that
ac4C is related to the occurrence and development of various
diseases, such as cancer, neurodegenerative diseases, viral
infections, etc., (Liu et al., 2022; Luo et al., 2023). Therefore,
predicting the sites of ac4C is of great significance for
understanding its function and designing therapeutic strategies.

In recent years, with the development of high-throughput
sequencing technology, Arango et al. used acRIP-seq technology
to perform ac4c-specific RNA immunoprecipitation analysis on the
transcriptome of human HeLa cells (Arango et al., 2018; 2019). They
found more than 4,000 regions containing ac4C. However, acRIP-
seq technology cannot accurately locate the position of each ac4C
and can only give a rough range. They found that ac4C is widely
present in the human transcriptome and is mainly concentrated in
the coding regions. They also found that ac4c-modified mRNA is
more stable than other mRNA, and its translation level significantly
increases after it is acetylated. Because detecting ac4C in mRNA by
experimental methods is time-consuming and labor-intensive,
computational methods are needed to identify the position of
ac4C efficiently and reliably. Currently, some computational
methods have been proposed (Zhao et al., 2019; Alam et al.,
2020; Wang et al., 2021; Zhang G. et al., 2022; Iqbal et al., 2022;
Jia et al., 2023a; 2023c; 2023b; Su et al., 2023; Li et al., 2024).

For example, Zhao et al. developed PACES(Zhao et al., 2019),
the first model to use a combination of two random forest (RF)
classifiers to predict ac4C sites in human mRNA, using position-
specific dinucleotide sequence spectrum (PSDSP) and k-nucleotide
frequency (KNF) as features for the two classifiers. Subsequently,
Alam et al. developed XG-ac4C (Alam et al., 2020), a model that
improved the accuracy of predicting ac4C sites by using the extreme
gradient boosting (XGboost) algorithm, combining electron-ion
interaction pseudopotentials (EIIP) and electron-ion interaction
pseudopotentials of trinucleotide (PseEIIP). Wang et al. designed
a model named DeepAc4C(Wang et al., 2021) based on a
convolutional neural network (CNN), which used a hybrid
feature composed of physicochemical mode and nucleic acid
distribution representation and showed better performance in
predicting ac4C sites. At the same time, Iqbal et al. proposed a
CNN-based deep learning model, DL-ac4C (Iqbal et al., 2022), and

compared it with traditional machine learning methods, regression,
and Support Vector Machines. Su et al. established a high-quality
benchmark dataset and developed a new predictor, iRNA-ac4C (Su
et al., 2023). The predictor was based on a gradient boosting decision
tree (GBDT), integrating k-mer nucleotide composition, nucleotide
chemical property (NCP), and accumulated nucleotide frequency
(ANF) as three feature extraction methods, and surpassed the
previous models in identifying ac4C sites. Lai and Gao et al.
proposed LSA-ac4C (Lai and Gao, 2023), a model that used a
two-layer LSTM neural network to learn the dependency
relationship of mRNA sequences and used the self-attention
mechanism to pay attention to the importance of nucleotides in
mRNA sequences. They also trained a transformer-based deep
learning model using automated machine learning (AutoML)
technology called Auto-ac4C. This model also performed better
than the current state-of-the-art (SOTA) models, indicating that it is
a reliable baseline and the possibility of further improving the
accuracy of ac4C site prediction using deep learning methods.
Recently, Jia et al. proposed a deep learning-based prediction
model, DLC-ac4C (Jia et al., 2023a). The model uses a variety of
features, including three feature encoding schemes, one-
dimensional convolutional layers, densely connected
convolutional networks (DenseNet), bidirectional long short-term
memory networks (Bi-LSTM), channel attention mechanism, and
ensemble learning strategy, to capture hidden information features
from the sequence perspective. Following DLC-ac4C, Li et al.
proposed a deep learning-based multi-module framework,
MetaAc4C, which combines pre-trained Bidirectional Encoder
Representations from Transformers (BERT) and a Generative
Adversarial Network WGAN-GP, where WGAN-GP is used to
enhance training data and address data imbalance issues. The
core is a Bidirectional Long Short-Term Memory network
(BLSTM), which improves model performance through attention
mechanisms and residual connections.

Although these models have made some progress, there is still
room for improvement in the prediction accuracy of the sites.
Therefore, we propose a deep learning-based model named STM-
ac4C for identifying N4-acetylcytidine (ac4C) modification sites on
human mRNA. The main contributions of this paper are as follows:

1) An innovative hybrid neural network architecture is proposed,
which combines the advantages of selective kernel convolution
(SKC) (Li et al., 2019), temporal convolutional networks
(TCN) (Bai et al., 2018; Raza et al., 2023), and multi-head
self-attention mechanisms (MHSA) (Vaswani et al., 2017).
This design enables the model to adaptively capture k-mer
features of varying lengths, enhances the ability to capture
long-term dependencies in mRNA sequences, and achieves
adaptive fusion of features, thereby improving the accuracy of
predictions and the model’s generalization ability.

2) In terms of feature encoding, this study adopts one-hot encoding
(Cheng et al., 2021) to maintain the complete information of the
input sequence and avoid information loss. Compared to
embedding encoding, one-hot encoding is simple, easy to use,
stable, and has no significant impact on model performance while
reducing computational resource consumption.

3) The results of ten-fold cross-validation and independent
testing show that STM-ac4C outperforms existing models in
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accuracy, Matthews correlation coefficient, and area under the
curve, providing valuable tools and new benchmarks for the
related research field.

4) The robustness and generalization ability of the model has
been validated on additional balanced and unbalanced
datasets, confirming that STM-ac4C maintains stable
predictive performance on more challenging datasets.

5) Key sequence features were revealed through sequence region
impact analysis, providing a new perspective for
understanding the biological significance of mRNA
modifications.

In summary, the STM-ac4C model excels in predicting ac4C
modification sites on human mRNA, offering a powerful new tool
for a deeper understanding of the biological significance of mRNA
modifications and cancer treatment.

This paper is divided into the following sections: Section 1 serves
as the introduction, presenting the research background,
significance, related work, and main contributions. Section 2
elaborates on the research methods, including the selection of
datasets, data preprocessing steps, feature encoding techniques,
model architecture design details, and performance evaluation
criteria. Section 3 displays the experimental results and in-depth
analysis, covering the classification performance on benchmark
datasets, model comparative analysis, ablation experiments,
comparisons with existing technologies, importance assessment of
sequence regions, and robustness tests. Section 4 is the conclusion,
summarizing the research findings, discussing the study’s
limitations, and looking forward to future research directions.

2 Materials and methods

2.1 Dataset and data preprocessing

We used the high-quality dataset constructed by Su et al. to
evaluate our model. The dataset was derived from the experimental
data of Arango et al. (Arango et al., 2018), which identified
4,250 ac4C peaks using the acRIP-seq method (Zhang X. et al.,
2022). Su et al. (Su et al., 2023) extracted sequences of 100 nt up and
down as positive samples to create a reliable dataset, starting from
the cytosine near each ac4C peak. They also randomly sampled
201 nt sequences centered on cytosines from non-peak regions as
negative samples. They used the CD-HIT (Fu et al., 2012) tool with a
threshold of 0.8 to remove redundant sequences. To balance the
dataset, they selected 2,758 sequences from each positive and
negative sample. Finally, they randomly divided the positive and
negative data into training and independent test sets at 4:1. The
training set contained 2,206 positive and 2,206 negative samples, and

the test set contained 552 positive and 552 negative samples. The
details of the dataset are shown in Table 1.

