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Purpose: To screen mitochondrial function-associated PCD-related biomarkers
and construct a risk model for predicting the prognosis of early breast cancer.

Methods: Data on gene expression levels and clinical information were obtained
from the TCGA database, and GSE42568 and GSE58812 datasets were obtained
from GEO database. The mitochondrial function-associated programmed cell
death (PCD) related genes in early breast cancer were identified, then LASSO
logistic regression, SVM-RFE, random forest (RF), and multiple Cox logistic
regression analysis were employed to construct a prognostic risk model.
Differences in immune infiltration, drug sensitivity, and immunotherapy
response were evaluated between groups. Lastly, the qRT-PCR was employed
to confirm the key genes.

Results: Total 1,478 DEGs were screened between normal and early breast
cancer groups, and these DEGs were involved in PI3K-Akt signaling pathway,
focal adhesion, and ECM-receptor interaction pathways. Then total
178 mitochondrial function-associated PCD related genes were obtained,
followed by a four mitochondrial function-associated PCD related genes
prognostic model and nomogram were built. In addition, total 2 immune
checkpoint genes were lowly expressed in the high-risk group, including
CD47 and LAG3, and the fraction of some immune cells in high- and low-risk
groups had significant difference, such asmacrophage, eosinophil, mast cell, etc.,
and the Top3 chemotherapeutics with significant differences were included
FH535, MK.2206, and bicalutamide. Finally, the qRT-qPCR results shown that
the CREB3L1, CAPG, SPINT1 and GRK3 mRNA expression were in line with the
bioinformatics analysis results.

Conclusion: Four mitochondrial function-associated PCD-related genes were
identified, including CREB3L1, CAPG, SPINT1, and GRK3, and the prognostic risk
model and nomogram were established for predicting the survival of early breast
cancer patient. The chemotherapeutics, containing FH535, MK.2206, and
bicalutamide, might be used for early breast cancer.
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Highlights

1. CREB3L1, CAPG, SPINT1, and GRK3 might be suitable for
clinical application in early breast cancer treatment.

2. The 4 mitochondrial function-associated PCD-associated
genes could be used as prognostic markers of early
breast cancer.

3. The prognostic nomogram could accurately predict survival of
early breast cancer.

1 Introduction

Malignant tumors are one of the major chronic diseases that
seriously threaten the health of global people. Since the 21st
century, the overall incidence and mortality of female breast
cancer have shown an upward trend (Nolan et al., 2023; Roy et al.,
2023). In 2020, the incidence and mortality of female breast
cancer ranks among the cancers with the highest global
incidence, with approximately 12.5% and 6.92% of the total
incidence and mortality of malignant tumors, respectively
(Sung et al., 2021). In China, whether in urban or rural areas,
the incidence and mortality of breast cancer ranks first and four
among female cancers, respectively, which has surpasses lung
cancer in terms of incidence (Qiu et al., 2021). With the
acceleration of the aging trend and the change of lifestyle, the
incidence and death toll of breast cancer in Chinese women are

expected to continue to rise, and will increase by 36.27% and
54.01% respectively by 2030 (Lei et al., 2021). Current treatment
methods for breast cancer include surgical treatment,
chemotherapy, radiotherapy, etc., but the survival rate of
patients is still relatively low. Therefore, it is necessary to
identify new biomarkers and develop effective prognostic
predictors for patients with early breast cancer.

Mitochondria is a highly dynamic structural organelle, and its
structure and proteins have high cellular phenotypic differences
(Guo et al., 2023; Nguyen et al., 2023). Mitochondria play an
important role in many aspects such as growth and development,
metabolism, diseases, death, and biological evolution (Chen et al.,
2023). Mitochondrial dysfunction can cause a range of diseases,
such as metabolic disorders, cardiomyopathy, neurodegenerative
diseases, and cancer (Calvo and Mootha, 2010; Nunnari and
Suomalainen, 2012). Moreover, mitochondria play a critical role
in providing energy for cellular functions, regulating cellular
signaling pathways, and controlling programmed cell death
(PCD) (Galluzzi et al., 2008). Mitochondria are the
convergence point of multiple cell death induction pathways,
which trigger various mechanisms of apoptotic and nonapoptotic
PCD (Kamradt and Makarewich, 2023). It has been
demonstrated that mitochondrial dysfunction and PCD
mechanisms are crucial for the development and spread of
malignant tumors (Kopecka et al., 2020; Saha et al., 2022;
Nguyen et al., 2023). Nevertheless, the interaction between
mitochondrial dysfunction and PCD in early breast cancer is

FIGURE 1
Flow chart of the present study.
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still not fully understood, and the detailed functional studies of
these processes in early breast cancer is also very limited.

