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Background and Objective: Accurate identification of cancer stages is
challenging due to the complexity and heterogeneity of the disease. Current
clinical diagnosis methods primarily rely on phenotypic observations, which may
not capture early molecular-level changes accurately.

Methods: In this study, a novel biomarker recognition method was proposed
tailored for cancer stages by considering the change of gene expression
relationships. Utilizing the sample-specific information and protein-protein
interaction networks, the group specific networks were constructed to
address the limited specificity of potential biomarkers. Then, a specific feature
recognition method was proposed based on these group specific networks,
which employed the random forest algorithm for initial screening followed by a
recursive feature elimination process to identify the optimal biomarker subset.
During exploring optimal results, a strategy termed the Cost-Benefit Ratio, was
devised to facilitate the identification of stage-specific biomarkers.

Results: Comparative experiments were conducted on lung adenocarcinoma
and breast cancer datasets to validate the method’s efficacy and generalizability.
The results showed that the identified biomarkers were highly stage-specific, and
the F1 scores for predicting cancer stages were significantly improved. For the
lung adenocarcinoma dataset, the F1 score reached 97.68%, and for the breast
cancer dataset, it achieved 96.87%. These results significantly surpassed those of
three conventional methods in terms of F1 scores. Moreover, from the
perspective of biological functions, the biomarkers were proved playing an
important role in cancer stage-evolution.

Conclusion: The proposed method demonstrated its effectiveness in identifying
stage-related biomarkers. By using these biomarkers as features, accurate
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prediction of cancer stages was achieved. Furthermore, the method exhibited
potential for biomarker identification in subtype analyses, offering novel
perspectives for cancer prognosis.
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1 Introduction

Cancer is a disease characterized by uncontrolled cell
proliferation, posing a serious threat to human health. According
to the World Health Organization, in 2020 alone, nearly 10 million
people (about one-sixth of all deaths worldwide) died from cancer
(Sung et al., 2021). Understanding cancer begins with an important
dimension: its stages, which could describe the size and extent of
tumor spread. Due to the high heterogeneity and complexity of
cancer, it poses significant challenges for the identification of cancer
stages (Burrell et al., 2013). Hence, investigating an intelligent model
for the identification of stage-related biomarkers is very important.
It helps in understanding the characteristics and changes during the
development process of cancer. This research endeavor proves
valuable in enhancing cancer treatment strategies and prognostic
assessments.

As far as the biomarkers are concerned, encompass a range of
molecules, cellular structures, or biological processes that can be
objectively detected and quantified within or outside an organism
(Moein et al., 2020). They play a crucial role in revealing an
individual’s health status, physiological functions, pathological
conditions, and biological responses to treatment. This makes
them integral players in the development of precision medicine
and personalized treatment strategies (Holland, 2016). Specifically,
stage-related biomarkers provide crucial information about tumor
progression, metastasis, and treatment response (Amin et al., 2010;
Van der Kloet et al., 2012). By analyzing the expression patterns and
changes of stage-related biomarkers, healthcare professionals and
researchers can gain a better understanding of the cancer’s
progression status, choose appropriate treatment strategies, and
monitor treatment effectiveness.

However, molecular distinctions between different cancer stages
are often subtle (Ye et al., 2020). For example, in early-stage cancer,
molecular changes may be influenced by minor alterations in the
activity of a few key genes or subtle modulation of signaling
pathways. The boundaries between cancer stages, as defined
clinically, are often indistinct at the molecular level. For instance,
the molecular changes between stage I of a late-stage and stage II of
an early-stage cancer could be very similar. Therefore, the
identification of stage-related biomarkers at the molecular level
has been a long-standing challenge.

Currently, two mainstream approaches primarily guide the
identification of stage-related biomarkers. The first category is based
on differential expression analysis. Deva Magendhra Rao et al. (2019)
compared non-coding RNAs (lncRNAs) between invasive ductal
carcinoma (IDC) breast cancer tissues and normal breast tissues.
There were 375 differentially expressed lncRNAs identifying closely
associated with the early-stage development of breast cancer. Shi et al.
(2018) analyzed gene expression data from four stages of colorectal
cancer, identifying stage-specific differentially expressed genes and

exploring their shared biological functions. Wang et al. (2017)
studied gene expression data in non-small cell lung cancer and
found that differentially expressed genes at different stages
significantly impacted biological functions and signaling pathways.
However, these methods often overlook molecular interactions and
typically validate their findings through functional or pathway
enrichment analysis but few focus on the identification of stage-
related biomarkers.