2.2 Preprocessing

2.2.1 Feature encoding method
One-hot encoding (Cheng et al., 2021) is a data preprocessing

and feature engineering method that can transform discrete
categorical variables into sparse binary codes. This method has
wide applications in machine learning, deep learning,
bioinformatics, and other fields. The principle of one-hot
encoding is given a variable with n categories to generate a new
feature vector of length n, where only one element is 1, and the rest
are 0. The position of the one indicates the category of the variable.
For example, if there are three categories, A, B, and C, their one-hot
encodings are (1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively.

The advantage of one-hot encoding is that each category has an
independent binary representation, and these vectors are mutually
orthogonal, meaning that their inner product is zero, and there is no
size relationship. This can avoid using ordered or continuous values
to represent class labels because this would cause problems in
calculations such as weight matrices or distance metrics.

We can use one-hot encoding to represent nucleotides in RNA
sequences. RNA sequences are composed of four nucleotides, A, U,
G, and C, which correspond to different bases. If the type of
nucleotide is unknown, use N to represent it. The following
formula can be used to convert them into one-hot encoding:

A → 1, 0, 0, 0, 0( )
U → 0, 1, 0, 0, 0( )
G → 0, 0, 1, 0, 0( )
C → 0, 0, 0, 1, 0( )
N → 0, 0, 0, 0, 1( )

(1)

As shown in Figure 1A, this way, an RNA sequence of length
201 bp, can be converted into a 5 x 201 matrix by one-hot encoding,
where each column represents a nucleotide, and each row represents
a feature.

2.3 Model architecture

In biology, the analytical and predictive capabilities of AI models
have been empirically demonstrated across multiple research
directions (Ukwuoma et al., 2022b; 2022a; 2023; Fazmiya et al.,
2024; Heyat et al., 2024; Sumbul et al., 2024). Based on this, we
propose an innovative hybrid neural network model, STM-ac4C,
designed to accurately identify N4-acetylcytidine (ac4C)
modification sites on human mRNA. As illustrated in Figure 1B,
the model skillfully integrates Selective Kernel Convolution (SKC),
Temporal Convolutional Network (TCN), and Multi-Head Self-
Attention (MHSA) mechanisms. This combination enables STM-
ac4C to efficiently capture diverse patterns, structures, and
correlations in RNA sequences, which significantly improves
prediction accuracy and robustness. SKC overcomes the
limitations of traditional fixed kernel sizes by adaptively
capturing k-mer features of varying lengths. Compared with
LSTM, TCN performs better in modeling long-term

TABLE 1 Statistics of the baseline dataset.

Original Training Testing

Positive 2,206 552

Negative 2,206 552

Total 4,412 1,104
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dependencies and can effectively handle the temporal and dynamic
changes of RNA sequences. The MHSA mechanism, on the other
hand, achieves in-depth capture of global and local correlations of
RNA sequences by enhancing the model’s characterization
capability. At the end of the model, a Multi-Layer Perceptron
(MLP) serves as the classifier, transforming the output from the
previous layer into the final prediction results using nonlinear
activation functions and fully connected layers.

2.3.1 Selective kernel convolution
Selective Kernel Convolution (SKC) (Li et al., 2019) is an

innovative convolutional method proposed by Li et al., in 2019.

It is designed to simulate the dynamic adaptability of human visual
neurons’ receptive fields. SKC intelligently selects the most suitable
kernel size by analyzing the multi-scale information of the input
features, thereby adjusting the range of the neurons’ receptive fields.
This method can be seamlessly integrated into existing
convolutional network architectures, significantly enhancing the
network’s performance and efficiency while maintaining
lightweight parameters and computation.

The core advantage of SKC lies in its subtle improvement over
traditional convolutional networks—achieving the effect of multi-
size convolutional kernels through grouped and dilated
convolutions, thus only slightly increasing the parameters and

FIGURE 1
The schematic diagram of STM-ac4C. (A) Feature encoding. One-hot encoding converts the 201 nt RNA sequence into a 5 × 201 matrix. (B)Model
architecture. The encoded featurematrix is sequentially input to threemodules: selective kernel convolution (SKC), temporal convolution network (TCN),
and multi-head self-attention (MHSA) for feature extraction. Then, the extracted feature matrix is flattened into a one-dimensional vector, and finally, an
MLP layer is used for binary classification to predict whether the sequence contains ac4C modification sites.
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computational load. The operation process of SKC includes three
key steps: split, fuse, and select. In the split phase, the input feature
map is convolved with convolutional kernels of different sizes,
producing multiple feature sub-maps representing different
receptive field sizes. These feature sub-maps are comprehensively
integrated during the fusion phase to form a global feature
representation containing selection weight information. Finally,
based on the calculated selection weights, different-sized feature
sub-maps are weighted and aggregated in the selection phase to
output the final feature map.

Figure 2 shows the structure of SKC. To further elucidate the
mathematical model of SKC, we introduce the following formulas to
describe its operation process:

1) Split: For a given input feature map X ∈ RCin×L, where Cin

represents the number of input channels, and L represents the
input length. This feature map is processed by a series of
convolutional kernels Ki (a total of M), applying the ReLU
activation function and Norm normalization method,
generating multiple feature sub-maps Ui ∈ RCout×L:

Ui � ReLU Norm KipX( )( ) (2)

2) Fuse: Through element-wise addition, all feature sub-maps Ui

are fused into a global feature map U:

U � ∑M−1

i�0
Ui (3)

3) Select: First, a global descriptor s is generated on the global
feature map U by applying Global Average Pooling (GAP):

s � GAP U( ) (4)
Then, the descriptor s is transformed into an attention vector

z ∈ RM·Cout through two fully connected layers (FC), where the first
FC layer uses the ReLU activation function. The second FC layer
does not use an activation function:

z � FC ReLU FC s( )( )( ) (5)
Next, for each channel c, the softmax of z is computed to obtain

the attention weights Am,c, where zm,c represents the m +M · c th
element of vector z.

Am,c � ezm,c

∑M−1
j�0 ezj,c

(6)

Finally, using the attention weights Am,c, each feature sub-
map Um,c is weighted and summed for each channel to obtain the
c-th channel of the output feature map Oc, and the final output
O is:

Oc � ∑M−1

m�0
Am,c · Um,c (7)

O � O0,O1, . . . ,OCout−1[ ] (8)

2.3.2 Temporal convolutional network
Temporal Convolutional Networks (TCN) (Bai et al., 2018;

Raza et al., 2023) are network modules for modeling and
forecasting sequential data. Their design is inspired by Deep
Convolutional Neural Networks (DCNN) (Gu et al., 2018; Abbas
et al., 2021), with improvements made to better handle
sequential tasks. A significant advantage of TCN is its ability
to compute outputs in parallel, significantly enhancing
computational efficiency and reducing the computational
burden and memory requirements compared to Recurrent
Neural Networks (RNN) (Pascanu et al., 2013).

TCN effectively processes time-series data using causal
convolutions, ensuring stability and reliability when handling
historical information. Causal convolution is a special type only
related to the current or previous inputs. It maintains the
consistency of the input and output sequence lengths through
zero-padding techniques, thereby solving the problem of
recursive dependencies. The output of a causal convolution, yt,
can be calculated using the following formula:

FIGURE 2
The structure of selective kernel convolution.
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yt � ∑k−1
i�0

wi · xt−i + b (9)

Wherewi represents the weights of the convolutional kernel, b is
the bias, and k is the size of the convolutional kernel.

