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Background: Non-small cell lung cancer (NSCLC) has high incidence and
mortality rates. The discovery of an effective biomarker for predicting
prognosis and treatment response in patients with NSCLC is of great
significance. Bacterial lipopolysaccharide-related genes (LRGs) play a critical
role in tumor development and the formation of an immunosuppressive
microenvironment; however, their relevance in NSCLC prognosis and immune
features is yet to be discovered.

Methods: Differentially expressed LRGs associated with NSCLC prognosis were
identified in the TCGA dataset. Prognostic LRG scoring and nomogram models
were established using single-variable Cox regression, Least Absolute Shrinkage,
and Selection Operator (LASSO) regression. The prognostic value of the scoring
and nomogram models was evaluated using Kaplan-Meier (KM) analysis and
further validated using an external dataset. Patients were stratified into high- and
low-risk groups based on the nomogram score, and drug sensitivity analysis was
performed. Additionally, clinical characteristics, mutation features, immune
infiltration characteristics, and responses to immunotherapy were compared
between the two groups.

Results: We identified 15 differentially expressed LRGs associated with NSCLC
prognosis. A prognostic prediction model consisting of 6 genes (VIPR1, NEK2,
HMGA1, FERMT1, SLC7A, and TNS4) was established. Higher LRG scores were
associated with worse clinical prognosis and were independent prognostic
factors for NSCLC. Subsequently, a clinical risk prediction nomogram model
for NSCLC was constructed, incorporating the status of patients with tumor
burden, tumor T-stage, and LRG scores. The nomogram model demonstrated
good predictive performance upon validation. Additionally, NSCLC patients
classified as high risk based on the model’s predictions exhibited not only a
poorer prognosis but also a more pronounced inflammatory immune
microenvironment phenotype than low-risk patients. Furthermore, high-risk
patients showed disparate predicted responses to various drugs and
immunotherapies compared with low-risk patients.
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Conclusion: The LRGs scoring model can serve as a biomarker that contributes to
the establishment of a reliable prognostic risk-prediction model, potentially
facilitating the development of personalized treatment strategies for patients
with NSCLC.
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Background

Lung cancer, or bronchogenic carcinoma, is the leading cause of
oncological mortality globally and originates from the bronchi or
pulmonary parenchyma. Based on the pathological morphology and
malignancy, it can be classified into two primary subtypes: small cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC
represents the majority of lung cancers, constituting approximately
80%–85% of all cases (Michelotti et al., 2022). Systemic therapies,
including chemotherapy, targeted therapy, immunotherapy, and anti-
angiogenic drugs, are the principal treatment modalities for most
patients with advanced NSCLC (Roller et al., 2022). Despite these
measures, the prognosis of patients with advanced NSCLC remains
unfavorable (Otano et al., 2023).

The tumor microenvironment (TME), an entity increasingly
acknowledged as a pivotal determinant of oncogenesis, progression,
and therapeutic response in cancer, is composed of intratumoral
microbes and their metabolites. Current research has elucidated the
presence of unique microbial milieu features across a spectrum of
diverse tumor types, revealing that each tumor’s microbial signature
is distinct (Ma et al., 2021). Given that the microbial composition
within tumors serves as a potential microbiome-based oncology
diagnostic tool, its efficacy as a cancer prognostic biomarker is
promising (Poore et al., 2020; Xue et al., 2023). Additionally,
discernible differences in microbiome profiles between tumors
and normal tissues highlight their potential as novel therapeutic
targets for the treatment of various malignancies, particularly lung
cancer (Lee et al., 2016; Greathouse et al., 2018). The lungs have an
immune defense system chiefly orchestrated by macrophages,
whereas the pulmonary epithelium exhibits an inherent capacity
to eliminate microbial intruders. Therefore, although the lung
mucosal surface is in direct contact with the external
environment and exposed to exogenous microbes, the microbial
burden detected in healthy lungs remains minimal. Owing to the
extensive interconnectivity and bidirectional interactions between
the gastrointestinal tract and the respiratory system, the gut-lung
axis (GLA) is implicated in the pathophysiology of an array of gut
and lung disorders. The gut microbiota can modulate the
pathological processes of distal neoplasms, particularly lung
cancer, through various pathways. While esophageal contents
may enter the pulmonary system via aspiration, the intricate
interconnections between the intestines and lungs through the
lymphatic and circulatory systems suggest that stimuli affecting
the local immune system can propagate systemic effects (Gill et al.,
2010). These investigations allowed us to postulate that the unique
microbiome composition and immune environment within lung
cancer tissues, including NSCLC, may play a role in tumor
development and progression through various mechanisms.