In this study, a mitochondrial function-associated PCD-related
risk model was constructed to predict the efficacy and prognosis of
treatment intervention in early breast cancer. The flow chart of this
study was shown in (Figure 1). This study not only expands the
understanding of the invasiveness of early breast cancer, but also
helps to formulate more personalized and precise treatment
strategies for early breast cancer.

2 Materials and methods

2.1 Sources and preprocessing for data

The log2 (FPKM+1) expression data and clinical
information of BRCA were acquired from TCGA database.
The preprocessing of data is as follows: (a) Samples
containing Stage I information of early breast cancer
samples were retained, and other samples such as blanks
were removed; (b) Samples lacking survival time or with
zero survival time were eliminated from the analysis,
ensuring that only TCGA patient samples with available
prognostic information were included; (c) Samples with
missing values and unexpressed genes exceeding 50% of the
total sequencing number were excluded; (d) Genes not
expressed in more than 50% of the samples and genes were
removed; (e) All expression values were logarithmized using
log2 (X + 1). Finally, total 179 early breast cancer and
113 normal samples were included. Besides, we also
downloaded the datasets GSE42568 and GSE58812 from the
GEO database as the validation datasets. After we removed
samples without survival time or survival time = 0, total
104 and 107 early breast cancer samples were selected,
respectively.

2.2 Identification of mitochondrial function-
associated PCD related genes

Total 19 PCD patterns and key regulatory genes were
collected through literature search (Chen et al., 2023; Hu

et al., 2023), and after removing duplicates, total 1583 PCD-
related genes were obtained. Besides, 1,136 mitochondrial
function-related genes were obtained from MitoCarta
3.0 database (Rath et al., 2021).

2.3 Identification of DEGs

Screening of DEGs between early breast cancer and
normal samples was conducted utilizing the “limma”
package (version 3.34.7) (Liu et al., 2021). The Benjamin
and Hochberg method was utilized for multiple test
correction, and the corrected p-value (adj.p-value) was
obtained. DEGs meeting the criteria of FDR <0.05 and |
log2FC| ≥ 1 were obtained. In addition, “clusterProfiler”
package (version 4.0.5) (Yu et al., 2012) was employed to
conduct the enrichment analysis on the DEGs with the
threshold of adj. p-value <0.05.

2.4 Identifying mitochondrial function-
associated PCD related genes in
breast cancer

The crosstalk genes in DEGs, PCD-related genes, and
mitochondrial function-related genes were obtained, and
“VennDiagram” package (version 1.7.1) was used to visualize. In
addition, Pearson correlation analysis was performed on the RNA
seq data of TCGA early breast cancer samples to determine the genes
with threshold of correlation coefficient (|R|) > 0.6 and p < 0.001.
Then, the STRING database (version 11.0) was employed to
construct the protein-protein interaction (PPI) network of the
crosstalk genes.

2.5 Establishment and validation of a
prognostic risk model

To identify genes associated with prognosis, univariate Cox
regression analysis was conducted on the crosstalk genes by the
“survival” package (Rizvi et al., 2019) with the cutoff value of
p < 0.05. Then, three machine learning algorithms were
utilized to screen diagnostic genes, including LASSO logistic
regression model, SVM-RFE model and random forest (RF)
model, with “glmnet” package (Jiang et al., 2019), “e1071”
(Functions and Wien, 2012), and “randomForest” (Liaw and
Wiener, 2002) was utilized. The common genes obtained from
three machine learning algorithms were acquired as the
diagnostic genes, then the “survminer” package (version
0.4.9) was employed to conduct the multiple Cox logistic
regression analysis, and the RiskScore was constructed
utilizing the formula: RiskScore = β1X1 + β2X2 + . . . +βnXn

(where β indicates the regression coefficient, β1X1 + β2X2 + . . .