To enhance model performance, TCN also employs dilated
convolutions and residual connections (He et al., 2016). Dilated
convolutions expand the receptive field by increasing the stride of
the convolutional kernel, allowing it to capture longer-range
dependencies. Residual connections enhance information flow by
introducing skip connections, preventing gradient vanishing or
explosion issues. The output of a causal dilated convolution, y′

t,
can be represented by the following formula:

y′t � ∑k−1
i�0

wi · xt−d·i + b (10)

Here, d is the dilation factor, which determines the interval at
which the convolutional kernel covers the input sequence. When
d � 1, the causal dilated convolution degenerates into a standard
causal convolution. A larger dilation factor allows the top-level
output to represent a broader range of inputs, effectively
expanding the receptive field of the convolutional network.

A TCN comprises a series of residual blocks containing two
layers of dilated causal convolution and ReLU activation function.
Weight normalization is applied to the convolutions for stability and
efficiency. As depicted in Figure 3, the architecture of a residual
block is defined. The TCN processes the input sequence via these
residual blocks. The convolutional kernel size, denoted as k, is
constant across the network. In contrast, the dilation factor,
represented as d, increases exponentially relative to the network’s
depth. This design ensures comprehensive coverage of each input
point by at least one filter, thereby extending the effective historical
range without compromising the depth of the network.

2.3.3 Multi-head self-attention
Multi-head self-attention (MHSA) (Vaswani et al., 2017) is an

improved version of self-attention, which uses multiple attention
heads to process different positions and features of the input
sequence, thereby enhancing the model’s feature extraction and
interpretability performance on sequential data. Specifically, each
attention head multiplies the elements of the input sequence (such as
words or pixels) with three matrices, respectively, to obtain three vectors:
query, key, and value. Then, according to the similarity between the
query and the key, the value vectors are weighted and summed to obtain
a sub-representation of the output sequence. Finally, the sub-
representations of all attention heads are concatenated to obtain the
final representation of the output sequence. This way, the model can
flexibly focus on the important parts of the input sequence, thus
effectively extracting and utilizing the key information in the
sequence. The specific formula of multi-head self-attention is as follows:

Figure 4 shows the structure of MHSA. Assume that the input
sequence is X � (x1, x2, . . . , xn), where xi ∈ Rd is the feature vector
of the i-th element, and d is the feature dimension. Multi-head self-
attention uses h different matrices Wi

q,W
i
k,W

i
v ∈ Rd×dk , where

i � 1, 2, . . . , h, and dk is the feature dimension of each head,
satisfying hdk � d. For each head i, the query, key, and value
vectors are calculated as follows:

Qi � XWi
q ∈ Rn×dk

Ki � XWi
k ∈ Rn×dk

Vi � XWi
v ∈ Rn×dk

(11)

Then, the attention weight matrix Ai ∈ Rn×n of each head is
calculated, where Ai

jk represents the attention weight of the j-th
position to the k-th position, as follows:

Ai � softmax
Qi Ki( )T��

dk

√⎛⎝ ⎞⎠ (12)

FIGURE 3
The architecture of the residual block.

Frontiers in Genetics frontiersin.org06

Yi et al. 10.3389/fgene.2024.1408688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


Where softmax is performed row-wise, and
��
dk

√
is a scaling

factor that balances the influence of different dimensions. Finally,
the output sequence Oi ∈ Rn×dk of each head is calculated, and they
are concatenated column-wise to obtain the final output sequence
O ∈ Rn×d, as follows:

Oi � AiVi

O � concat O1,O2, . . . ,Oh( ) (13)

2.4 Performance evaluation

In this study, we selected five common evaluation metrics for
machine learning classification prediction tasks to evaluate the
predictive performance of the model, namely, sensitivity (Sn),
specificity (Sp), accuracy (Acc), Matthews correlation coefficient
(MCC), and area under the receiver operating characteristic curve
(AUC) (Sokolova and Lapalme, 2009). The formulas for these
metrics are as follows:

Sn � TP
TP + FN

Sp � TN
TN + FP

Acc � TP + TN
TP + TN + FP + FN

MCC � TP × TN − FP × FN�������������������������������������������
TP + FN( ) × TN + FN( ) × TP + FP( ) × TN + FP( )√

AUC � ∫1
0

Sn FP( )dFP

(14)
Where TP, FP, TN, and FN represent the number of true positives,

false positives, true negatives, and false negatives, respectively. They are
the elements of the confusion matrix constructed based on the model’s
prediction results and the true labels. AUC is the area under the receiver
operating characteristic curve (ROC curve), which is a curve drawn with
FP as the horizontal axis and Sn as the vertical axis, reflecting the changes
in sensitivity and specificity of the model at different thresholds.
Generally speaking, the higher the values of these metrics, the better
the model’s predictive performance.

The STM-ac4C was implemented in a Python
3.9.16 environment, utilizing the torch 2.0.0+cu118 framework.

The model training employed an Adam optimizer, with a
learning rate set to 1e-4, a batch size of 64, and a maximum
training epoch set at 300. The loss function chosen was binary
cross-entropy. Early stopping was also adopted to prevent
overfitting, meaning the training would be halted if the
0.5 × (MCC + AUC) on the validation set did not improve over
20 consecutive epochs.

3 Result and discussion

3.1 Classification performance on the
benchmark dataset

In this section, we evaluated the classification performance of the
STM-ac4C model on the benchmark dataset. We meticulously
recorded the model’s performance in each fold using ten-fold
cross-validation. The evaluation metrics include Sensitivity (Sn),
Specificity (Sp), Accuracy (Acc), Matthews Correlation Coefficient
(MCC), and Area Under the Curve (AUC), with specific data
presented in Table 2. The model’s average values and standard
deviations for each metric are as follows: Acc is 82.57% ± 1.54%, Sn
is 86.49% ± 3.76%, Sp is 78.65% ± 2.36%, MCC is 65.43% ± 2.89%,
and AUC is 88.52% ± 1.02%. On the independent test set, the model
demonstrated superior performance, with an Acc of 84.78%, Sn of
85.87%, Sp of 83.7%, MCC of 69.58%, and AUC of 90.79%. Both
cross-validation and independent testing have demonstrated that
the sensitivity (Sn) surpasses the specificity (Sp), signifying that the
STM-ac4C model exhibits a pronounced superiority in identifying
positive samples. Figure 5 intuitively displays the model’s
performance through ROC and PR curves, where the ROC curve
reflects the relationship between true positive rate and false positive
rate at different thresholds, and the PR curve shows the relationship
between precision and recall.

3.2 Comparison of using one-hot encoding,
NCP encoding and embedding encoding

When encoding sequence features, we aim to preserve as much
information as possible from the input sequence while avoiding
information loss or redundancy caused by manual feature extraction.
To this end, we only considered three encoding schemes: One-hot
encoding, NCP encoding (Chen et al., 2016; 2017; Nguyen-Vo et al.,

FIGURE 4
The structure of multi-head self-attention.

