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Accurately predicting the binding affinities between Human Leukocyte Antigen
(HLA) molecules and peptides is a crucial step in understanding the adaptive
immune response. This knowledge can have important implications for the
development of effective vaccines and the design of targeted
immunotherapies. Existing sequence-based methods are insufficient to
capture the structure information. Besides, the current methods lack model
interpretability, which hinder revealing the key binding amino acids between
the two molecules. To address these limitations, we proposed an interpretable
graph convolutional neural network (GCNN) based prediction method named
GIHP. Considering the size differences between HLA and short peptides, GIHP
represent HLA structure as amino acid-level graph while represent peptide SMILE
string as atom-level graph. For interpretation, we design a novel visual
explanation method, gradient weighted activation mapping (Grad-WAM), for
identifying key binding residues. GIHP achieved better prediction accuracy
than state-of-the-art methods across various datasets. According to current
research findings, key HLA-peptide binding residues mutations directly impact
immunotherapy efficacy. Therefore, we verified those highlighted key residues to
see whether they can significantly distinguish immunotherapy patient groups. We
have verified that the identified functional residues can successfully separate
patient survival groups across breast, bladder, and pan-cancer datasets. Results
demonstrate that GIHP improves the accuracy and interpretation capabilities of
HLA-peptide prediction, and the findings of this study can be used to guide
personalized cancer immunotherapy treatment. Codes and datasets are publicly
accessible at: https://github.com/sdustSu/GIHP.
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1 Introduction

HLA also known as MHC (major histocompatibility complex) molecules, are
responsible for presenting peptides derived from intracellular or extracellular proteins
to T cells. It is a crucial step in understanding and predicting immune responses, such as
antigen presentation and T-cell activation (Kallingal et al., 2023). HLA molecules are
classified into two major classes: class I and class II. Each class has different subtypes, and
their binding abilities vary depending on the specific HLA subtype. For HLA class I, the
open binding groove close to both ends restrict the size of the bounded peptides between
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8–12 residues, whereas HLA class II incorporates peptides of length
13–25 residues (Wang and Claesson, 2014). As a results, existing
methods can be classified into allele-specific and pan-specific
methods. Allele-specific methods focus on predicting the binding
affinity between a specific HLA allele. Pan-specific methods aim to
predict HLA-peptide binding in a more general way, without the
need for allele-specific training data. (Gizinski et al., 2024).

Allele-specific methods train separate models for each MHC allele
and make predictions for individual alleles. NetMHC (Lundegaard
et al., 2008) is a widely used allele-specific method, which utilize
machine learning algorithm to learn the relationship between
peptide sequences and their binding affinities to specific MHC
alleles. NetMHC 4.0 (Andreatta and Nielsen, 2016) is also a
sequence-based allele-specific method, which uses both
BLOSUM62 and sparse encoding schemes to encode the peptide
sequences into nine amino acid-binding cores. In comparison with
the HLA (around 360aa in length), peptides length are much shorter,
and such methods must take insertion methods to reconcile or extend
the original sequence. In addition, deep learning-based methods have
also been developed forMHC-peptide binding prediction. DeepMHCII
(You et al., 2022), which utilizes deep convolutional neural networks
(CNNs) to capture complex sequence patterns and interactions between
peptide and MHC class II molecules. It takes the peptide and MHC
protein sequences as input and uses multiple layers of convolutional
filters to extract features from the sequences. These filters scan the input
sequences at different lengths, capturing both local and global patterns.
The extracted features are then fed into fully connected layers to make
predictions of the binding affinity. MHCAttnNet (Venkatesh et al.,
2020) utilizes a combination of bidirectional long short-term memory
(Bi-LSTM) and attention mechanisms to capture important features
and dependencies in MHC- peptide interactions. The Bi-LSTM
processes the sequences in both forward and backward directions,
capturing the dependencies and context in the data. The attention
mechanism allows the model weight different parts of the input
sequences based on their relative importance. This enables the
model to focus on the most relevant regions of the peptide and
MHC sequences during the prediction process. SMM-align (Nielsen
et al., 2007) utilizes structural and sequence-based features to predict
binding affinities for MHC class I alleles. It employs a PSSM alignment
algorithm to align target peptide sequences with known binders and
derive binding predictions. MHC-NP (Giguere et al., 2013) also
incorporate structure with sequence-based features and employs a
random forest regression model to make predictions. Allele-specific
methods are particularly useful when the focus is on specific alleles of
interest, allowing formore accurate predictions tailored to those specific
alleles. However, developing and maintaining separate models for each
allele requires a significant amount of experimental binding data and
computational resources.