+βnXn indicates the linear combination of gene expression
values X). The samples from TCGA training and GEO
validation datasets were then broken into high- and low-risk
groups based on the median risk score. Eventually, survival
analysis was carried out utilizing the Kaplan-Meier curve

TABLE 1 The primer sequences.

Gene Sequences (5′-3′)

CREB3L1 (F) GGAGAATGCCAACAGGAC

CREB3L1 (R) ACCAGAACAAAGCACAAGG

CAPG (F) CGAACACTCAGGTGGAGATT

CAPG (R) TCCAGTCCTTGAAAAATTGC

SPINT1 (F) CTGGGCAGGCATAGACTTGA

SPINT1 (R) TCTGGGTGGTCTGAGCTAGT

GRK3 (F) GTCATCTCTGAACGCTGGCA

GRK3 (R) GGCCTCCTTGAAGGTTTCGA
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method, and the ROC curve was drawn to assess the prognostic
performance of RiskScore.

2.6 Correlation of clinical features
and RiskScore

By integrating the clinical information data of early breast cancer,
the distribution differences of RiskScore among different clinical
information were analyzed, containing age, TNM, ER, HER2, PR, etc.

2.7 Nomogram development

By integrating the clinical information data of early breast
cancer, the relationship between RiskScore and clinical features

(age, stage, etc.) were analyzed, and univariate and multivariate
COX regression analyses were conducted to identify independent
prognostic factors with threshold of p < 0.05. Subsequently, a
nomogram was developed the utilizing “rms” package (version
6.2-0) (Zhang et al., 2019).

2.8 Tumor microenvironment (TME)

“CIBERSORT” (Chen et al., 2018), “ssGSEA” (Xiao et al., 2020),
and “MCP-counter” (Becht et al., 2016) algorithms were employed
to calculate the fraction of immune cells. Moreover, the
“ESTIMATE” package (Hu et al., 2019) was employed to obtain
ESTIMATE, stromal, and immune scores. Moreover, the “ggcor”
package (version 0.9.8.1) was used to calculate the correlation
between RiskScore, diagnostic genes and immune cells.

FIGURE 2
(Continued).
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2.9 GSEA

The GSEA analysis was utilized to analyze the significant hallmark
gene sets (h.all. v7.4. symbols) and KEGG enrichment among the
RiskScore group with the cutoff value of p < 0.05 and |NES| > 1.

2.10 Drug sensitivity analysis

The GDSC database was used to assess the sensitivity of each
patient to chemotherapy drugs, and the IC50 was quantified with the
“pRRophetic” package (Geeleher et al., 2014).

FIGURE 2
(Continued). Identifying mitochondrial function-associated programmed cell death (PCD) related genes in breast cancer. (A) Volcano plot of differentially
expressed genes (DEGs) betweennormal and breast cancer groups. The enrichedGO-BP (B), GO-CC (C), andGO-MF (D). (E)KEGGenrichment analysis. (F)Venn
diagram of mitochondrial function-associated PCD related genes in breast cancer. (G–I) Protein-Protein Interaction (PPI) network of crosstalk genes.

FIGURE 3
(Continued).

Frontiers in Genetics frontiersin.org05

Wang and Jiang 10.3389/fgene.2024.1406426

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1406426


2.11 Immunotherapy response

Each patient to immune checkpoint treatment was assessed
using TIDE database, which was represented as TIDE score. The
immune cytolytic activity (CYT) score was calculated using the log-
average expression values of GZMA and PRF1, and the Third level
lymphoid structure (TLS) score of TLS feature genes (CCL2, CCL3,
and CCL4, etc.) were calculated using “GSVA” algorithm. In
addition, the gene expression data of immune checkpoint were
extracted based on the expression data of early breast cancer, and
Wilcoxon test was employed to compare the expression differences
of immune checkpoint genes among different RiskScore groups.