Frontiers in Genetics frontiersin.org07

Yi et al. 10.3389/fgene.2024.1408688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


2019), and Embedding encoding (Hasan et al., 2020; Jin et al., 2022b; Lai
and Gao, 2023). One-hot encoding is widely used in machine learning,
deep learning, bioinformatics, and other fields due to its simplicity, ease of
use, stability, and other advantages. NCP encoding converts nucleotide
sequences into numerical vectors, which consider nucleotides’ chemical
properties and binding characteristics, thereby improving the efficiency
and accuracy of sequence analysis. Embedding encoding is a neural
network-based method that encodes each categorical element in the
sequence into a learnable vector and updates it continuously during the
training process, thus learning the semantics and context information of
the elements, effectively compressing and abstracting features. To
evaluate the impact of the three encoding schemes on model
performance, we performed ten-fold cross-validation on the training
set, using different encodingmethods asmodel inputs. Figure 6 shows the
evaluationmetrics under different encoding schemes. From the figure, we

can see no significant difference between the results of the three encoding
methods. However, embedding encoding increases themodel parameters
and computational complexity, requiring more time and computational
resources during training. In contrast, the one-hot encoding scheme has
the highest accuracy (Acc) and Matthews correlation coefficient (MCC):
82.57% and 65.43%. Considering all aspects, we chose one-hot encoding
as the final encoding scheme.

3.3 Comparison of using TCN, LSTM, GRU
and transformer

In STM-ac4C, TCN is mainly used to model the long-term
dependencies in sequences. In contrast, some of the current sequence
modeling methods are mainly based on variants of RNN, such as long

TABLE 2 Classification results of STM-ac4C on each fold.

Fold number Sn (%) Sp (%) Acc (%) MCC (%) AUC (%)

0 90.95 69.68 80.32 62.05 86.88

1 85.97 77.38 81.67 63.58 87.04

2 84.16 79.55 81.86 63.78 89.74

3 82.35 80.91 81.63 63.27 88.67

4 87.78 77.27 82.54 65.43 88.58

5 85.07 79.09 82.09 64.28 88.49

6 86.36 81.45 83.90 67.89 90.02

7 88.18 83.71 85.94 71.96 89.22

8 86.82 80.09 83.45 67.05 88.54

9 87.27 77.38 82.31 64.96 88.01

FIGURE 5
ROC and PR curves of STM-ac4C on the independent test dataset.
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short-term memory networks (LSTM) (Cheng et al., 2021; Zhang G.
et al., 2022), gated recurrent units (GRU) (Jin et al., 2022b; Nguyen-Vo
et al., 2023; Sultana et al., 2023), or Transformer (Jin et al., 2022a;
Tsukiyama et al., 2022; Zeng et al., 2023) networkmodules based on self-
attention mechanisms to build predictors. Although these modules have
advantages in processing sequence data, they still have limitations. LSTM
and GRU can effectively handle short-term dependencies, but they have
difficulty capturing long-term dependencies and are prone to gradient
vanishing or exploding problems. Transformer uses self-attention

mechanisms and position encoding, which can calculate the
dependencies between any positions in the sequence, thus solving the
problem of long-term dependencies. However, the over-
parameterization of the transformer makes it time-consuming and
easy to overfit when dealing with small data sets. To verify the
advantages of TCN, we replaced TCN with Transformer and LSTM,
GRU, and their bidirectional forms in the model framework of STM-
ac4C, built multiple different predictors, and evaluated them on the
training set using a ten-fold cross-validation method, and compared

FIGURE 6
Performance comparison of One-hot encoding with NCP encoding and Embedding encoding on the training dataset.

FIGURE 7
Performance comparison using TCN, LSTM, GRU, and Transformer on the training dataset.

Frontiers in Genetics frontiersin.org09

Yi et al. 10.3389/fgene.2024.1408688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


their performance on various evaluation indicators. As shown in
Figure 7, TCN outperforms other modules on most evaluation
indicators, indicating that TCN can better capture the long-term

dependencies in the sequence, thus improving prediction accuracy.
Therefore, we choose TCN as the core module of the STM-ac4C
model to improve the model’s prediction performance.

FIGURE 8
Ablation results of STM-ac4C on the training dataset.

TABLE 3 Ablation experiments results for STM-ac4C.

SKC - √ - √ - √ √

TCN √ - - √ √ - √

MHSA - - √ - √ √ √

Sn (%) 86.71 ± 3.15 76.79 ± 4.47 82.00 ± 3.88 86.68 ± 4.89 86.54 ± 2.40 86.94 ± 2.52 86.49 ± 2.36

Sp (%) 76.65 ± 5.00 76.48 ± 4.71 73.35 ± 4.08 76.93 ± 4.57 77.79 ± 2.41 75.43 ± 3.34 78.65 ± 3.76

Acc (%) 81.69 ± 1.21 76.63 ± 1.07 77.68 ± 1.20 81.80 ± 1.21 82.16 ± 0.84 81.19 ± 1.07 82.57 ± 1.54

MCC (%) 63.87 ± 2.05 53.46 ± 2.29 55.71 ± 2.42 64.16 ± 2.51 64.63 ± 1.69 62.88 ± 2.05 65.43 ± 2.89

AUC (%) 88.01 ± 1.11 83.83 ± 1.23 84.57 ± 0.76 88.15 ± 1.21 88.40 ± 0.94 88.37 ± 0.89 88.52 ± 1.02

The bold font is used to distinctly indicate the highest values achieved for each evaluation metric.

TABLE 4 The performance over the 10-fold cross-validation.

Method Sn (%) Sp (%) Acc (%) MCC (%) AUC (%)

PACES-PSDSP 74.57 ± 2.75 72.53 ± 3.85 73.55 ± 1.95 47.18 ± 3.87 80.96 ± 1.61

PACES-KNF 80.51 ± 2.68 74.71 ± 2.89 77.61 ± 1.2 55.38 ± 2.44 85.32 ± 1.2

PACES 78.38 ± 1.86 75.75 ± 2.95 77.06 ± 1.13 54.2 ± 2.19 84.84 ± 1.28

XG-ac4C 93.38 ± 1.23 54.76 ± 2.03 74.07 ± 0.87 52.22 ± 1.62 85.24 ± 1.22

iRNA-ac4C 77.02 83.01 80.03 60.1 87.5

Auto-ac4C 85.08 ± 4.11 77.01 ± 3.61 81.05 ± 1.58 62.47 ± 3.33 87.97 ± 1.48

LSA-ac4C 85.54 ± 3.17 78.51 ± 3.13 82.03 ± 1.49 64.31 ± 2.94 87.97 ± 1.18

DLC-ac4C 83.19 77.26 80.07 60.64 87.74

STM-ac4C 86.49 ± 3.76 78.65 ± 2.36 82.57 ± 1.54 65.43 ± 2.89 88.52 ± 1.02

The bold font is used to distinctly indicate the highest values achieved for each evaluation metric.
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3.4 Ablation experiments for STM-ac4C

We designed ablation experiments to investigate the contributions of
SKC, TCN, andMHSAmodules to STM-ac4C.We removed or disabled
one or more modules and then performed ten-fold cross-validation on
the training set to evaluate the performance of different configurations.
Figure 8 and Table 3 show the results of the ablation study, where “√”

indicates that themodule was used, and “-” indicates that themodule was
removed or disabled. The table shows that the TCNmodule has themost
significant impact on the model performance, while the SKC andMHSA
modules have relatively weaker effects. Using only the TCN module can
achieve good performance, with ACC, MCC, and AUC of 81.69%,
63.87%, and 88.01%, respectively. At the same time, each module has
some contribution, and removing any module will decrease model
performance. When all three modules are used, the model achieves

the highest Acc, MCC, and AUC values of 82.57%, 65.57%, and 88.52%.
Based on these results, we chose the complete combination of the three
modules as the optimal configuration for the STM-ac4C model.