Recent research has revealed a notable increase in the prevalence
of the Phylum Proteobacteria, which includes Escherichia coli, in
lung cancer tissues compared to healthy controls (Greathouse et al.,
2018). Additionally, investigations have demonstrated an
augmented representation of the Veillonellaceae family in lung
tumor samples (Peters et al., 2022). The Veillonellaceae family
and Proteobacteria phyla were classified under the gram-negative
bacterial category. Lipopolysaccharide (LPS), a pivotal constituent of
the outer membrane of gram-negative bacteria, is the primary
virulence determinant. LPS has been implicated in the
pathogenesis of many diseases through the induction of immune
responses, alteration of cellular metabolism, and regulation of
cytokine expression profiles (Chiariotti et al., 2016). Furthermore,
they can interfere with the onset and progression of diseases by
modulating host gene expression patterns (Yi et al., 2016). Genes
whose expression levels are modulated by LPS stimulation are
designated as lipopolysaccharide (LPS)-related genes (LRGs).
Studies have demonstrated that LPS promotes the secretion of
pro-inflammatory cytokines by oncogenic cells, eliciting localized
inflammatory responses and promoting the advancement of
tumorigenic processes (Xu et al., 2019). LPS can facilitate tumor
cell adhesion by upregulating the oncogenic gene SPP1, thus
promoting metastasis of malignant tumors, especially NSCLC
(Tang et al., 2021). Consequently, it is reasonable to speculate
that LPS and its downstream genetic effects influence the
prognosis and treatment outcomes for NSCLC patients
with NSCLC.

In this study, LRGs were used to explore putative molecular
underpinnings of the NSCLC microbiome. Furthermore, a novel
predictive model for the prognostic risk of NSCLC was constructed
and used to predict LRGs that correlated with prognostic outcomes.

Methods

Data acquisition and filtering

RNA sequencing gene expression data (FPKM) and clinical
information of patients with NSCLC were downloaded from The
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/). After standardization and selection of samples with available
prognostic information, a cohort of 1,109 samples, including
1,001 NSCLC cases and 108 normal controls, was used as the
training set. The clinical data for this training set are provided in
Supplementary Table S1. The GSE37745 cohort was downloaded
from the NCBI Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), which contained 196 samples, each of
which contained associated survival information. Preprocessed,
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normalized, and log2-transformed expression matrices were
obtained for the probes. Additionally, we downloaded platform
annotation files to convert the probe expression matrix into gene
symbols. This dataset was used as the validation set. The detailed
clinical information of the patients is displayed in Supplementary
Table S2. First, we conducted a differential expression analysis
between the NSCLC cohort and the control group using the
limma package (v3.10.3, http://www.bioconductor.org/packages/2.
9/bioc/html/limma.html). The threshold was false discovery rate
(FDR) < 0.05, and an absolute log2 fold change (|log2FC|) > 2. With
“lipopolysaccharide” as the keyword, 6,571 LRGs were retrieved
from the Comparative Toxicogenomics Database (CTD, http://
ctdbase.org/), which are listed in Supplementary Table S3. The
intersection of these LRGs with differentially expressed genes
yielded a refined group of differentially expressed LRGs.

Functional enrichment analysis of
differentially expressed LRGs and
identification of prognostic LRGs

The clusterProfiler package (v3.14.3) was used to conduct
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of
differentially expressed LRGs. Significant enrichment terms
were selected using the threshold of a p < 0.05 and a
count ≥2. By incorporating the expression of differentially
expressed LRGs with survival data from NSCLC samples, we
employed univariate Cox regression analysis using the survival
package (v2.41–1, available at http://bioconductor.org/packages/
survivalr/). Prognosis-associated LRGs were selected with a
threshold of P < 0.01. We integrated prognosis-associated
LRGs into the STRING database (v10.0, http://www.string-db.
org/), with the protein-protein interaction (PPI) confidence score
threshold set at 0.15. The resulting PPI network was visualized
and mapped using Cytoscape software (v3.9.1).

Unsupervised clustering analysis utilizing
prognosis-related LRGs

Based on the expression profiles of prognosis-associated LRGs,
unsupervised clustering of patients with NSCLC was performed using
the Consensus ClusterPlus package (v1.54.0; https://www.bioconductor.
org/packages/release/bioc/html/ConsensusClusterPlus.html). Using the
delineated LRG molecular subtypes and their associated prognostic
data, we generated Kaplan-Meier (KM) curves for each subtype using
the survival package. A log-rank test was used to evaluate the survival
disparities across subtypes. Correlations between LRG molecular
subtypes and clinical phenotypes were evaluated using heat maps
and chi-square tests.

Characterization of immune infiltration
across diverse molecular subtypes of NSCLC

To delve deeper into the variations in the tumor immune
microenvironment across distinct NSCLC subtypes, we utilized

the single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm to compute the enrichment scores for 28 immune
cell types. Subsequently, we conducted Wilcoxon rank-sum tests
to ascertain the distributional variance of these immune cells
among different subtypes. The stromal score, immune score,
ESTIMATE score, and tumor purity of the NSCLC samples
were quantified using the ESTIMATE algorithm, and the
differences among the different subtypes were evaluated using
the Wilcoxon rank-sum test.

Characterization of immune checkpoint and
HLA gene expression across distinct
molecular subtypes and elucidation of
underlying molecular mechanisms

The expression profiles of HLA family genes and immune
checkpoint genes (ICGs) were extracted from NSCLC samples.
The Wilcoxon rank-sum test was used to evaluate differential
expression across various molecular subtypes. Based on the gene
expression profiles of TCGA NSCLC specimens, the ssGSEA
algorithm was employed to filter for KEGG signaling pathways
that were significantly associated with molecular subtype
classification within the Gene Set Enrichment Analysis
(GSEA) database (http://software.broadinstitute.org/gsea/
downloads.jsp). The threshold for selecting pathways was set
at P < 0.05.