2.12 qRT-PCR

Finally, the qRT-PCR was conducted to verify the 4 key genes,
including CREB3L1, CAPG, SPINT1 and GRK3. The breast cancer

cell line T47D was obtained from the American Type Culture
Collection (ATCC), and cultured in RPMI 1640, supplemented
with 10% fetal bovine serum at 37 °C. The primer sequences were
listed in Table 1. GAPDH was used as an internal reference.

2.13 Cell apoptosis analysis

T47D cells in logarithmic growth phase were used for transfection.
Lipo6000™ reagent was combined with pcDNA3.1-vector, pcDNA3.1-
CREB3L1; si-NC and si-SPINT1weremixed evenly and added into 6-well
plates (100 μL per well) as vector group, pcDNA3.1-CREB3L1 group, si-
NC group and si-SPINT1NC group, respectively. The cells of each group
after transfection for 48 h were collected, rinsed twice with precooled PBS,
and resuspended in buffer to adjust the cell concentration to 1 × 106 cells/
mL. A total of 100 μL was added to a 5mL culture tube, and 5 μL of
AnnexinV-FITCandPIwere added, respectively.After incubation at 37°C
for 15min, the apoptosis rate of each group was detected.

FIGURE 3
(Continued). Identifying diagnostic genes. (A) 14 prognosis related genes obtained. (B) Expression of prognosis related crosstalk genes in normal and
breast cancer groups. Feature genes were obtained using Least absolute shrinkage and selection operator (LASSO) logistic regression model (C), SVM-
RFEmodel (D), and random forest model (E,F). (G) Venn diagram of diagnostic genes. Expression of diagnostic genes in normal and breast cancer groups
in TCGA training (H) and GSE42568 validation datasets (I). **, p < 0.01, ***, p < 0.001, and ****, p < 0.0001.
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FIGURE 4
Construction and validation of a prognostic risk model. (A) Multiple Cox logistic regression analysis. Survival status, risk scores, prognosis, receiver
operating characteristic (ROC) curves in the TCGA training (B), GSE42568 (C) and GSE5881 (D) validation datasets.
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3 Results

3.1 Identifying mitochondrial function-
associated PCD related genes in
breast cancer

A total of 1,478 DEGs were screened between normal and early
breast cancer groups, containing 534 upregulated and
944 downregulated DEGs (Figure 2A). These 1,478 DEGs were
involved in GO terms of ameboidal-type cell migration,
glycosaminoglycan binding, and collagen-containing extracellular
matrix (Figures 2B–D), and the involved KEGG pathways included
PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor
interaction (Figure 2E). As shown in Figure 2F, total 178 crosstalk
genes were obtained as mitochondrial function-associated PCD
related genes, and the PPI network of the crosstalk genes was
constructed (Figure 2G). In addition, we identified network
markers with high median values and performed a relative
permutation test (Figures 2H, I).

3.2 Establishment and validation of a
prognostic risk model

After performing univariate Cox regression analysis, total
14 prognosis related crosstalk genes were obtained (Figure 3A).
Also, the expression of these 14 prognosis related crosstalk
genes in normal and breast cancer groups was illustrated in
Figure 3B. Then, the feature genes were obtained using LASSO
logistic regression model (Figure 3C), SVM-RFE model
(Figure 3D), and random forest model (Figures 3E, F),
respectively. Thus, total 4 common genes obtained from
three machine learning algorithms were acquired as the
diagnostic genes (Figure 3G), including CREB3L1, CAPG,
SPINT1 and GRK3. Moreover, these 4 diagnostic genes
showed good diagnostic ability in TCGA training
(Figure 3H) and GSE42568 validation datasets (Figure 3I).
After multiple Cox logistic regression analysis (Figure 4A),
the RiskScore was built utilizing the formula: RiskScore =
GRK3 * 0.2494 + CREB3L1 * 0.1147 +SPINT1 * 0.1604 +

FIGURE 5
Correlation of clinical features and RiskScore. (A) The distribution differences of RiskScore among different clinical information. (B) Heatmap of
clinical factors and RiskScore. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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CAPG * (−0.1438). Besides, both the distribution of survival
status, risk scores, prognosis, ROC curves in the TCGA and
GEO validation datasets were displayed in Figures 4B–D,
respectively. Patients classified into the high-risk group
exhibited a noticeably poorer prognosis compared to those
categorized into the low-risk group; the AUCs for OS at 1, 3,
and 5 years were all above 0.7.