3.5 Performance comparison with
existing methods

Predicting ac4C sites in human mRNA is a vital bioinformatics
problem, and several methods have been proposed and published, such
as PACES(Zhao et al., 2019), XG-ac4C (Alam et al., 2020), iRNA-ac4C
(Su et al., 2023), DLC-ac4C (Jia et al., 2023a), and LSA-ac4C (Lai and
Gao, 2023). However, the performance of these methods is hard to
compare directly because they use different datasets and evaluation
criteria. In order to evaluate our proposed STM-ac4C method fairly and
rigorously, we chose three methods that use the same dataset, iRNA-
ac4C, DLC-ac4C, and LSA-ac4C, as comparison objects. We also
referred to the results of two methods reported in the LSA-ac4C
paper: PACES and XGac4C were retrained using the same dataset,
and Auto-ac4C was obtained using the AutoML framework AutoGluon
(Erickson et al., 2020; Romero et al., 2022). We compared the
performance of these methods on ten-fold cross-validation and
independent test sets, and the results are shown in Tables 4 and
Table 5. Figure 9 shows the performance comparison on the
independent test set. The results indicate that XG-ac4C has very high
sensitivity (Sn) in both ten-fold cross-validation and independent test
sets, reaching 93.38% and 92.57%, respectively, demonstrating excellent
performance in detecting positive samples. However, its specificity (Sp) is
relatively low, only 54.76% and 59.78%, which may lead to more false
positives when identifying ac4C sequences. In contrast, STM-ac4C
surpassed other methods in most evaluation metrics, especially in
terms of accuracy (ACC), Matthews correlation coefficient (MCC),
and area under the curve (AUC). In ten-fold cross-validation and
independent test sets, STM-ac4C’s ACC, MCC, and AUC reached

TABLE 5 The performance over the independent test.

Method Sn
(%)

Sp
(%)

Acc
(%)

MCC
(%)

AUC
(%)

PACES-
PSDSP

74.82 75.91 75.36 50.73 82.87

PACES-KNF 82.6 76.63 79.62 59.35 86.92

PACES 79.71 77.9 78.8 57.62 86.48

XG-ac4C 92.57 59.78 76.18 55.42 87.13

iRNA-ac4C 76.7 82.91 79.81 59.7 88

Auto-ac4C 82.61 78.8 80.71 61.46 88.94

LSA-ac4C 87.13 78.26 82.7 65.66 89.53

DLC-ac4C 86.23 79.71 82.97 66.08 90.42

STM-ac4C 85.87 83.7 84.78 69.58 90.79

The bold font is used to distinctly indicate the highest values achieved for each evaluationmetric.

FIGURE 9
Performance comparison with other predictors on the independent test.

Frontiers in Genetics frontiersin.org11

Yi et al. 10.3389/fgene.2024.1408688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


82.57%, 65.43%, 88.52%, and 84.78%, 69.58%, 90.79%, respectively, all of
which are the highest among all models. Particularly in the independent
test set, STM-ac4C’s MCC is 3.51% higher than the highest LSA-ac4C.
These results suggest that STM-ac4C can effectively balance classification
performance and prediction accuracy, effectively identifying ac4C sites
in human mRNA.

3.6 Sequence region impact analysis

We designed and conducted two experiments to better
understand the distribution of critical regions within ac4C
sequences and their impact on model prediction performance.

These experiments aimed to reveal how different sequence
regions specifically affect the model’s predictive capabilities and
to identify areas critical for prediction.

In the initial experiment, we evaluated the impact of sequence length
on model prediction performance by progressively shortening the
sequence length. Specifically, we do this by removing 10 nucleotides
from both ends of the sequence each time. To assess the corresponding
model’s performance, we performed ten-fold cross-validation on
training sets with lengths of 21, 41, 61, 81, 101, 121, 141, 161, 181,
and 201 nucleotides (nt). The model’s performance (measured by AUC
value) trend with varying sequence lengths is displayed in Figure 10. The
results showed that themodel’s performance peaked at a sequence length
of 201 nucleotides, indicating that this length contained the complete

FIGURE 10
Performance comparison of using different sequence lengths on the training dataset.

FIGURE 11
Performance comparison of using different locations of window center points on the training dataset.
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information necessary for accurate prediction. As the sequence length
decreased, the model’s performance gradually declined, with an
accelerating rate of decline. This may be due to the loss of crucial

sequence information, preventing the model from capturing enough
features for accurate prediction. Additionally, the accelerated decline in
performance may indicate that certain regions within the sequence
contribute more significantly to model prediction, possibly containing
key biological signals such as specific motifs or structural features crucial
for identifying ac4C sites.

In the subsequent experiment, we set a fixed window size of
41 nucleotides (nt). We slid it across the sequence in 10 nt steps to
assess the specific impact of different sequence regions on model
prediction performance. After each slide, we used only the sequence
within the window for ten-fold cross-validation and monitored changes
in model performance. Figure 11 presents the experimental results,

FIGURE 12
kpLogo: Visualization of k-mer Logo, displaying the most significant k-mers at each position on a 201 nt length sequence. The total height is scaled
according to its p-value (log10 transformed) or test statistics, aiding in identifying enriched.

TABLE 6 Statistical overview of the balanced and unbalanced dataset.

Data types Balance dataset Unbalance dataset

Training Testing Training Testing

Positive 1,148 467 1,148 467

Negative 1,148 467 5,439 467
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where the x-axis represents the window’s central position in the
sequence, and the y-axis represents the AUC value. The results
showed that the model’s performance fluctuated with the movement
of the window’s center point, revealing regions within the sequence
crucial for predicting ac4C sites. Overall, the model’s performance
showed a decreasing trend, suggesting that the sequence region to
the left of the ac4C site, i.e., the 5′direction, plays a crucial role in
model prediction. The performance increase observed at position 51 of
the sequence suggests that this area may contain specific sequence
features essential for identifying ac4C sites. These performance
increases may reflect key biological signals that the model can
recognize, such as specific nucleotide patterns or structural features.

Furthermore, the trough phenomenon at the center point may be
due to the construction method of the dataset, where both ac4C and
non-ac4C sequences are centered around C, resulting in lower
information content at that position. To further validate our
observations, we analyzed the sequence using kpLogo, and the k-mer
Logo (Figure 12) displayed the most significant k-mers at each position,
scaled in height according to the p-value (log base 10 transformation),
aiding in the identification of enrichedmotifs in the sequence. The height
variation of the k-mers in Figure 12 is consistent with previous
experimental results, showing a decreasing trend from left to right in
the sequence and revealing significant enrichment of k-mers such as
GNNG, GGNGG, and GNG between positions 20 and 60.

3.7 Robustness and generalizability of
STM-ac4C

We collected two datasets from MetaAc4C, also originally
derived from ac4C site data of human mRNAs obtained
experimentally by Daniel Arango et al. The difference is that

these datasets have been processed with CD-HIT, applying a
sequence homology threshold of 0.4 to remove redundant
sequences. Each sequence is 415 nucleotides (nt) long, with the
ac4Cmodification site located at the center of the sequence. The first
dataset is balanced, and the second is unbalanced, sharing the same
independent test set. In the training set, the number of negative
samples in the unbalanced dataset is five times that of the positive
samples. The specific statistics of the two datasets are shown in
Table 6. We trained the STM-ac4C on these two datasets and
evaluated its performance metrics on the independent test set,
with related results detailed in Tables 7 and 8. Other results in
the tables are fromMetaAc4C. Using a lower CD-HIT threshold can
avoid overestimating the prediction model. Even on the balanced
dataset processed with a 0.4 homology threshold by CD-HIT, the
STM-ac4C model still demonstrated excellent performance,
achieving the highest accuracy (Acc), Matthews correlation
coefficient (MCC), and area under the curve (AUC) of 82.01,
64.02, and 88.04. On the unbalanced dataset, STM-ac4C achieved
the highest MCC (66.64), indicating that STM-ac4C has advantages
in dealing with unbalanced data. The above analysis indicates that
STM-ac4C is robust and generalizable. However, compared with
MetaAc4C, the AUC of STM-ac4C is 0.09% lower, and the
sensitivity (Sn) is 2.14% lower, indicating there is still room for
improvement of STM-ac4C in recognizing positive samples.