Construction and validation of the
prognostic LRGs scoring model

Integrating prognosis-related LRGs with the survival data of
TCGA NSCLC samples, we performed survival regression analysis
using the Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm within the lars package (v1.2, available at https://cran.r-
project.org/web/packages/lars/index.html). A ten-fold cross-
validation approach was used to select predictive genes.
Subsequently, a prognostic risk score model was developed using
the following formula:

Riskscore � ∑ βgene × Expgene

The coefficient βgene signifies the value ascertained for the gene
from LASSO regression, and Expgene quantifies the gene’s relative
expression level in the TCGA training set. To further substantiate
the model’s precision, the risk scores for individual samples in both
TCGA and GEO external validation cohorts were computed.
Samples from these cohorts were stratified into high-risk (risk
score ≥ median risk score) and low-risk (risk score < median
risk score) groups. The association between risk stratification and
actual survival outcomes was evaluated using KM curve analysis.
Distribution differences in various clinical characteristics such as
sex, tumor histology, tumor stage, and smoking history among the
different risk groups were compared using the chi-square test.
Correlation analyses were performed between the prognostic
LRGs in the model and the levels of immune cell infiltration and
ICG expression in the NSCLC samples using the correlation
function (cor).
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Construction and validation of a nomogram
risk-prediction model

Clinical information was extracted from the TCGA NSCLC
samples to assess the prognostic LRGs scoring model. Utilizing both
univariate and multivariate Cox regression analyses available in the
Survminer package (v0.4.9, accessible at https://cran.rstudio.com/
web/packages/survminer/index.html), The prognostic LRGs scoring
model and clinical characteristics of TCGA NSCLC patients were
scrutinized for independently prognostic factors. Using the RMS
package (v6.7–0; available at https://cran.r-project.org/web/
packages/rms/), a nomogram model was developed based on the
independent prognostic factors. The pROC package (v1.18.0,
accessible at https://cran.r-project.org/web/packages/pROC/)
generated Receiver Operating Characteristic (ROC) curves to
assess the predictive proficiency of the nomogram model, and
calibration curves were constructed using the RMS package to
examine the concordance between model predictions and actual
clinical prognostic outcomes.

The correlation between nomoscore and
somatic mutations, tumor mutation burden
(TMB), and immunological factors

Using the nomogram model to calculate the nomoscore for
patients with NSCLC, patients were divided into high- and low-risk
groups based on the median nomoscore. Utilizing the somatic
mutation data from the TCGA database, we employed the
maftools package (v2.14.0, accessible at https://bioconductor.org/
packages/release/bioc/html/maftools.html) to quantify the mutation
frequencies of the top 20 somatic mutation genes. Subsequently, we
calculated the TMB for all NSCLC samples and compared the TMB
distributions among the different nomo-risk stratifications. NSCLC
samples were classified according to their risk scores and TMB
values. Within each nomo-risk stratification, the samples were
divided into high- and low-TMB groups based on the median
TMB value. A KM curve analysis was conducted for the four cohorts.

Assessment of predictive efficacy of
nomoscore for chemotherapy drug
sensitivity and immunotherapy
responsiveness in patients with NSCLC

The sensitivity of NSCLC patients to 138 chemotherapeutic
agents was evaluated using the Genomics of Drug Sensitivity in
Cancer database (https://www.cancerrxgene.org/). The half-
maximal inhibitory concentration (IC50) of each therapeutic
agent was quantified using the pRRophetic package (https://
github.com/paulgeeleher/pRRophetic), and differences across
distinct risk strata were compared using the Wilcoxon rank-sum
test. We performed Tumor Immune Dysfunction and Exclusion
(TIDE) analysis (http://tide.dfci.harvard.edu/) to assess the
responsiveness of patients with NSCLC to immunotherapy.
Differences in immunotherapy responses among distinct risk
groups were analyzed using the Wilcoxon rank-sum test. The
GSE135222 and GSE126044 datasets were retrieved from the

NCBI for Biotechnology Information GEO repository. Patients
diagnosed with NSCLC with documented responses to
immunotherapy and prognostic information were selected. The
risk scores were computed for each sample. The participants
were subsequently stratified into high- and low-risk categories
based on their respective risk scores. The Wilcoxon test was used
to assess the differences in risk scores between the immunotherapy-
responsive and non-responsive groups. Additionally, KM curves
and the log-rank test were used to evaluate the significance of
prognostic disparities between the high-risk and low-risk cohorts.