On the other hand, pan-specific methods have the advantage of
predicting binding affinities not only for alleles present in the training
data but also for new, unseen alleles. NetMHCpan and NetMHCIIpan
(Reynisson et al., 2020) are widely used pan-specificmethods. They take
sequence feature as input, utilizes artificial neural networks (ANNs) to
learn the relationship between peptide sequences and their binding
affinities to MHCs. They consider various sequence-based features,
including amino acid composition, physicochemical properties, and
binding motifs. In comparison with these two methods, another pan-
specific method MHCflurry (O’Donnell et al., 2018; O’Donnell et al.,

2020) integrates additional information, such as peptide processing
predictions and binding affinity measurements from mass
spectrometry-based experiments, to enhance its predictions. Some
sequence-based methods, such as BERTMHC (Cheng et al., 2021),
leverage the power of the BERT language model to improve their
performance. The BERT languagemodel is pre-trained on a vast corpus
of text data, which enables it to capture intricate patterns and
dependencies within input sequences effectively. One of the
advantages of using BERT for encoding peptide sequences is its
ability to capture long-range dependencies and contextual
information. This is particularly important in MHC binding
prediction, where specific amino acid positions within a peptide can
significantly affect the binding affinity. Because structure determines the
function of proteins, therefore, somemethods also incorporate structure
information into their predictions. MixMHCpred-2.0.1 (Gfeller et al.,
2018) employs a deep learning architecture capable of learning complex
patterns and relationships between peptide sequences and MHC
binding affinities. The model is trained on a diverse set of MHC
alleles and covers a wide range of peptide lengths. This allows it tomake
accurate predictions for a broad range of MHC-peptide combinations.
NetMHCpan-4.0 (Jurtz et al., 2017) utilizes a combination of structural
and sequence-based features. It incorporates information from MHC-
peptide complex structures and uses a machine learning approach to
make pan-specific predictions. RPEMHC (Wang et al., 2024) is a deep
learning approach that aims to improve the prediction ofMHC-peptide
binding affinity by utilizing a residue-residue pair encoding scheme. In
RPEMHC, the peptide sequence andMHC binding groove are encoded
as one-hot vectors, representing each amino acid residue and its
position. AutoDock is a widely used molecular docking software
that can be employed for MHC-peptide binding prediction. It uses a
Lamarckian genetic algorithm to explore the conformational space and
predict the binding modes and affinities of peptides within the MHC
binding groove. By modelling the docking between the HLA protein
and peptide ligands these methods have achieved accurate binding
prediction performance. However, docking methods rely on sampling
different conformations of the peptide and MHC molecule to find the
best binding pose. However, the conformational space of peptides and
MHC molecules can be vast, and exhaustively sampling all possible
conformations is computationally infeasible.

In fact, no matter allele-specific or pan-specific methods, they all
can be broadly categorized into twomain categories: sequence-based
and structure-based methods. Sequence-based methods utilize
machine learning techniques to capture the sequence motifs and
physicochemical properties important for HLA-peptide binding.
These methods employ various algorithms, such as support
vector machines (SVMs), random forests, or ANNs, to learn the
relationships between peptide sequences and binding affinities from
large datasets. Sequence-based methods have the advantage of being
computationally efficient and applicable to a wide range of HLA
alleles and peptides. Structure-based methods leverage the three-
dimensional structures of HLA molecules and peptides to predict
binding affinities. Molecular docking algorithms, such as AutoDock,
are commonly used to explore the conformational space and
calculate binding energies. These methods require knowledge of
the 3D structures of the HLA molecule and peptide, limiting their
applicability to cases where experimental structures are unavailable.
Recent advancements in deep learning, such as CNNs and recurrent
neural networks (RNNs), have shown promise in HLA-peptide
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binding affinity prediction. Deep learning-based methods can
effectively capture complex sequence patterns and structural
features, leading to improved prediction accuracy (Wang et al.,
2023). These models often incorporate encoding schemes to
represent peptide sequences or structural features and are trained
on large datasets to learn the relationships between sequences and
binding affinities. Despite notable progress, HLA-peptide binding
affinity prediction still faces challenges and have some limitations.
First, deep learning models are often considered as black boxes,
meaning they lack interpretability. It can be challenging to
understand the specific features or patterns that contribute to the
model’s predictions. Interpretability is crucial in immunology
research to gain insights into the molecular mechanisms
underlying MHC-peptide interactions and to guide experimental
studies; Second, existing methods often rely on sequence-based
encoding schemes due to the limited availability of
experimentally determined 3D structures for HLA-peptide
complexes. While sequence information is informative, the
exclusion of structural details may limit the accuracy and
coverage of predictions, particularly for cases where structural
features play a crucial role. Even some tools consider structure
information, they seldom consider the structure features at the
amino acids level. Besides, the length difference between the
peptides that HLA can bind (typically around 8–15 amino acids)
and the length of HLA molecules (which can be over 360 amino
acids) poses a challenge in HLA-peptide binding affinity prediction.
Furthermore, unlike HLAs, peptides are too short to form stable
structures. All these drawbacks are not well solved by
existing methods.