On the other hand, the second category, focuses on machine
learning techeques. Patil and Bellary (2022) achieved good
performance in stage identification of melanoma based on features
from dermoscopic images and tumor thickness usingmachine learning.
Ubaldi et al. (2021) performed a binary classification task to identify
stage I and stage II non-small cell lung cancer using radiometric data
and machine learning, achieving a high AUC value at 0.84. Jin et al.
(2021) developed an interpretable machine learning model that could
identify gene expression biomarkers for early-stage LUAD. However,
these methods typically focus on building accurate prediction models
similar to a “black box” with limited biological and clinical
interpretability. Some researchers strive to construct interpretable
machine learning models for identifying stage-related biomarkers,
but this often leads to compromises in the predictive performance
of themodel to some extent for the samples are imbalanced, and there is
minimal molecular-level difference between different stages. In
summary, existent methods have weaker specificity in identifying
stage-related molecular-level biomarkers.

In this paper, an efficient method was proposed to identify stage-
related biomarkers through specific feature recognition on group
specific networks (SFR-GSN), which could sensitively capture the
differences between different stages and identify features that exhibit
significant specificity between stages. Two mainly high-risk cancers,
lung adenocarcinoma (LUAD) and breast carcinoma (BRCA), were
used to evaluate the proposed method. Firstly, the clinical data,
RNA-Seq data and protein-protein interactions (PPI) of LUAD and
BRCA were first collected from public database. Then, based on the
tumor samples and normal samples, the sample-specific networks
(SSN) were constructed, which further intersected with PPI to
construct the group-specific network (GSN). Through clinical
data, GSNs were combined into one GSN corresponding to one
cancer stage, which could address the weak specificity of existing
biomarkers. Subsequently, a specific feature recognition (SFR)
method based on these GSNs was proposed. SFR was designed in
two-round, the first round was pre-screening by utilizing the
random forest algorithm with Gini impurity quantifying the
purity improvement. The second round was optimal subset
screening of biomarkers by using the recursive feature
elimination with cross-validation. Notably, during exploring the
optimal results, the Cost-Benefit Ratio (CBR) was introduced as an
important indicator for identifying the stage-related biomarkers.
Eventually, comparative experiments among SFR-GSN and three
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state-of-the-art methods were conducted on LUAD and BRCA
datasets to validate the effectiveness and generalization ability of
the proposed method. The results showed that the identified
biomarkers significantly improved F1 scores for predicting cancer
stages. Also from the perspective of biological functions, the
biomarkers were proved playing an important role in cancer
stage-evolution.

2 Methods

2.1 Data collection

In the study, we focused on two kinds of cancer, lung
adenocarcinoma (LUAD) and breast cancer (BRCA). On one hand,
LUAD and BRCA are both cancer types associated with high levels of

TABLE 1 The number of samples of LUAD and BRCA in experiments.

Cancer types Normal Stage I Stage II Stage III Stage IV Sum

LUAD 59 273 122 83 26 563

BRCA 114 182 621 250 20 1,187

FIGURE 1
The flowchart of constructing GSN. The red dotted line section is the construction of SSN, while the blue dotted line section is the following part,
using SSN and PPI to construct the GSN.
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severity. LUAD is one of the most common subtypes of lung cancer,
while BRCA is one of the most prevalent cancers among women. These
two cancer types significantly impact patients’ quality of life and survival
rates. On the other hand, since LUADandBRCA are two common types
of cancer with relatively high incidence rates worldwide, as a result, these
cancer types have ample sample data available. The richness of data helps
improve the accuracy and reliability of the models. Therefore, studying
and analyzing datasets related to LUAD and BRCA can enhance our
understanding of the disease mechanisms, risk factors, and treatment
strategies, providing valuable insights for cancer diagnosis and treatment.

We separately collected the clinical data and RNA-Seq data of
LUAD and BRCA from Xena Tomczak et al. (2015); Wang et al. (2022)
and separated the RNA-Seq data into different pathological stages.