Analysis of the correlation between
nomoscore and immune markers

The clinical data of patients with NSCLC treated with anti-PD-
1/PD-L1 therapy were downloaded from the NCBI GEO database
(GSE135222 and GSE126044). Patients with information on post-
treatment drug responses and survival data were selected from the
two datasets, and their risk scores were calculated. All samples were
divided into high- and low-risk groups using the median risk score
as the threshold. The Wilcoxon rank-sum test was used to assess
differences in risk scores between the two risk groups. The KM
survival curves and log-rank tests were used to compare the survival
rates between the high- and low-risk cohorts. Concurrently, the
Wilcoxon signed-rank test was used to assess the differential
expression of CD8A and PD-L1 between high- and low-risk
cohorts. Following the CYT score calculation method (Rooney
et al., 2015), we computed the cytolytic activity score (CYT) for
NSCLC patients in TCGA database using the TPM values of the
GZMA and PRF1 genes calculated using the geometric mean. We
used the Wilcoxon rank-sum test to assess the differences between
the high- and low-risk groups. Using the expression profiles of
tertiary lymphoid structure (TLS) genes (Cabrita et al., 2020), we
estimated the TLS score for each sample using the ssGSEA algorithm
and analyzed the differences between various risk groups using the
Wilcoxon test. Additionally, we performed correlation analyses to
explore the relationship between the risk scores and
immune markers.

Results

Identification of differentially expressed
prognostic LRGs

The workflow of this study is illustrated in Figure 1. In total,
448 differentially expressed genes were identified between NSCLC
samples and normal lung tissues from the TCGA dataset. This set
comprised 164 upregulated and 284 downregulated genes, as shown
in Figure 2A and Supplementary Table S4. Meanwhile, 6,571 LRGs
were retrieved from the CTD database (Supplementary Table S3).
Upon intersecting the differentially expressed genes with the LRGs,
we identified 230 LRGs that exhibited differential expression
(Figure 2B and Supplementary Table S5). Functional enrichment
analysis indicated that the functions of the differentially expressed
LRGs predominantly pertained to responses to chemicals and
chemical stimuli, interactions between cytokines and cytokine
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receptors, and inflammatory responses (Figures 2C, D and
Supplementary Table S6). Univariate Cox regression analysis of
the differentially expressed LRGs further identified 15 LRGs with
significant prognostic correlations (P < 0.01) (Figure 2E).
Subsequently, a PPI network comprising 15 nodes and 66 edges
was constructed using prognostic LRGs (Figure 2F).

Molecular clustering based on the
prognostic LRGs

Based on the prognostic LRG expression and clinical outcomes,
unsupervised clustering analysis was performed on theNSCLCdatasets.
The optimal number of clusters (k = 2) was deduced from the
Cumulative Distribution Function (CDF) curves (Figures 3A, B).
The results of clustering are presented in Figure 3C, where patients
were categorized into two distinct clusters: Cluster 1 (n = 666) and
Cluster 2 (n = 335). KM analysis revealed that Cluster 1 was associated
with worse overall survival (OS) outcomes than Cluster 2 (Figure 3D).
The heatmap elucidates the associations between the expression profiles
of these prognostic LRGs and pertinent clinical parameters, including
cluster subtype classification, age, sex, tumor staging, and documented
smoking history (Figure 3E). Chi-square test revealed a significant
correlation between the molecular subtypes of LPS and several clinical
variables, including sex, tumor size (T), nodal involvement (N), overall
stage, cancer status, and smoking history (p < 0.01; Figures 3F–M).

Characterization of immune infiltration
across distinct molecular clusters

We compared the immune cell abundances and immune
stromal scores of clusters 1 and 2 to elucidate the differences
in their immune infiltration. ssGSEA demonstrated significant
differences in 26 immune cell types between the two clusters (p <
0.05, Supplementary Figure S1A). Notably, T cells, B cells, NK

cells, monocytes, macrophages, and mast cells displayed
significant disparities between the two subclusters. ESTIMATE
analysis demonstrated that Cluster 1 exhibited significantly
reduced ESTIMATE scores, ImmuneScores, and StromalScores
compared to Cluster 2 (p < 0.05; Supplementary Figure S1B–D).
The tumor purity of cluster 1 was significantly higher than that of
cluster 2 (p < 0.05; Supplementary Figure S1E). Additionally,
10 ICGs (CD274, CTLA4, ICOS, HAVCR2, LAG3, CD47, BTLA,
SIRPA, TNFRSF4, and VTCN1) exhibited significant differential
expression between the two subclusters (p < 0.05, Supplementary
Figure S1F). Similarly, a notable difference was observed in the
expression levels of the HLA gene family between the two
subclusters (p < 0.05; Supplementary Figure S1G).