3.3 Correlation of clinical features
and RiskScore

By integrating the clinical information data of early breast
cancer, the distribution differences of RiskScore among different
clinical information were analyzed, and the results shown that
RiskScore showed significant differences among dead, ER, HER2,

FIGURE 6
(Continued).

Frontiers in Genetics frontiersin.org09

Wang and Jiang 10.3389/fgene.2024.1406426

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1406426


and PR (Figure 5A). To observe the relationship between clinical
factors and RiskScore, the heatmap was shown in Figure 5B.

3.4 Nomogram

Univariate and multivariate Cox regression analyses were
conducted to identify independent prognostic factors (Figures
6A, B), and age and RiskScore were identified as independent
prognostic factors. A nomogram was then constructed using
these factors (Figure 6C). The nomogram demonstrated accurate
prediction of mortality (Figure 6D) and a significant association
with patient prognosis (Figure 6E). The nomogram’s ROC revealed
that the AUCs at 1, 3, and 5 years were 0.994, 0.959, and 0.987,
separately (Figure 6F).

3.5 TME

The StromalScore and ESTIMATEScore had significant
differences among high- and low-risk groups (Figure 7A).
The fraction of 6, 12 and 2 immune cells showed marked

differences between high- and low-risk groups utilizing
“CIBERSORT,” “ssGSEA” and “MCP-counter” algorithms,
respectively (Figures 7B–D). Also, the correlation between
the RiskScore, 4 key genes and immune cells were shown in
Figures 7E, F.

3.6 GSEA, drug sensitivity analysis, and
immunotherapy response analysis

GSEA analysis found 2 significant hallmark gene sets
(Figure 8A) and 7 KEGG pathways (Figure 8B) among the
RiskScore group with the cutoff value of p < 0.05 and |NES| > 1,
including vasopressin regulated water reabsorption, circadian
rhythm mammal, and o glycan biosynthesis. In addition, the
differences in IC50 of 138 chemotherapeutics between different
RiskScore groups were compared and the
Top3 chemotherapeutics with significant differences were
included FH535, MK.2206, and bicalutamide (Figure 8C).
Besides, immunotherapy response analysis was carried out. No
significant difference on TIDE score, CYT, TLS, TMB in different
RiskScore groups (Figure 8D), while 2 immune checkpoint genes

FIGURE 6
(Continued). Construction of a nomogram. Univariate (A) and multivariate (B) Cox regression analyses. (C) A nomogram for predicting 1-, 3-, and 5-
year overall survival (OS). (D) Calibration curves for predicting 1-, 3-, and 5-year OS. (E) Kaplan-Meier analysis of the nomogram. (F) The Area Under
Curves (AUCs) for predicting 1-, 3-, and 5-year OS.
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were lowly expressed in the high-risk group, including CD47 and
LAG3 (Figure 8E).

3.7 Validation analysis

Finally, the 4 key genes were verified using qRT-PCR, including
CREB3L1, CAPG, SPINT1, andGRK3. As shown in Figure 9, the assays
confirmed that CREB3L1, CAPG, and SPINT1 were significantly
upregulated in breast cancer group, while GRK3 was significantly
downregulated when compared to normal group, respectively.

3.8 Effect of CREB3L1 and SPINT1 on
apoptosis of T47D cells

Flow cytometry was used to detect the apoptosis of
T47D cells 48 h after transfection. As shown in Figure 10,
the total apoptosis rate of pcDNA3.1-CREB3L1
transfection group was significantly higher than that of
vector control group (p < 0.001). Compared with the si-
NC control group, the total apoptosis rate of the si-
SPINT1 transfection group was significantly increased
(p < 0.001).