Then, the counts per million (CPM) (Law et al., 2016) were applied to
filter the low-expression genes, and genes with a value higher than
2 CPM in at least half of the samples were retained. Additionally, the
protein-protein interactions were compiled from STRING (Szklarczyk
et al., 2023). PPI was widely used in identifying biomolecules, including
biomarkers, and driver genes in many studies. The RNA-Seq datasets
used in the experiments is shown in Table 1.

2.2 Construction of group specific networks

The group specific networks were constructed based on the two
main kinds of networks: Sample-Specific Networks (SSN) and PPI

TABLE 2 F1 score and CBR for multi-class classification in stages of LUAD and BRCA at different feature quantity thresholds.

LUAD BRCA

Number of features F1 score (%) CBR Number of features F1 score(%) CBR

1 48.7420 - 1 71.9124 -

2 86.2510 37.5090 2 93.4443 21.5318

3 91.2557 5.0047 3 95.3618 1.9174

4 92.5050 1.2492 4 96.2117 0.8499

5 93.3089 0.8039 5 97.2808 1.0691

6 96.1537 2.8448 6 97.4655 0.1846

7 96.8517 0.6979 7 98.2629 0.7974

8 96.9067 0.0550 8 99.1047 0.8417

9 97.4935 0.5868 9 98.3727 −0.7319

10 97.8804 0.3868 10 99.0001 0.6273

The bold values represent the best results among the column.

FIGURE 2
The relationship between CBR and number of features in LUAD datasets. The red dotted line represents CBR = 0.5 for parameter setting. From the
figure, the best number of features in LUAD datasets is 7.
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FIGURE 3
Venn graph of the obtained stage-related biomarkers for LUAD and BRCA.

FIGURE 4
KEGG pathway enrichment result of LUAD stage-related biomarker.
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FIGURE 5
GO enrichment results of stage biomarkers for LUAD and BRCA.

TABLE 3 The comparison of identification in stage-related biomarkers among SFR-GSN, three conventional methods, and all genes on LUAD and BRCA
datasets.

LUAD BRCA

Methods Number of features F1 score(%) Number of features F1 score(%)

All Genes 1,3326 38.90 1,3168 42.77

DEGs 225 42.42 318 42.51

WGCNA 151 40.35 396 43.89

Relife 100 42.29 100 43.49

SFR-GSN 7 96.85 5 97.28

The bold values represent the best results among the column.

TABLE 4 F1 score and CBR for multi-class classification in stages of LUAD and BRCA at different feature quantity thresholds.

LUAD BRCA

Number of features F1 score(%) CBR Number of features F1 score(%) CBR

1 73.2800 - 1 51.2668 -

2 91.3155 18.0354 2 81.9457 30.6788

3 95.9758 4.1303 3 89.6415 7.6958

4 96.8973 0.5300 4 93.2176 3.5760

5 97.3499 0.9214 5 94.4989 1.2813

6 97.7847 0.4526 6 96.4546 1.9557

7 97.7847 0.4347 7 96.9095 0.4549

8 97.7847 0 8 97.3826 0.4731

9 97.7847 0 9 97.3919 0.0093

10 98.2410 0.4563 10 97.7572 0.3652

The bold values represent the best results among the column.
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networks. Proposed by Liu et al. (2016), SSN could assist in
identifying driver genes from the perspective of the personalized
network. GSN, combined SSN, and the existing PPI could increase
the robustness of the interactions. The flow of the construction of
GSN was summarized in Figure 1.

SSN was initially constructed based on RNA-Seq data. For all
normal samples, a reference network was constructed by calculating the
pairwise gene-gene Pearson correlation coefficients (PCC, represented
in the reference network as PCCn). Meanwhile, for each disease sample,
a perturbation network was generated by incorporating the normal
sample set and reconstructing the network, resulting in PCCn+1.
Subsequently, the differential network was obtained by subtracting

the perturbation network from the reference network, and the
difference was derived as Formula (1).

△PCC � PCCn+1 − PCCn (1)
Edges with a statistical p-value < 0.05 were considered significant
and retained. In the constructed SSN, nodes represent genes, while
the connections between nodes indicate significant differences in the
correlation between the two genes in the disease sample compared to
the normal sample set. This dissimilarity is quantified by △PCC.