Considering all these limitations, we proposed GIHP, which is
an interpretable GCNN-based algorithm for the prediction of
peptides binding to pan HLA molecules. By representing
peptide SMILE strings (Quiros et al., 2018; Meng et al., 2024)
and HLA structures as attributed graphs, GCNNs can effectively
model the pairwise interactions between amino acids and capture
both local and global structural features. Furthermore, GIHP has a
novel visual explanation method called Grad-WAM for HLA-
peptide binding affinity prediction and interpretation. By
analyzing the learned representations and interactions within
the graph structure, the Grad-WAM technique can identify the
key residues that contribute most significantly to the HLA-peptide
binding process. Comprehensive comparative evaluation results
demonstrate that the GIHP achieves good performance across
diverse benchmark datasets. By applying the GIHP framework to
several cancer immunotherapy datasets, we have identified
numerous promising biomarkers that can effectively distinguish
patients with and without treatment response. Moving forward,
the insights gained from the GIHP analysis can be leveraged to
guide the development of more personalized cancer
immunotherapy strategies.

2 Materials and methods

2.1 Data collection and processing

We collected human HLA-peptide interaction datasets from
published papers or publicly available databases. (Table 1).

Wang-2008 Dataset (Wang et al., 2008): Experimentally
measured peptide binding affinities for HLA class II molecules.
The processed data set had 24,295 interaction entries in total with
ligand length ranging from 16 to 37 and have 26 unique HLA
molecules. HLA DP and DQ molecules are covered.

Wang-2010 Dataset (Wang et al., 2010): Experimentally
measured peptide binding affinities for MHC class II molecules.
After preprocessing, the dataset contains 9,478 measured affinities
and covers 14 MHC class II alleles with peptides length ranging
from 9 to 37.

Kim-2014 Dataset (Kim et al., 2014): this dataset was obtained
from the Immune Epitope Database (IEDB) (Vita et al., 2019),
including binding affinity data compiled in 2009 (BD 2009), 2013
(BD 2013) and also include a blind datasets. Blind datasets refer to
data resulting after subtracting BD2009 from BD 2013. For all these
three datasets, only human datasets were kept for training. After
preprocessing the dataset contains 268,189 interactions in total, with
peptides length ranging from 8 to 30.

Jurtz-2017 Dataset (Jurtz et al., 2017): this dataset is originally
designed for training of NetMHCPan-4.0. The final processed
dataset has 3,618,591 entries in total with ligand length ranging
from 8 to 18.

Jensen-2018 Dataset (Jensen et al., 2018): this dataset is used for
training of NetMHCIIpan-3.2 (Karosiene et al., 2013), which
contains HLA class II binding affinities retrieved from the IEDB
in 2016. The 2016 data set contains 131,008 data points, covering
36 HLA-DR, 27 HLA-DQ, 9 HLA-DP molecules and 15,965 unique
peptides. The peptides length range from 9 to 33.

Zhao-2018 Dataset (Zhao and Sher, 2018): this dataset is
compiled for training IEDB tools as well as the MHCflurry
(O’Donnell et al., 2018). The dataset contains 21,092 binding
relations, covering 18 HLA-DR, 19 HLA-DQ, 16 HLA-DP
molecules and 2,168 unique peptides. The peptides length is 15.

Reynisson-2020 dataset (Reynisson et al., 2020): this dataset is
originally collected for training NetMHCpan-4.1 and
NetMHCIIpan-4.0 methods. The dataset covering 161 distinct
HLA class I molecules, 4,523,148 distinct peptides, with peptides
length ranging from 8 to 15.

For all the collected training datasets, only binding affinity
values in IC50nM format are kept, which are log-transformed to
fall in the range between 0 and 1 by applying 1−log (IC50 nM)/log
(50k) as explained by Nielsen et al. (2003). When classifying the

TABLE 1 Summary of the collected datasets after preprocessing.