FIGURE 7
(Continued).
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4 Discussion

In this study, a total of 1,478 DEGs were screened between
normal and early breast cancer groups, and these 1,478 DEGs
were involved in PI3K-Akt signaling pathway, focal adhesion,
and ECM-receptor interaction pathways. The PI3K/Akt
pathway, which is crucial in various cellular processes, is
abnormally activated in cancers and contributes to the
occurrence and progression of tumors (He et al., 2021). Focal
adhesion is essential in tumour invasiveness and metastasis
(Shen et al., 2018). The extracellular matrix (ECM) is an
essential component of the tumor microenvironment, and
biological and mechanical alterations in the ECM have a
profound impact on tumor invasion, metastasis, immune
escape, and drug resistance (Gerarduzzi et al., 2020). In a
primary tumor mass, the ECM is precisely regulated in a
tumor-supporting manner, which consequently promotes
tumor progression and affects the invasion of cancer cells
(Mohan et al., 2020). Thus, we suspected that these DEGs
might be involved in the early breast cancer development
through PI3K-Akt signaling pathway, focal adhesion, and
ECM-receptor interaction pathways.

It’s significant to determine gene signatures to predict
prognosis or treatment responses based on specific gene sets
or hallmarks in the field of oncology. In this study, in order to
construct the prognostic risk model, three machine learning
algorithms were utilized to screen diagnostic genes, including

LASSO logistic regression model, SVM-RFE model and RF
model, and total 4 common genes obtained from three
machine learning algorithms were used to construct the
prognostic risk model, containing CREB3L1, CAPG, SPINT1,
and GRK3. The CREB3 family members are localized in the
endoplasmic reticulum membrane and function as transcription
factors after being cleaved by S1P and S2P proteases. In
mammals, the CREB3 family comprises five members, which
are crucial for protein secretion, survival, and lipid metabolism
(García et al., 2017). It is believed that the CREB3L1 abnormal
expression is the key driver of the malignant progression of
numerous cancers (Rose et al., 2014; Feng et al., 2017; Puls
et al., 2020). Pan et al. (2022) have found that
CREB3L1 contributes to the tumor growth and metastasis of
anaplastic thyroid carcinoma by altering the tumor
microenvironment. Besides, endoplasmic reticulum stress
(ERS) may reduce cell proliferation activity and promote cell
apoptosis by mediating the expression of CREB3L1 in glioma
(Yan et al., 2022). CAPG, also referred to as gCap39 or MCP, is a
part of the gelsolin superfamily and plays a significant role in
regulating actin assembly (Johnston et al., 1990). It’s reported
that higher expression of CAPG has been observed in several
metastatic cancers, indicating its involvement in cancer cell
invasion and metastasis (Nag et al., 2013; Van Impe et al.,
2013). Chi et al. (2019) also uncovered that CAPG enhances
the resistance of breast cancer to paclitaxel by transactivating
PIK3R1/P50. Huang et al. (2018) have revealed that CAPG

FIGURE 7
(Continued). Tumor microenvironment. (A) Differences of StromalScore and ESTIMATEScore among high- and low-risk groups. Differences of
fraction of immune cells between high- and low-risk groups utilizing “CIBERSORT” (B), “ssGSEA” (C) and “MCP-counter” (D) algorithms. Correlation
between the RiskScore, 4 key genes and immune cells in “CIBERSORT” (E), and “ssGSEA” (F) algorithms. *p < 0.05, **p < 0.01, ***p < 0.001, and ns, no
significant difference.
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promotes the metastasis of breast cancer by competing with
PRMT5 to modulate the transcription of STC-1. In addition,
CAPG could enhance the proliferation and invasion ability of
diffuse large B-cell lymphoma (DLBCL) cells and inhibit cell
apoptosis by activating the PI3K/AKT signaling pathway (Wang
et al., 2022). SPINT1, also known as HAI1, is a type I
transmembrane serine protease inhibitor that is commonly
present on the surface of epithelial cells (Hoshiko et al., 2013).
SPINT1 exerts significant effects on the development and
progression of a variety of human malignant tumors, such as
cell proliferation, invasion, migration, and metastasis (Shen et al.,
2019). For example, Tian et al. have illustrated that exosome-
mediated miR-221/222 targets SPINT1 to exacerbate tumor liver
metastasis in colorectal cancer (Tian et al., 2021). Moreover,
SPINT1-AS1 can promote the proliferation, migration and
apoptosis of breast cancer cells by regulating miR-let-7a/b/i-
5p, thus promoting the progress of breast cancer (Zhou et al.,
2021). GRK3, also referred to as β-adrenergic receptor kinase 2, is
a member of the GRK subfamily of kinases (Oliver et al., 2010).