Then, on the basis of the SSN, intersections were combined with
the PPI.We retained the experimentally validated edges presented in
PPI, with the edge weight calculated from SSN. Due to the samples

FIGURE 6
KEGG pathway enrichment results of subtype biomarkers for LUAD and BRCA.

FIGURE 7
GO enrichment results of subtype biomarkers for LUAD and BRCA.

Frontiers in Genetics frontiersin.org07

Chen et al. 10.3389/fgene.2024.1407072

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1407072


could be divided into different pathological stages, the PPI-SSN for
all samples was classified according to different stages (groups) of
cancer. For instance, within one specific cancer group Gi responding
to one GSN, consisting of N cancer samples, the N PPI-SSNs were
integrated. Also, the edge weight was calculated by taking an average
on the △PCC of same edge in N different samples. As for the edges
not appearing in the samples, their △PCC was set to 0. Finally, the
edge weight of GSN was derived as Formula (2).

w � ∑N
i�1△PCCi

N
(2)

Considering the generalization of GSN, a ten-fold cross-
validation approach was employed during the experimental
process. A GSN was constructed for each training fold, resulting
in ten GSNs, and the edge weight from these ten GSNs was also
averaged. Ultimately for every cancer group Gi, only one
corresponding GSN was constructed, which is stage-specific.

2.3 Specific feature recognition

Based on the constructed GSN, we aimed to identify the most
representative and minimal set of features as biomarkers. These
features in the selected set contain a high degree of complementary
information, resembling a minimal control network. Feature
recognition consists of two main parts: pre-screening and
optimal subset screening of biomarkers.

2.3.1 Pre-screening of biomarkers
The edge set of each GSN corresponding to each group is

sorted in descending order based on the edge weights and
subjected to pre-screening to obtain the top 50 edges. Among
the top 50 edges, the features at both ends of these selected edges
are obtained, and their union forms the candidate feature set.
Then the candidate feature set is further filtered using the feature
importance calculation algorithm embedded in random forest
(Acharjee et al., 2020), narrowing it down to a new candidate
feature set, which containing only the top 50 features based on
their importance rankings. During the feature pre-screening, the
Gini impurity was introduced to quantify the purity
improvement achieved through branching. The Gini impurity,
presented as Gini, could be derived as Formula (3).

Gini � 1 −∑
n

i�1
p2
i (3)

where pi represents the relative frequency of the i-th class in the
dataset, which is the probability of that class occurring in the dataset,
and n is the total number of categories.

In random forest, the calculation of feature importance is based
on the Gini impurity of each feature at each node in every tree.
Specifically, for each feature, at each node of each tree, the algorithm
splits the dataset into two subsets based on that feature. Then, the
difference between the Gini impurity of the subsets after the split
and the Gini impurity of the original node was calculated. Finally, by
aggregating the feature importance scores from all nodes, the overall
feature importance for each feature in the random forest was
obtained. The built-in feature importance evaluation capability of

the random forest makes it a powerful tool for understanding data
and extracting key biomarkers in multi-class classification tasks. The
whole pre-screening procession was described in Algorithm 1.

Require: Random forest model RF, training data set D;

Ensure: A list of feature importances importance;

1: for each tree in RF do

2: for each node in tree do

3: for each feature f in node do

4: Split the dataset at node into two subsets Dleft
and Dright based on feature f;

5: Calculate the Gini impurity of the original

node, denoted as Gini;

6: Calculate the Gini impurity of Dleft, denoted

as Ginileft;

7: Calculate the Gini impurity of Dright, denoted

as Giniright;

8: Calculate the gain in impurity after splitting

on feature f:

9: impurityGain � |Dleft |
|D| × (Gini − Ginileft) + |D

right|
|D| × (Gini−Giniright);

10: Update the importance of feature f based on the

impurity gain:

11: importance [f] ← importance [f] +

impurityGain;

12: end for

13: end for

14: end for

15: Sort the features based on the values in

importance using a suitable sorting algorithm.

Algorithm 1. Pre-screening of biomarkers by random forest feature

importance calculation.