Establishment and verification of prognostic
LRGs scoring model

To construct a prognostic model for patients with NSCLC based on
LRGs, univariate Cox regression analysis and subsequent LASSO
regression were used to select the optimal combination of genes,
yielding a set of six genes, namely, VIPR1, NEK2, HMGA1,
FERMT1, SLC7A5, and TNS4 (Figures 4A, B). The regression
coefficient of these LRGs was −0.0836904381433785,
0.0414727838593598, 0.00620029806120873, 0.00831582925035488,
0.0437362956589142, and 0.0546254823173021, respectively.
Therefore, the predictive risk score model was developed as follows:

Riskscore � VIPR1* −0.0836904381433785( )
+NEK2*0.0414727838593598

+HMGA1*0.00620029806120873

+ FERMT1*0.00831582925035488

+ SLC7A5*0.0437362956589142

+ TNS4*0.0546254823173021

FIGURE 1
Flowchart of the study.
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Based on the median risk score, NSCLC patients in both the
TCGA training cohort and the GEO validation cohort were stratified
into high-risk and low-risk groups. The KM survival curves
demonstrated that patients in the high-risk category had a poorer
prognosis than those in the low-risk group in both cohorts (p < 0.05)
(Figures 4C, D). The prognostic heat maps that encapsulated the risk
score, distribution of survival times, and expression profiles of model
genes facilitated the delineation of the association between gene
expression patterns and patient survival status in both cohorts
(Figures 4E, F).

Correlation between risk score and clinical
characteristics of NSCLC patients

The chi-square test revealed a significantly higher proportion of
male patients in the high-risk group than in the low-risk group (p <
0.05; Figure 5A). Patients in the high-risk group exhibited higher
T-stage-, N-, and cancer-stage distribution characteristics (p < 0.05,
Figures 5B–D). Furthermore, the high-risk group had a higher
prevalence of patients with a longer smoking history (p < 0.05;
Figure 5E). The proportion of patients in Cluster 1 was

FIGURE 2
Identification of differentially expressed ARGs. (A) Volcano plot showing differentially expressed genes (DEGs) between the NSCLC and control
groups. (B) Venn diagram, T vs. N DEGs in red, and LPS-related genes obtained from CTD in blue. (C)GO analysis of identified LRGs. (D) KEGG analysis of
the identified LRGs. (E) LRGs showing significant prognostic correlation. (F) PPI network of the prognostic LRGs.
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FIGURE 3
Consensus clustering analysis of prognostic LRGs. (A, B)Consensus clustering cumulative distribution function (CDF) with k values ranging from 2 to
10. (C) Consensus matrix heat map defining two clusters (k = 2). (D) Kaplan–Meier curves of the two clusters. (E)Differences in clinical characteristics and
LRG expression between the two clusters. Within the classification of tumor status, “tumor-free” denotes a condition in which the patient remains without
any tumor lesions up until the point of follow-up. This status encompasses scenarios post-surgery where the tumor has been successfully removed
and no new tumor lesions have been identified, and “with tumor” indicates the emergence of new tumor growths following surgical intervention. (F–M)
Comparison of clinical characteristics between clusters 1 and 2.
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significantly higher in the high-risk group (p < 0.05; Figure 5F).
However, no significant differences were observed between the two
risk groups in terms ofM stage or tumor status classification (p < 0.05,

Figures 5G, H). Moreover, a strong correlation was observed between
the relative abundance of macrophages and mast cells and the
expression levels of LRGs in the model (VIPR1, NEK2, HMGA1,

FIGURE 4
Establishment and verification of the prognostic LRGs scoring model. (A) LASSO coefficient profile of the LRGs. (B) Selection of the optimal
parameter (λ.min) in the LASSO model. (C–D) KM survival curves for patients in the high/low-risk groups within the TCGA training cohort and GEO
validation cohort, respectively. (E–F) Distribution of risk scores, overall survival times, and expression patterns of model genes across TCGA training
cohort and GEO validation cohort.
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FERMT1, SLC7A5, and TNS4) (Figure 5I). Significant correlations
were observed between the expression of these model LRGs and the
infiltration of multiple immune cells such as activated CD4 + T cells,

CD56 bright natural killer cells, macrophages, mast cells, and
monocytes (Figure 5J). Furthermore, multiple ICGs were
associated with these model LRGs (Figure 5K).

FIGURE 5
Associations between risk scores and various clinical characteristics. Correlation of LRGs score with (A) sex, (B) T stage, (C)N stage, (D) clinical stage,
(E) smoking history, (F) molecular clusters, (G) M stage, and (H) cancer status. (I) Correlation between the expression levels of immune cells and
prognostic LRGs determined using CIBERSORT analysis. (J) Correlation between the expression levels of immune cells and prognostic LRGs, as
determined by ssGSEA. (K) Correlation between immune checkpoint genes and prognostic LRGs.
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FIGURE 6
Construction and validation of the nomogram model. (A) Association of patient age, clinical tumor stage, TNM stage, and risk score with the
prognosis of NSCLC patients. (B) Relationship between tumor stage, T-stage, risk score, and prognosis of NSCLC patients. (C) Nomogram model for
predicting clinical outcomes of patients with NSCLC. (D) Area under the receiver operating characteristic (ROC) curves (AUCs) for the nomogrammodel’s
predictive performance at 1-, 2-, and 3-year intervals. (E–G) Calibration curves were used to evaluate the predictive accuracy of the nomogram
model at 1-, 2-, and 3-year benchmarks.
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FIGURE 7
Evaluation of tumor mutation burden, immunotherapy response, and drug sensitivity based on the nomoscore. (A) Waterfall plots of the mutation
distribution of the top 20most frequently mutated genes in NSCLC patients from the low- and high-risk groups. (B) TMB between the low- and high-risk
groups. (C) KM curves of NSCLC samples from the low-risk low-TMB, low-risk high-TMB, high-risk low-TMB, and high-risk high-TMB groups. (D–J)
IC50 values of different drugs were compared between the high- and low-risk groups. (K) Differences in TIDE between high- and low-risk groups.
(L, M)Differences in risk scores between the high-risk and low-risk groups in the GSE135222 and GSE126044 datasets. Violin plots indicating differences
in (N) CD8A values, (O) PD-L1 values, (P) CYT scores, and (Q) TLS scores between the high- and low-risk groups.
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Incorporation of the prognostic LRGs
scoring model as an independent predictor
in nomogram model construction