Previous studies showed that the GRK3 aberrant overexpression
acts as a promoter mechanism in some kinds of tumors, including
breast cancer and prostate cancer, especially in metastasis (Li
et al., 2014; Billard et al., 2016). In colon cancer, downregulation
of GRK3 expression reduces cell proliferation and migration,
increases cell apoptosis, and impairs colon tumorigenesis in the
xenograft model, suggesting that GRK3 promotes the malignant
progression of colon cancer by mediating colon cancer cell
proliferation (Jiang et al., 2017). The above reports fully
demonstrate the reliability of our results, which were further
validated by qRT-PCR. In addition, ROC curves in the TCGA and
two GEO validation datasets were displayed, and the AUCs for
OS at 1, 3, and 5 years were all above 0.7, which indicating that
this prognostic risk model has good diagnostic performance for
early breast cancer patients.

The TME plays a crucial role in the occurrence and development of
tumors (Arneth, 2019). The TME contains multiple cell types, as well as
many factors such as growth factors, signal transductionmolecules, and
the extracellular matrix, and these factors can alter the gene expression

FIGURE 8
(Continued).
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FIGURE 8
(Continued). GSEA, drug sensitivity analysis, and immunotherapy response analysis. GSEA analysis found 2 significant hallmark gene sets (A) and 7 KEGG
pathways (B). (C) Top3 chemotherapeutics with significant differences between different RiskScore groups. (D)Difference of TIDE score, CYT, TLS, TMB in different
RiskScore groups. (E) Difference of expression of immune checkpoint genes in different RiskScore groups. *p < 0.05, **p < 0.01, and ns, no significant difference.

FIGURE 9
Validation analysis. The difference in clinical parameters between the two groups was analyzed using chi square test, and p < 0.05 was considered
statistically significant. *p < 0.05, **p < 0.01.
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of tumor cells through multiple pathways, directly affecting the growth
and metastasis of tumors (Xiao and Yu, 2021). In this study, three
algorithms were employed to calculate the fraction of immune
cells, including “CIBERSORT,” “ssGSEA” and “MCP-counter”
algorithms, and the results shown that the fraction of some
immune cells in high- and low-risk groups had significant
difference, such as macrophage, eosinophil, mast cell, etc.
Macrophages act as scavengers, modulating the immune
response against pathogens and maintaining tissue
homeostasis (Mehla and Singh, 2019). Tumor-associated
macrophages are one of the most prevalent immune cells in
the TME. In the early stages of tumor development, macrophages
can either directly enhance antitumor responses through killing
tumor cells or indirectly recruit and activate other immune cells
(Lopez-Yrigoyen et al., 2021). Eosinophils are granulocytic
leukocytes that reside in blood and tissues in the
gastrointestinal, breast, and reproductive systems (O’Sullivan
and Bochner, 2018). Normally, eosinophilia is not common in
healthy individuals, however, it is associated with helminth
infections, allergies, and some inflammatory conditions, as
well as cancers (Davis and Rothenberg, 2014; Sakkal et al.,
2016). Mast cells accumulate in the stroma around specific
tumors and are involved in the inflammatory reaction at the
edge of the tumor (Aller et al., 2019). The angiogenic cytokines

secreted by mast cells not only have a direct effect on facilitating
tumor vascularization, but also stimulate other inflammatory
cells in the tumor microenvironment to release other
angiogenic mediators (Cimpean et al., 2017). Therefore, we
speculated that these immune cells might play essential roles
in early breast cancer progression.