2.3.2 Optimal subset screening of biomarkers
After the pre-screening, the top 50 candidate feature sets were

further filtered by Recursive Feature Elimination with Cross-Validation
(RFECV). The RFECV algorithm finds the optimal feature subset by
iteratively removing features, involving model training and cross-
validation for each reduced feature set. In each iteration, the
algorithm removes the least important feature (the one contributing
the least to the model’s performance improvement), retrains the model
on the remaining feature set, and performs cross-validation. This
process continues until a specific number of features is reached or
further removal of features significantly degrades model performance.

Notably, to select the minimum number of features that achieve
the best predictive performance, the Cost-Benefit Ratio (CBR) was
introduced to assist in screening the optimal feature set (De Picker
and Haarman, 2021). The CBR could be defined as Formula (4).

CBR � 100 × PR

INF × UFC
(4)

in this formula, the symbols represent the following:

• PR: Performance Gain, which refers to the improvement of the
F1 score in the model.

• INF: Increased Number of Features.
• UFC: Unit Feature Cost.
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Through CBR, we can quantitatively evaluate whether the
performance improvement gained from adding specific features is
worth the additional cost required. It is particularly important
in situations where there is a need to balance decisions between
performance improvement and cost.

During the model training, multiple thresholds (thresh) were set
for the number of features and obtained their corresponding model
performance evaluation metric, F1 score. Then, according to the
CBR model, the optimal feature subset was screened in a recursive
way. The optimal subset screening of biomarkers using RFECV was
presented as Algorithm 2.

Require: candidate feature set, threshold for the number

of features thresh;

Ensure: feature set S, model performance evaluation

metric F1 score;

1: Initialize the feature set S and set it as the

candidate feature set;

2: Define the model performance evaluation

metric F1 score;

3: Define the threshold for the number of

features thresh;

4: while S is not ∅ do

5: Train the model using the feature set as the

training set;

6: Introduce cross-validation to evaluate the

model performance;

7: if the number of features = = thresh then

8: Save the current feature set as S;

9: Save the current model performance metric as

F1 score;

10: break;

11: end if

12: Reove the least contributing features from S;

13: end while

Algorithm 2. Recursive Feature Elimination with Cross-Validation

(RFECV) algorithm.

3 Results

The experimental results were obtained using ten-fold cross-
validation to ensure reliability. In each round, nine folds of the
datasets were treated as a train set and the other one fold acted as a
test set. The train set was used to construct theGSN and select the feature.
The test set was utilized to evaluate the model performance. In addition,
specific feature experiments and comparative analyses were conducted to
validate the effectiveness of the model. Moreover, the proposed method
was expanded to identify cancer subtypes related biomarkers as well.

3.1 Specific feature experiments

Specific feature experiments were conducted in the following
two steps. Firstly, the important parameters were introduced
including the CBR and number of features. Secondly, the stage-
specific biomarkers in LUAD and BRCA datasets were identified.

The effectiveness of the identified biomarker were performed
through enrichment analysis.

3.1.1 Setting of the important parameter
CBR was designed as a key parameter to assist in screening the

optimal feature set, which is directly related to the number of
features. The proposed methods were conducted on LUAD and
BRCA datasets to determine a series of feature counts, and the
F1 scores and CBRs were calculated through the experiments which
was summarized in Table 2.

From the table, it is shown that in LUAD datasets, as the number of
features increases, the F1 score generally improves, but the CBR shows
non-monotonic variations. Therefore, to further illustrate the relationship
between CBR and the number of features, their relationship in LUAD
datasets was plotted in Figure 2. In the figure, the CBR values were
compared with 0.5, as this threshold is often used as a balancing point.
When the CBR is greater than 0.5, it indicates a profitable decision, while
a CBR lower than 0.5 suggests a cost-effective decision.

Therefore, the CBRmetric was utilized to determine the optimal
number of features.

Starting with a small number of features and gradually increasing,
the point was identified where the first CBR value fell below 0.5.

The CBR indicates the overall benefit of adding a new feature to
the model. Therefore, the feature count just before this point was
identified as the optimal number of features.

3.1.2 Stage-specific biomarkers
Based on the parameter setting, features with CBR values greater

than 0.5 were selected to maximize the F1 score. The obtained
biomarkers were in the form of gene pairs or edges.

Compared with the node features, the edge biomarkers could
better capture the interaction relationships between genes, aiding in
understanding the structure and functionality of gene networks.