4 Conclusion

This study introduces a novel deep learning model, STM-ac4C,
designed to precisely identify N4-acetylcytidine (ac4C) modification
sites on human mRNA. The model integrates selective kernel
convolution (SKC), temporal convolutional networks (TCN), and

TABLE 7 Performance evaluation over the balanced dataset.

Method Sn (%) Sp (%) Acc (%) MCC (%) AUC (%)

PACES 8.12 98.29 53.21 14.84 53.22

XG-ac4C 58.23 94.43 76.33 56.5 76.33

DeepAc4C 82.8 75.58 79.19 58.57 86.49

MetaAc4C-noGAN 81.8 80.09 80.94 61.89 86.51

MetaAc4C 79.22 84.36 81.79 63.68 87.49

STM-ac4C 82.44 81.58 82.01 64.02 88.04

The bold font is used to distinctly indicate the highest values achieved for each evaluation metric.

TABLE 8 Performance evaluation over the unbalanced dataset.

Method Sn (%) Sp (%) Acc (%) MCC (%) AUC (%)

PACES 7.28 95.49 79.76 4.87 51.39

XG-ac4C 12.63 95.35 80.6 12.8 53.99

DeepAc4C 79.65 81.37 80.51 61.03 86.4

MetaAc4C-noGAN 81.56 80.94 81.04 62.09 86.86

MetaAc4C 80.94 84.8 82.87 65.79 89.51

STM-ac4C 78.8 87.58 83.19 66.64 89.42

The bold font is used to distinctly indicate the highest values achieved for each evaluation metric.
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multi-head self-attention mechanisms (MHSA), efficiently extracting
and integrating multi-level features of RNA sequences for high-
precision ac4C site prediction. SKC adapts to capture k-mer features
of varying lengths, breaking the constraints of traditional fixed kernel
sizes. TCN reveals long-term dependencies within mRNA sequences,
enhancing contextual information and effectively learning temporal
features. MHSA assigns weights to different features, achieving adaptive
integration among them. For feature encoding, the study employs a
one-hot encoding strategy to preserve the integrity of input sequences
and minimize information loss. After ten-fold cross-validation and
independent testing, STM-ac4C performs better in predicting ac4C
sites, with key metrics such as accuracy, Matthew’s correlation
coefficient, and area under the curve outperforming existing
methods. Moreover, the model’s robustness and generalizability are
validated on additional balanced and imbalanced datasets. Sequence
region influence analysis by the model reveals key sequence features
impacting ac4C site prediction, offering new perspectives and directions
for future research. Nonetheless, STM-ac4C has certain limitations,
such as not considering RNA secondary structures and other factors
that may influence ac4Cmodifications nor being tested across different
species or RNA modification types, limiting its generalizability in
broader biological applications. Future work will further optimize
the model, enhance the accuracy of ac4C site prediction, and extend
its application to other species and RNA modification types while
incorporating more features and data to explore broader application
possibilities.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

MY: Data curation, Methodology, Visualization,
Writing–original draft, Writing–review and editing. FZ Funding

acquisition, Supervision, Writing–review and editing. YD: Data
curation, Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was sponsored in part by the National Science Foundation of China
(Nos. 61761023, 62162032, and 31760315), the Natural Science
Foundation of Jiangxi Province, China (Nos.
20202BABL202004 and 20202BAB202007), the Scientific
Research Plan of the Department of Education of Jiangxi
Province, China (GJJ190695 and GJJ2202814). These funders had
no role in the study design, data collection and analysis, decision to
publish or preparation of manuscript.

Acknowledgments

The authors are grateful for the constructive comments and
suggestions made by the reviewers.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abbas, Z., Tayara, H., and Chong, K. T. (2021). 4mCPred-CNN—prediction of DNA
N4-methylcytosine in the mouse genome using a convolutional neural network. Genes.
12, 296. doi:10.3390/genes12020296

Alam, W., Tayara, H., and Chong, K. T. (2020). XG-ac4C: identification of N4-
acetylcytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion
interaction pseudopotentials. Sci. Rep. 10, 20942. doi:10.1038/s41598-020-77824-2

Arango, D., Sturgill, D., Alhusaini, N., Dillman, A. A., Sweet, T. J., Hanson, G., et al.
(2018). Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 175,
1872–1886. doi:10.1016/j.cell.2018.10.030

Arango, D., Sturgill, D., and Oberdoerffer, S. (2019). Immunoprecipitation and
sequencing of acetylated RNA. Bio Protoc. 9, e3278. doi:10.21769/BioProtoc.3278

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. Available at: http://arxiv.
org/abs/1803.01271 (Accessed October 23, 2023).

Chen, W., Tang, H., Ye, J., Lin, H., and Chou, K.-C. (2016). iRNA-PseU: identifying
RNA pseudouridine sites.Mol. Ther. - Nucleic Acids 5, e332. doi:10.1038/mtna.2016.37

Chen, W., Yang, H., Feng, P., Ding, H., and Lin, H. (2017). iDNA4mC: identifying
DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics
33, 3518–3523. doi:10.1093/bioinformatics/btx479

Cheng, X., Wang, J., Li, Q., and Liu, T. (2021). BiLSTM-5mC: a bidirectional long
short-term memory-based approach for predicting 5-methylcytosine sites in genome-
wide DNA promoters. Molecules 26, 7414. doi:10.3390/molecules26247414

Cui, L., Ma, R., Cai, J., Guo, C., Chen, Z., Yao, L., et al. (2022). RNA modifications:
importance in immune cell biology and related diseases. Signal Transduct. Target Ther.
7, 334. doi:10.1038/s41392-022-01175-9

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., et al. (2020)
AutoGluon-tabular: robust and accurate AutoML for structured data. doi:10.48550/
arXiv.2003.06505

Fazmiya, M. J. A., Sultana, A., Heyat, M. B. B., Parveen, S., Rahman, K., Akhtar, F.,
et al. (2024). Efficacy of a vaginal suppository formulation prepared with Acacia arabica
(Lam.) Willd. gum and Cinnamomum camphora (L.) J. Presl. in heavy menstrual
bleeding analyzed using a machine learning technique. Front. Pharmacol. 15, 1331622.
doi:10.3389/fphar.2024.1331622

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering
the next-generation sequencing data. Bioinformatics 28, 3150–3152. doi:10.1093/
bioinformatics/bts565

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent
advances in convolutional neural networks. Pattern Recognit. 77, 354–377. doi:10.1016/
j.patcog.2017.10.013

Frontiers in Genetics frontiersin.org15

Yi et al. 10.3389/fgene.2024.1408688

https://doi.org/10.3390/genes12020296
https://doi.org/10.1038/s41598-020-77824-2
https://doi.org/10.1016/j.cell.2018.10.030
https://doi.org/10.21769/BioProtoc.3278
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://doi.org/10.1038/mtna.2016.37
https://doi.org/10.1093/bioinformatics/btx479
https://doi.org/10.3390/molecules26247414
https://doi.org/10.1038/s41392-022-01175-9
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.3389/fphar.2024.1331622
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