To rigorously evaluate the prognostic value of the LRGs scoring
model, both univariate and multivariate Cox regression analyses
revealed that tumor stage, T stage, and risk score served as
independent prognostic predictors of the outcomes of patients with
NSCLC (Figures 6A, B). The identified independent prognostic factors
were integrated into a predictive nomogram model, which facilitated
the prediction of the clinical prognosis in patients with NSCLC
(Figure 6C). The ROC analysis indicated that the nomogram model
achieved area under the curve (AUCs) of 0.69, 0.71, and 0.72 for the 1-
year, 3-year, and 5-year predictions, respectively (Figure 6D).
Calibration curves also demonstrated good predictive accuracy for
1-year, 3-year, and 5-year outcomes (Figures 6E–G).

Variations in somatic cell mutations, drug
sensitivity and immunotherapy response
among NSCLC patients in diverse risk
categories

By utilizing the nomogrammodel, the nomoscore for patients
can was calculated, and patients were categorized into high- and
low-risk groups. We then identified the frequencies of the top
20 somatic cell variations in the nomoscore risk rating groups.
The result revealed that the frequencies of the top 20 mutations
were slightly higher in the high-risk group than in the low-risk
group (Figure 7A). Additionally, we comprehensively assessed
the TMB levels in each NSCLC sample, revealing that the high-
risk group exhibited significantly elevated TMB levels (p < 0.05,
Figure 7B). NSCLC samples were divided into high- and low-
TMB groups based on the median TMB. KM curve analysis
revealed a significant association between adverse prognosis
and the high-risk high-TMB group in patients with NSCLC
(Figure 7C). To evaluate further the correlation between the
immune landscape of NSCLC and prognostic LRGs, we
analyzed the differences in immune cell abundance and
immune stromal scores between the two groups. Significant
differences in the abundance of 15 immune cell types between
the two groups were detected using CIBERSORT analysis (p <
0.05). Notably, the high-risk group exhibited a marked increase
in the number of macrophages, mast cells, and dendritic cells
(Supplementary Figure S2A). Moreover, the high-risk group
exhibited a significant increase in the number of activated
CD4 + T and CD56 bright natural killer cells, as revealed by
ssGSEA (Supplementary Figure S2B).

To assess chemotherapeutic drug sensitivity, the IC50 values
of 138 chemotherapeutic agents were calculated (Supplementary
Table S7). In the high-risk group, we observed significantly lower
IC50 values for commonly used chemotherapy drugs, including
BI.2536, Bosutinib, CGP.082996, Docetaxel, RO.3306, and
vinblastine, than in the low-risk group (p < 0.01, Figures
7D–J). To evaluate the response of patients with NSCLC to
immune therapy, TIDE analysis revealed a significant
correlation between higher TIDE scores and a diminished
response to immunotherapy in NSCLC patients classified as

high-risk (p < 0.05, Figure 7K). Moreover, the GSE135222 and
GSE126044 datasets, which contain data on patients with NSCLC
treated with anti-PD-1/PD-L1 therapy, were selected to analyze
the immunotherapy response. There was no significant difference
in the risk scores between the immunotherapy response (R) and
non-response (NR) groups in either dataset (Figures 7L, M).
Furthermore, the results showed that the CD8A levels in the
high-risk group were significantly higher than those in the low-
risk group (p < 0.05). Conversely, the PD-L1 and TLS scores in
the high-risk group were significantly lower than those in the
low-risk group (p < 0.05). However, there was no significant
difference in the CYT scores between the two groups
(Figures 7N–Q).