The edge features could reflect the interplay and coordinated
regulation among genes, revealing more details about biological
processes and disease development.

As for the LUAD dataset, seven features were eventually identified
that meet this criterion, achieving an impressive F1 score at 96.8517%
and a CBR at 0.6979. These features include: (ABI2, ARPC1B),
(CDK12, POLR2I), (FRS2, FRS3), (PABPC4, ZC3H14), (SNAP29,
TSNARE1), (SEC24C, TRAPPC6B), and (CUL4A, RPA1). Similarly,
for the BRCA dataset, five features were selected that yielded a
remarkable F1 score at 97.2808% and a CBR at 1.0691. These
features are: (EXOSC3, SKIV2L2), (BYSL, UTP14C), (EXOSC8,
UTP14C), (PPP3CB, WDR82), and (CD59, SEC24C). The Venn
graph of the obtained biomarkers is shown in Figure 3, which
demonstrates the biomarkers were highly stage-specific.

3.2 Enrichment analysis

Moreover, the Kyoto Encyclopedia of Genes andGenomes (KEGG)
Pathway analysis and Gene Ontology (GO) enrichment analysis were
performed to validate the effectiveness of identified biomarkers.

KEGG pathway enrichment analysis is a frequently employed
method in bioinformatics to interpret gene expression or protein
expression data (Ogata et al., 1999). After performing a significance
test on 14 genes in the biomarkers of LUAD stages, a total of seven
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genes were found to be enriched in 10 pathways. Among them, the
gene RPA1 was found to be involved in five pathway processes, as
shown in Figure 4. In the figure, the red dots represent genes, and the
different colored curves represent different pathways. One end of the
curve represents a gene, while the other end represents the hub of
that pathway, and the size of the hub is proportional to the number
of genes enriched in that pathway. As for stage-related biomarkers of
BRCA, a total of three genes were found to be enriched in two
pathways. Specifically, genes EXOSC8 and EXOSC3 were enriched
in hsa03018: RNA degradation, while gene PPP3CB was enriched in
hsa04370: VEGF signaling pathway. Due to the small number of
genes, they were not visualized.

GO (Gene Ontology) enrichment analysis was carried out to help
understand the roles of a set of genes in biological processes Harris et al.
(2004). GO enrichment analysis was carried out on the 14 genes in the
stage-related biomarkers of LUAD, and the results are shown in
Figure 5 LUAD, which indicates these 14 genes are involved in a
total of 240 biological processes. In the figure, the x-axis represents the
enrichment score, which indicates the degree of influence of the target
genes on the corresponding GO term, while y-axis represents the
different GO terms. The different colors represent the three main
categories of GO. Each category includes only the top 10 terms
based on their enrichment score. Similarly, GO enrichment analysis
was performed on the nine genes in the stage-related biomarkers of
BRCA, and the results are shown in Figure 5 BRCA. These nine genes
were found to participate in a total of 205 biological processes.

The enrichment results demonstrate significant specificity of the
features constructed using our proposed method across different
stages within the two major cancer types, LUAD and BRCA. The
evidence further validates the effectiveness of the proposed method.

3.3 Comparative experiments

Comparative experiments were conducted mainly in view of
stage-related biomarker prediction. The proposed method was
compared with the three conventional methods on biomarker
identification: differentially expression genes (DEGs) Love et al.
(2014), WGCNA Horvath (2011) and RelifF Robnik-Šikonja and
Kononenko (2003). DEGs were mainly obtained using R package
DESeq2 to conduct differential expression analysis, and the DEGs
were treated as biomarkers. Based on differential expression data,
WGCNA (Weighted Gene Co-expression Network Analysis) is a
method used to construct co-expression networks from gene

expression data, which is currently widely applied in the
identification of biomarkers for complex diseases and drug
targets. RelifF is a machine learning method on binary
classification, which could identify the biomarkers.

Moreover, to ensure an equivalent comparison, the four methods
were compared based on their best performance. Also, the features in all
genes were performed as a control group. The F1 score was employed for
evaluation since it is not influenced by the varying number of features
across different methods. The results of the comparative experiments on
LUAD datasets and BRCA datasets are shown in Table 3.