Hasan, Md. M., Manavalan, B., Shoombuatong, W., Khatun, M. S., and Kurata, H.
(2020). i4mC-Mouse: improved identification of DNA N4-methylcytosine sites in the
mouse genome using multiple encoding schemes. Comput. Struct. Biotechnol. J. 18,
906–912. doi:10.1016/j.csbj.2020.04.001

He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for image
recognition, 770–778. doi:10.1109/CVPR.2016.90

Heyat, M. B. B., Akhtar, F., Munir, F., Sultana, A., Muaad, A. Y., Gul, I., et al. (2024).
Unravelling the complexities of depression with medical intelligence: exploring the
interplay of genetics, hormones, and brain function. Complex Intell. Syst. doi:10.1007/
s40747-024-01346-x

Hu, Z., Lu, Y., Cao, J., Lin, L., Chen, X., Zhou, Z., et al. (2024). N -acetyltransferase
NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin
signaling. Sci. Adv. 10, eadh9871. doi:10.1126/sciadv.adh9871

Iqbal, M. S., Abbasi, R., Bin Heyat, M. B., Akhtar, F., Abdelgeliel, A. S., Albogami, S.,
et al. (2022). Recognition of mRNA N4 acetylcytidine (ac4C) by using non-deep vs.
Deep learning. Appl. Sci. 12, 1344. doi:10.3390/app12031344

Jia, J., Cao, X., and Wei, Z. (2023a). DLC-ac4C: a prediction model for N4-
acetylcytidine sites in human mRNA based on DenseNet and bidirectional LSTM
methods. Curr. Genomics 24, 171–186. doi:10.2174/0113892029270191231013111911

Jia, J., Wei, Z., and Cao, X. (2023b). EMDL-ac4C: identifying N4-acetylcytidine based
on ensemble two-branch residual connection DenseNet and attention. Front. Genet. 14,
1232038. doi:10.3389/fgene.2023.1232038

Jia, J., Wei, Z., and Sun, M. (2023c). EMDL_m6Am: identifying N6,2′-O-
dimethyladenosine sites based on stacking ensemble deep learning. BMC
Bioinforma. 24, 397. doi:10.1186/s12859-023-05543-2

Jiang, X., Cheng, Y., Zhu, Y., Xu, C., Li, Q., Xing, X., et al. (2023). Maternal
NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice.
Nat. Commun. 14, 3729. doi:10.1038/s41467-023-39256-0

Jin, G., Xu, M., Zou, M., and Duan, S. (2020). The processing, gene regulation,
biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic
review. Mol. Ther. Nucleic Acids 20, 13–24. doi:10.1016/j.omtn.2020.01.037

Jin, J., Yu, Y., Wang, R., Zeng, X., Pang, C., Jiang, Y., et al. (2022a). iDNA-ABF: multi-
scale deep biological language learning model for the interpretable prediction of DNA
methylations. Genome Biol. 23, 219. doi:10.1186/s13059-022-02780-1

Jin, J., Yu, Y., and Wei, L. (2022b). Mouse4mC-BGRU: deep learning for predicting
DNA N4-methylcytosine sites in mouse genome.Methods 204, 258–262. doi:10.1016/j.
ymeth.2022.01.009

Karthiya, R., Wasil, S. M., and Khandelia, P. (2020). Emerging role of N4-
acetylcytidine modification of RNA in gene regulation and cellular functions. Mol.
Biol. Rep. 47, 9189–9199. doi:10.1007/s11033-020-05963-w

Lai, F.-L., and Gao, F. (2023). LSA-ac4C: a hybrid neural network incorporating
double-layer LSTM and self-attention mechanism for the prediction of N4-
acetylcytidine sites in human mRNA. Int. J. Biol. Macromol. 253, 126837. doi:10.
1016/j.ijbiomac.2023.126837

Li, X., Wang, W., Hu, X., and Yang, J. (2019). “Selective kernel networks,” in
2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR),
510–519. doi:10.1109/CVPR.2019.00060

Li, Z., Jin, B., and Fang, J. (2024). MetaAc4C: a multi-module deep learning
framework for accurate prediction of N4-acetylcytidine sites based on pre-trained
bidirectional encoder representation and generative adversarial networks. Genomics
116, 110749. doi:10.1016/j.ygeno.2023.110749

Liu, S., Zhang, Y., Qiu, L., Zhang, S., Meng, Y., Huang, C., et al. (2022). Uncovering
N4-acetylcytidine-related mRNA modification pattern and landscape of stemness and
immunity in hepatocellular carcinoma. Front. Cell. Dev. Biol. 10, 861000. doi:10.3389/
fcell.2022.861000

Luo, J., Cao, J., Chen, C., and Xie, H. (2023). Emerging role of RNA acetylation
modification ac4C in diseases: current advances and future challenges. Biochem.
Pharmacol. 213, 115628. doi:10.1016/j.bcp.2023.115628

Nguyen-Vo, T.-H., Nguyen, Q. H., Do, T. T. T., Nguyen, T.-N., Rahardja, S., and
Nguyen, B. P. (2019). iPseU-NCP: identifying RNA pseudouridine sites using random
forest and NCP-encoded features. BMC Genomics 20, 971. doi:10.1186/s12864-019-
6357-y

Nguyen-Vo, T.-H., Trinh, Q. H., Nguyen, L., Nguyen-Hoang, P.-U., Rahardja, S., and
Nguyen, B. P. (2023). i4mC-GRU: identifying DNA N4-Methylcytosine sites in mouse
genomes using bidirectional gated recurrent unit and sequence-embedded features.
Comput. Struct. Biotechnol. J. 21, 3045–3053. doi:10.1016/j.csbj.2023.05.014

Pascanu, R., Mikolov, T., and Bengio, Y. (2013) On the difficulty of training recurrent
neural networks. doi:10.48550/arXiv.1211.5063

Raza, A., Alam, W., Khan, S., Tahir, M., and Chong, K. T. (2023). iPro-TCN:
prediction of DNA promoters recognition and their strength using temporal
convolutional network. IEEE Access 11, 66113–66121. doi:10.1109/ACCESS.2023.
3285197

Romero, R. A., A., Deypalan, M. N., Y., Mehrotra, S., Jungao, J. T., Sheils, N. E.,
Manduchi, E., et al. (2022). Benchmarking AutoML frameworks for disease prediction
using medical claims. BioData Min. 15, 15. doi:10.1186/s13040-022-00300-2

Schaefer, M., Kapoor, U., and Jantsch, M. F. (2017). Understanding RNA
modifications: the promises and technological bottlenecks of the ‘epitranscriptome.
Open Biol. 7, 170077. doi:10.1098/rsob.170077

Shi, H., Chai, P., Jia, R., and Fan, X. (2020). Novel insight into the regulatory roles of
diverse RNA modifications: Re-defining the bridge between transcription and
translation. Mol. Cancer 19, 78. doi:10.1186/s12943-020-01194-6

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Inf. Process. Manag. 45, 427–437. doi:10.1016/j.ipm.2009.03.002

Su, W., Xie, X.-Q., Liu, X.-W., Gao, D., Ma, C.-Y., Zulfiqar, H., et al. (2023). iRNA-
ac4C: a novel computational method for effectively detecting N4-acetylcytidine sites in
human mRNA. Int. J. Biol. Macromol. 227, 1174–1181. doi:10.1016/j.ijbiomac.2022.
11.299

Sumbul, Sultana, A., Heyat, M. B. B., Rahman, K., Akhtar, F., Parveen, S., et al. (2024).
Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil
in uncomplicated pelvic inflammatory disease using machine learning. Front. Chem. 12,
1361980. doi:10.3389/fchem.2024.1361980