Discussion

A strong correlation exists between the lung and gut microbiota
and NSCLC progression. Specifically, the introduction of bacteria
isolated from late-stage lung cancer into the trachea significantly
accelerates tumor growth (Jin et al., 2019). A study conducted in
patients with lung cancer revealed that the composition of the gut
microbiota is associated with TNM staging and primary tumor size
(Otoshi et al., 2022). Zhang et al. revealed that the colonization of
lung cancer lesions predominantly consists of gram-negative
bacteria (Zhang WQ. et al., 2018). Furthermore, the gut
microbiota of patients with lung cancer exhibit elevated levels of
Proteobacteria (Qin et al., 2014). Lu et al. revealed a significant
association between dysbiosis of the gut and sputum microbiota and
progression and distant metastasis (DM) in NSCLC (Lu et al., 2021).
Similarly, a study focusing on patients with advanced lung cancer
(stage IIIB, IV) and metastasis observed an elevated presence of
Thermus and Legionella within lung cancer lesions (Yu et al., 2016).
Microorganisms residing in tumor lesions or the intestines of
patients with NSCLC may participate in the progression of lung
tumors via various mechanisms. For instance, Bacteroidetes can
inhibit tumor proliferation by upregulating T-cell levels within the
tumor microenvironment, whereas Firmicutes can activate
T-regulatory cells and facilitate cancer progression (Pizzo et al.,
2022). Microorganisms modulate the progression of lung cancer by
producing enzymatically active toxins. For instance, Bacteroides
fragilis toxin, E. coli Cif, cytotoxic necrotizing factor 1 (CNF1),
Fusobacterium nucleatum FadA, and Salmonella AvrA can induce
the development and progression of lung cancer by participating in
the relevant signaling pathways (Fiorentini et al., 2020).
Furthermore, the involvement of Helicobacter pylori in lung
cancer development has been observed primarily through the
cytotoxicity of its main protein toxin VacA and its ability to
promote the secretion of the pro-inflammatory cytokines IL-6
and IL-8 (Nakashima et al., 2015).

LPS induced inflammatory damage in the pulmonary system.
LPS can also induce localized inflammation and facilitate cancer
progression by triggering the release of pro-inflammatory
cytokines from cancer cells (Xu et al., 2019). Additionally, it
activates TLR4, enhancing the expression of NLRP3 and
promoting the secretion of chemotactic factors and
inflammatory mediators from the cancer cells. This cascade
increases SPP1 expression, facilitating the binding of
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transglutaminase to the extracellular matrix, thereby mediating
tumor cell adhesion and fostering malignant biological activity
(Zhang et al., 2023). However, the precise mechanism by which
LPS affects NSCLC has not yet been fully elucidated. This study
identified LRG-based NSCLC clusters with distinct molecular
and cellular profiles and various prognoses. Through the
integration of functional enrichment and immune infiltration
analyses of differentially expressed LRGs, we explored the
molecular mechanisms by which gram-negative bacteria
participate in NSCLC via LPS. Additionally, we established a
prognostic risk model and nomogram. Importantly, our findings
provide an overall understanding of the significance of the
microbiome and its components in NSCLC progression.

In this study, a prognostic risk-scoring model for NSCLC was
established based on prognostic LRGs that were significantly
differentially expressed between NSCLC and control groups
(VIPR1, NEK2, HMGA1, FERMT1, SLC7A5, and TNS4). Among
these, VIPR1 has been identified as a protective gene for the survival of
NSCLC patients, whereas NEK2, HMGA1, FERMT1, SLC7A5, and
TNS4 are risk genes. VIPR1 serves as a receptor for the vasoactive
intestinal peptide (VIP), a neuropeptide known for its anti-
inflammatory and immunomodulatory properties. Studies have
demonstrated that upon stimulation with LPS, the activation of
VIPR1 can effectively suppress inflammatory responses, inhibit the
release of inflammatorymediators, diminish cellular andDNAdamage
resulting from inflammation, and exert a restraining effect on tumor
development and progression (Delgado and Ganea, 2013). Nek2 is an
oncogene highly expressed inmultiple cancers, including breast cancer.
Its overexpression promotes cancer cell proliferation and enhances
drug resistance (Cappello et al., 2014; Zhou et al., 2013). Moreover,
upon LPS stimulation, NEK2 overexpression plays a crucial role in
tumor metastasis and invasion by initiating and promoting epithelial-
mesenchymal transition (EMT) (Zhang Y. et al., 2018). Additionally,
NEK2 regulates cell cycle progression by promoting cell entry into
mitosis and facilitating cellular self-renewal, thus increasing the
likelihood of cancer development (Lin et al., 2016). Currently, there
is a shortage of research on the stimulatory effects of LPS on
HMGA1 expression. As a transcription factor, HMGA1 activates
the expression of numerous cancer-promoting genes while
inhibiting the expression of various apoptosis-related genes, thus
enhancing cancer cell resistance to apoptosis (Fusco and Fedele,
2007). Furthermore, HMGA1 facilitates EMT and tumor metastasis
in cancer (Shah et al., 2013). FERMT1 promotes cell migration and
infiltration by binding to integrins in the extracellular matrix, thereby
promoting the metastasis and dissemination of cancer cells (Sossey-
Alaoui et al., 2014). In addition, it contributes to cancer cell
proliferation and growth by regulating the cell cycle (Rognoni et al.,
2014). SLC7A5 facilitates cancer initiation and progression by
mediating the transport of amino acids and modulating the mTOR
signaling pathway (Yanagida et al., 2001).