From the table, it is shown that the proposed method
significantly outperforms other methods in terms of F1 scores.
Additionally, the proposed method provides fewer features than
other methods, which indicates the proposed method could identify
the biomarker more accurately.

3.4 SFR-GSN on cancer subtype-related
biomarkers

Besides the evolutionary characteristics in different stages,
cancer also exhibits various subtypes. As for LUAD, three types
often occur in the evolution, which are Papillary Predominant (PP),
Acinar Predominant (PI), and Trabecular (TRU). By studying
subtype-related biomarkers, a better understanding of the
differences in disease progression, treatment response, and
prognosis among different subtypes could be obtained (Perou
et al., 2000; Muller et al., 2022). Therefore, in order to enhance
the generalization of our model, experiments on subtype-related
data were conducted to identify the subtype-related biomarkers.

Firstly, the datasets were separated into the three subtypes and
accordingly, three corresponding GSNs were constructed. Then, SFR
was trained on the GSNs, features with CBR> 0.5 were obtained, and
the F1 score and CBR were shown in Table 4. Finally, five features
were identified as subtype-related biomarkers of LUAD, these are
(HDAC6, SIRT2), (AKT2, RICTOR), (DHX33, PINX1), (SNAP29,
TSNARE1) and (ASPSCR1, VCPIP1). Similarly, the BRCA datasets
were divided into five groups due to the five subtypes of BRCA.
Eventually, the results were shown in Table 4, where six features were
screened as subtype-related biomarkers, these are (SRC, USP8),
(IRAK4, TOLLIP), (SRC, TRAF6), (F8, SEC24C), (CDK12,
SUPT5H) and (CDC40, SF3B2).

Further, the enrichment analysis was conducted on the
identified features. In the subtype-related biomarkers of LUAD,

TABLE 5 The comparison of identification in subtype-related biomarkers among SFR-GSN, three conventional methods, and all genes on LUAD and BRCA
datasets.

LUAD BRCA

Methods Number of features F1 score(%) Number of features F1 score(%)

All Genes 1,3326 72.73 1,3168 85.9674

DEGs 2,478 82.38 3,922 87.77

WGCNA 426 78.00 632 86.32

Relife 100 81.16 100 83.45

SFR-GSN 5 96.89 6 96.45

The bold values represent the best results among the column.
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five genes were enriched in 10 pathway pathways, with the gene
AKT2 was found in eight pathway pathways. In that of BRCA, eight
genes were enriched in 24 pathways, with the gene TRAF6 being
enriched in 21 pathways and the gene IRAK4 was found in
20 pathways. KEGG pathway enrichment results are shown in
Figure 6. Subsequently, the results of the GO enrichment analysis
are shown in Figure 7. The 10 genes in the LUAD subtypes are
involved in 360 biological processes, while 11 genes in the BRCA
subtypes are involved in 407 biological processes.

After providing the results of SFR-GSN on the identification, the
proposed method was also compared with three conventional
methods and all genes. The results are shown in Table 5. SFR-
GSN gains the best performance and the least features, which
suggests SFR-GSN exhibits superior capability in identifying
subtype-related biomarkers.

4 Conclusion

In this work, a novel method called SFR-GSN has been proposed
to identify the stage-related biomarkers, which gained remarkable
results on LUAD and BRCA datasets. First, the clinical data, RNA-
Seq data, and PPI were collected. Second, according to the
pathological stage, the GSNs were constructed by combining the
SSN and PPI. Third, based on GSNs, a two-round SFR was
conducted, which firstly used random forest to pre-screen and
later used RFECV to obtain the optimal feature sets. The CBR
was introduced to assist in identifying stage-related biomarkers.

Finally, the results of the proposed method showed that the
identified biomarkers were highly stage-specific and significantly
improved the F1 scores for cancer stage prediction. For the lung
adenocarcinoma dataset, the F1 score reached 97.68%, and for the
breast cancer dataset, it achieved 96.87%. The results outperform the
other conventional methods on both accuracy and F1 scores. Moreover,
the enrichment analysis of biomarkers was conducted to validate the
effectiveness of the proposed method in view of biological functions.
The proposed method exhibits superior performance in identifying
subtype-related biomarkers. The proposed method could be applied to
other cancers to offer new insight into cancer treatment prognosis.
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