Sultana, A., Mitu, S. J., Pathan, M. N., Uddin, M. N., Uddin, Md. A., and Aryal, S.
(2023). 4mC-CGRU: identification of N4-Methylcytosine (4mC) sites using
convolution gated recurrent unit in Rosaceae genome. Comput. Biol. Chem. 107,
107974. doi:10.1016/j.compbiolchem.2023.107974

Tsukiyama, S., Hasan, M. M., Deng, H.-W., and Kurata, H. (2022). BERT6mA:
prediction of DNA N6-methyladenine site using deep learning-based approaches.
Briefings Bioinforma. 23, bbac053. doi:10.1093/bib/bbac053

Ukwuoma, C. C., Cai, D., Heyat, M. B. B., Bamisile, O., Adun, H., Al-Huda, Z., et al.
(2023). Deep learning framework for rapid and accurate respiratory COVID-19
prediction using chest X-ray images. J. King Saud Univ. - Comput. Inf. Sci. 35,
101596. doi:10.1016/j.jksuci.2023.101596

Ukwuoma, C. C., Qin, Z., Agbesi, V. K., Cobbinah, B. M., Yussif, S. B., Abubakar, H.
S., et al. (2022a). Dual_Pachi: attention-based dual path framework with intermediate
second order-pooling for Covid-19 detection from chest X-ray images. Comput. Biol.
Med. 151, 106324. doi:10.1016/j.compbiomed.2022.106324

Ukwuoma, C. C., Qin, Z., Agbesi, V. K., Ejiyi, C. J., Bamisile, O., Chikwendu, I. A.,
et al. (2022b). LCSB-inception: reliable and effective light-chroma separated branches
for Covid-19 detection from chest X-ray images. Comput. Biol. Med. 150, 106195.
doi:10.1016/j.compbiomed.2022.106195

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Available at: https://proceedings.neurips.cc/paper_
files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (Accessed
December 6, 2023).

Wang, C., Ju, Y., Zou, Q., and Lin, C. (2021). DeepAc4C: a convolutional neural
network model with hybrid features composed of physicochemical patterns and
distributed representation information for identification of N4-acetylcytidine in
mRNA. Bioinformatics 38, 52–57. doi:10.1093/bioinformatics/btab611

Zeng, W., Gautam, A., and Huson, D. H. (2023). MuLan-Methyl—multiple
transformer-based language models for accurate DNA methylation prediction.
GigaScience 12, giad054. doi:10.1093/gigascience/giad054

Zhang, G., Luo, W., Lyu, J., Yu, Z.-G., and Huang, G. (2022a). CNNLSTMac4CPred: a
hybrid model for N4-acetylcytidine prediction. Interdiscip. Sci. Comput. Life Sci. 14,
439–451. doi:10.1007/s12539-021-00500-0

Zhang, X., Zeng, J., Wang, J., Yang, Z., Gao, S., Liu, H., et al. (2022b). Revealing the
potential markers of N(4)-acetylcytidine through acRIP-seq in triple-negative breast
cancer. Genes. 13, 2400. doi:10.3390/genes13122400

Zhang, Y., Lu, L., and Li, X. (2022c). Detection technologies for RNA modifications.
Exp. Mol. Med. 54, 1601–1616. doi:10.1038/s12276-022-00821-0

Zhao, W., Zhou, Y., Cui, Q., and Zhou, Y. (2019). PACES: prediction of N4-
acetylcytidine (ac4C) modification sites in mRNA. Sci. Rep. 9, 11112. doi:10.1038/
s41598-019-47594-7

Frontiers in Genetics frontiersin.org16

Yi et al. 10.3389/fgene.2024.1408688

https://doi.org/10.1016/j.csbj.2020.04.001
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s40747-024-01346-x
https://doi.org/10.1007/s40747-024-01346-x
https://doi.org/10.1126/sciadv.adh9871
https://doi.org/10.3390/app12031344
https://doi.org/10.2174/0113892029270191231013111911
https://doi.org/10.3389/fgene.2023.1232038
https://doi.org/10.1186/s12859-023-05543-2
https://doi.org/10.1038/s41467-023-39256-0
https://doi.org/10.1016/j.omtn.2020.01.037
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.1016/j.ymeth.2022.01.009
https://doi.org/10.1016/j.ymeth.2022.01.009
https://doi.org/10.1007/s11033-020-05963-w
https://doi.org/10.1016/j.ijbiomac.2023.126837
https://doi.org/10.1016/j.ijbiomac.2023.126837
https://doi.org/10.1109/CVPR.2019.00060
https://doi.org/10.1016/j.ygeno.2023.110749
https://doi.org/10.3389/fcell.2022.861000
https://doi.org/10.3389/fcell.2022.861000
https://doi.org/10.1016/j.bcp.2023.115628
https://doi.org/10.1186/s12864-019-6357-y
https://doi.org/10.1186/s12864-019-6357-y
https://doi.org/10.1016/j.csbj.2023.05.014
https://doi.org/10.48550/arXiv.1211.5063
https://doi.org/10.1109/ACCESS.2023.3285197
https://doi.org/10.1109/ACCESS.2023.3285197
https://doi.org/10.1186/s13040-022-00300-2
https://doi.org/10.1098/rsob.170077
https://doi.org/10.1186/s12943-020-01194-6
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ijbiomac.2022.11.299
https://doi.org/10.1016/j.ijbiomac.2022.11.299
https://doi.org/10.3389/fchem.2024.1361980
https://doi.org/10.1016/j.compbiolchem.2023.107974
https://doi.org/10.1093/bib/bbac053
https://doi.org/10.1016/j.jksuci.2023.101596
https://doi.org/10.1016/j.compbiomed.2022.106324
https://doi.org/10.1016/j.compbiomed.2022.106195
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1093/bioinformatics/btab611
https://doi.org/10.1093/gigascience/giad054
https://doi.org/10.1007/s12539-021-00500-0
https://doi.org/10.3390/genes13122400
https://doi.org/10.1038/s12276-022-00821-0
https://doi.org/10.1038/s41598-019-47594-7
https://doi.org/10.1038/s41598-019-47594-7
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1408688


Glossary

ac4C N4-acetylcytidine

rRNA ribosomal RNA

tRNA transfer RNA

snRNA small nuclear RNA

RF random forest

PSDSP position-specific dinucleotide sequence spectrum

KNF k-nucleotide frequency

XGboost extreme gradient boosting

EIIP electron-ion interaction pseudopotentials

PseEIIP electron-ion interaction pseudopotentials of trinucleotide

CNN convolutional neural network

GBDT gradient boosting decision tree

NCP nucleotide chemical property

ANF accumulated nucleotide frequency

CNN convolutional neural network

LSTM long short-term memory

AutoML automated machine learning

DenseNet densely connected convolutional networks

Bi-LSTM bidirectional long short-term memory

BERT bidirectional encoder representation from transformers

WGAN-GP Wasserstein Generative Adversarial Nets - Gradient Penalty

SOTA state-of-the-art

SKC selective kernel convolution

TCN temporal convolutional network

MHSA multi-head self-attention mechanisms

MLP multi-layer perceptron

GAP global average pooling

FC fully connected

RNN recurrent neural networks

DCNN deep convolutional neural networks

Sn Sensitivity

Sp Specificity

Acc Accuracy

MCC Matthews correlation coefficient

AUROC/AUC area under the receiver operating characteristic curve

ROC receiver operating characteristic
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