Numerous studies have shown that intratumoral immune infiltrates
are associated with the clinical outcomes of NSCLC and can predict the
response to immunotherapy (Federico et al., 2022; Tian et al., 2023).
The pro-tumor immune environment is characterized by a decrease in
cytotoxic CD8+ T cells and NK cells and an increase in exhausted CD8+

T cells, immunosuppressive CD4+ FOXP3+ Tregs, regulatory B cells,
CD4+ T cells with a pro-inflammatory Th2 phenotype, and abundant
M1-likemacrophages and neutrophils (TANs) (Federico et al., 2022). In

our study, we observed a decrease in CD8+ T cells, NK cells, and DCs,
along with an increase in CD4+ T cells in cluster 1, which was
characterized by higher expression of risk genes and poorer
prognosis. Moreover, VIPR1, as a protective factor, was positively
associated with M1-like macrophages and monocytes but negatively
correlated withmast cells andM2-likemacrophages. In contrast, NEK2,
HMGA1, FERMT1, SLC7A5, and TNS4 showed the opposite
correlations with these immune cells. Therefore, LRGs may
influence NSCLC progression by shaping the immune landscape of
the disease.

A risk stratification model based on these prognostic LRGs
was constructed to evaluate the effects of LPS-associated genetic
alterations on the survival of patients with NSCLC. KM survival
analyses revealed that patients diagnosed with NSCLC with
elevated risk scores had suboptimal prognostic attributes and
diminished lifespans. Additionally, a low-risk score was
associated with favorable clinical characteristics, such as
earlier tumor staging in patients with NSCLC. Moreover, by
integrating the risk scores with selected clinical parameters, we
constructed a nomogram model. The calibration curve and ROC
analysis confirmed that the nomogram model exhibited high
predictive precision.

Selecting patients who are most likely to benefit from ICIs is
crucial for increasing the efficacy of ICI and minimizing ICI-related
adverse events in patients with NSCLC. Our findings revealed a
significant positive correlation between the nomoscore and CD8A
expression and a negative correlation between PD-L1 expression
and the TLS score. The TIDE algorithm has been utilized extensively
to evaluate immune responses to ICIs in a multitude of research
studies. Our nomoscore exhibited a trend parallel to that of the TIDE
predictor in predicting immunotherapy response. These results
validate the potential of the nomoscore as a robust prognostic
indicator of immunotherapeutic outcomes in patients with NSCLC.

Our findings offer a new understanding of the influence and
underlying molecular mechanisms of the microbiota on NSCLC
survival and the immune environment. Further clinical and
experimental studies are required to validate these findings.
However, the LPS producing gram-negative bacteria including
Escherichia-shigella and Klebsiella have been confirmed to
exacerbate the lung injury (Sun et al., 2020). Klebsiella is capable
of disrupting the gut barrier, eliciting systemic or localized
inflammatory responses that disrupt the host’s overall immune
balance, thereby worsening inflammatory lung injury (Belkaid
and Hand, 2014). Other gram-negative bacteria, such as
Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae,
or Acinetobacter baumannii, are also identified as major causative
pathogens of different respiratory tract infections (Rodrigo-Troyano
and Sibila, 2017). During gram-negative bacterial infections, LPS
can activate host immune cells, triggering an inflammatory response
(Abdulnour et al., 2016). LPSmodification in gram-negative bacteria
during chronic infection could influence the gene expression
profiles, possibly contributing to infection establishment and
progression (Maldonado et al., 2016). Therefore, the LPS
signature is likely to originate from pulmonary infections or
exacerbations rather than the gut microbiome, and there is
insufficient evidence to indicate that LPS related to the gut-lung
axis takes precedence over pulmonary infections in generating LPS-
related gene signatures. Future research could focus on investigating
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the distinct roles of pulmonary infections and the gut microbiome in
generating LPS-related gene signatures to better understand NSCLC
pathogenesis and develop potential therapeutic targets.
Additionally, the existing animal and cellular models do not
precisely replicate the nuanced microbiome milieu of NSCLC.
Currently, investigations into the contribution of the microbiome
to NSCLC pathophysiology are still in the preliminary phase,
bringing an emerging potential for utilizing the microbiome not
only as a diagnostic instrument but also as a novel
immunotherapeutic modality for NSCLC.
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Glossary
NSCLC non-small cell lung cancer

LRGs lipopolysaccharide-related genes

LASSO Least Absolute Shrinkage and Selection Operator

KM Kaplan–Meier

TME tumor microenvironment

GLA gut-lung axis

LPS lipopolysaccharide

TLR toll-like receptor

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

CTD Comparative Toxicogenomics Database

GO gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI protein-protein interaction

ssGSEA single-sample Gene Set Enrichment Analysis

ICGs immune checkpoint genes

GSEA Gene Set Enrichment Analysis

ROC receiver operating characteristic

TMB tumor mutation burden

IC50 half-maximal inhibitory concentration.

TIDE tumor immune dysfunction, and exclusion

CYT cytolytic activity score

TLS Tertiary lymphoid structure

CDF cumulative distribution function

AUC area under the curve

BM brain metastasis

CDT cytolethal-distending toxin

CNF1 Cytotoxic necrotizing factor 1

VEGF Vascular endothelial growth factor

VIP vasoactive intestinal peptide

BMDCs bone marrow-derived dendritic cells

TAAs tumor-associated antigens

IFN interferon

SCF stem cell factor

Tregs T cells

MHC major histocompatibility complex

ULBPs UL16-binding proteins

IrAEs immune-related adverse events
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