In addition, the differences in IC50 of 138 chemotherapeutics
between different RiskScore groups were compared, and the
Top3 chemotherapeutics with significant differences were
included FH535, MK.2206, and bicalutamide. The results
suggest that the RiskScore can effectively predict the
sensitivity of breast cancer patients to common chemotherapy
drugs. Li et al. (2023) constructed an EMT related lncRNA (ERL)
signal that can accurately predict the prognosis of breast cancer
patients. Through drug sensitivity analysis, it was found that the
drug resistance of high-risk group to doxorubicin, gemcitabine,
methodexate, palbiclib, and olaparib was higher than that of low-
risk group, while the drug resistance of high-risk group to
lapatinib was lower than that of low-risk group, suggesting
that ERLs signals can effectively predict the sensitivity of
breast cancer patients to commonly used chemotherapy drugs
(Li et al., 2023). This study also performed the immunotherapy
response analysis, and the results shown that 2 immune
checkpoint genes were lowly expressed in the high-risk group,

FIGURE 10
Effect of CREB3L1 and SPINT1 on apoptosis of T47D cells. ***p < 0.001.
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including CD47 and LAG3. CD47 is a transmembrane protein
that is universally expressed on human cells, but is overexpressed
on many types of tumor cells, which is an important tumor
antigen (Hayat et al., 2020). Through precise and comprehensive
reprogramming of the TME, the combination therapy containing
CD47 and other immune checkpoint inhibitors be superior to
that of monotherapy (Jiang et al., 2021). Upregulation of LAG3 is
necessary to control excessive activation and prevent the
occurrence of autoimmunity, and it’s reported that
LAG3 could be used as a cancer immunotherapy target
(Andrews et al., 2017). Thus, we suspected that two immune
checkpoint genes might be used as early breast cancer
immunotherapy target. Besides, the differences in IC50 of
138 chemotherapeutics between different RiskScore groups
were compared and the Top3 chemotherapeutics with
significant differences were included FH535, MK.2206, and
bicalutamide. Wu et al. (2015) have found that
FH535 inhibited metastasis and growth of pancreatic cancer
cells. Wang et al. (2020) have revealed that Akt inhibitor MK-
2206 reduces pancreatic cancer cell viability and increases the
efficacy of gemcitabine. Therefore, FH535, MK.2206, and
bicalutamide might be used for early breast cancer treatment.

Based on bioinformatics analysis, Ma et al. (2022)
successfully screened 5 key genes related to the progression,
prognosis and immunity of TNBC, namely, TOP2A, CCNA2,

PCNA, MSH2 and CDK6. In addition, Wang et al. established a
prognostic model for five genes (TNFRSF14, NFKBIA, DLG3,
IRF2 and CYP27A1) based on the cell immune related gene
module in TCGA-BRCA, which can effectively predict the
prognosis and immune model of breast cancer patients
(Wang et al., 2023). The previous research has similarities
with the research methods of this study, but there are also
differences. Ma et al. (2022) finally screened the pivotal genes
related to TNBC prognosis and immunity, while we finally
screened the cell death characteristic genes related to
mitochondrial function in early breast cancer. Moreover, we
speculate that CREB3L1, CAPG, SPINT1 and GRK3 may
participate in the process of breast cancer through
vasopressin regulated water reabsorption, circumferential
rhithm mmal, and o glycan biosynthesis pathways
(Figure 11). In addition, we also conducted drug sensitivity
analysis and immunotherapy response analysis, laying the
foundation for the next clinical validation.

This study also has some limitations. Firstly, the screened 4 key
mitochondrial function-associated PCD-related genes, immune cells
and chemotherapeutics should be further tested through experimental
analyses. Secondly, whether the prognostic model and nomogram can
be applied in clinic needs further study. Lastly, the function and
mechanism of the 4 key mitochondrial function-associated PCD-
related genes in early breast cancer need be further explored.

FIGURE 11
Possible molecular mechanism map of four key genes involved in early breast cancer progression.
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5 Conclusion

This study developed a new risk prognostic model for patients with
early breast cancer based on 4 mitochondrial function-associated PCD-
related genes. This risk prognostic model can precisely assess early breast
cancer patients’ survival and offers potential biomarkers or treatment
targets for early breast cancer patients. These findings may contribute to
the development of therapeutic strategies targeting mitochondrial
function-associated PCD for early breast cancer.
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