Name HLAs Peptides HLA-peptide
interactions

Wang-2008 26 4,421 24,295

Wang-2010 14 3,902 9,478

Kim-2014 183 28,428 268,189

Jurtz-2017 124 3,307,868 3,618,591

Jensen-2018 72 15,965 131,008

Zhao-2018 53 2,168 21,092

Reynisson-
2020

161 4,523,148 4,795,633
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peptides into binders or non-binders a threshold of 500 nM is used.
This means that peptides with log50k transformed binding affinity
values greater than 0.426 are classified as binders. We consolidated
all the collected datasets, removing any duplicate entries, to arrive at
a final integrated dataset comprising 160,253 unique HLA-peptide
interactions, covering 223 distinct HLA alleles and 35,481 peptide
sequences. To further verify the generality of our method, we
collected protein-peptide binding data from pepBDB (Wen et al.,
2019) database, after deleting peptides short than 8aa, we got
12,655 interactions between 11,055 proteins and 7,811 peptides.
Because our method takes HLA and protein structure as input, all
the structure data are downloaded from the PDB (Berman et al.,
2000) and AlphaFold database (Varadi et al., 2022) and some are
predicted by alphafold2 (Jumper et al., 2021) and Rosettafold (Baek
et al., 2021). Only high-resolution experimental structures (e.g.,
X-ray crystallography or cryo-EM data with resolution better
than 3.0 Å) were included. All structural models, whether
experimental or predicted, were subjected to validation using
atomic contact evaluation, and overall model quality assessment.
Only structures that passed these validation checks were retained for
further analyses.

To evaluate whether the key binding residues identified by our
method can effectively differentiate patients who benefit from
immunotherapy, we collected relevant breast, bladder, and pan-
cancer treatment datasets from the cBioPortal resource (Cerami
et al., 2012), as shown in Table 2. Key binding residues mutation
could lead to binding affinity change between HLA and peptides.
Binding affinity change has been demonstrated as a biomarker of
immunotherapy efficiency (Kim et al., 2020; Seidel et al., 2021;
Murata et al., 2022). For each patient, only SNP mutations are kept,
if the SNP locates on the key binding site of HLA or peptide, then we
separate them in one group, otherwise in the other group. Then we
conduct survival analysis for the two groups.

Samstein-2019 dataset (Samstein et al., 2019): The cohort
consisted of 1,662 patients, received at least one dose of immune
checkpoint inhibitor (ICI) therapy. The cohort encompassed a
variety of cancer types with an adequate number of patients for
analysis. In detail, 146 patients received anti-CTLA4, 1,447 received
anti-PD1 or PD-L1, and 189 received both. This is a pan-cancer
dataset, including 350 cases of non-small cell lung cancer (NSCLC),
321 cases of melanoma, 151 cases of renal cell carcinoma (RCC),
214 cases of bladder cancer, and 138 cases of head and neck
squamous cell cancer.

Miao-2018 dataset (Miao et al., 2018): this dataset consists of
249 patient tumors from six different cancer types: melanoma (N =
151), non-small cell lung cancer (N = 57), bladder cancer (N = 27),

head and neck squamous cell carcinoma (N = 12), anal cancer (N =
1), and sarcoma (N = 1). These patients were treated with anti-PD-
1 therapy (N = 74), anti-PD-L1 therapy (N = 20), anti-CTLA-
4 therapy (N = 145), or a combination of anti-CTLA-4 and anti-PD-
1/L1 therapies (N = 10). A small proportion of patients (N = 7)
received a combination of anti-PD-1, anti-PD-L1, or anti-CTLA-
4 therapy with another immunotherapy, targeted therapy, or
cytotoxic chemotherapy.

Razavi-2018 dataset (Razavi et al., 2018): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/breast_msk_2018.tar.gz.

Clinton-2022 dataset (Clinton et al., 2022): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/paired_bladder_2022.tar.gz.

Aaltonen-2020 dataset (Consortium et al., 2020): This dataset is
downloaded from cBioPortal: https://cbioportal-datahub.s3.
amazonaws.com/pancan_pcawg_2020.tar.gz.

2.2 Methods

The overall framework of GIHP is illustrated in Figure 1. GIHP
takes HLA structure and peptide SMILE string as input. In the input
representation module, HLA is represented as an attributed residue-
level graph, while the peptide is represented as an attributed atom-
level graph. Then a multi-layer GCNNs is used to learn the high-
level features, and the learned features are contacted and fed into the
MLP layer for final binding affinity prediction. To enhance the
results interpretability, we introduced a novel visual interpretation
method called Grad-WAM. Grad-WAM leverages gradient
information from the last GCN layer to assess the significance of
each neuron in determining affinity.

2.2.1 Input representation
Graph-based protein structure representation has inherent

advantages over traditional sequence-based approaches in
capturing true binding events. For each HLA molecular, we take
both structure and sequence information into consideration. Given
one of our key objectives is to identify the critical binding amino acid
residues, we have represented the HLA proteins as residue-level
relational graphs GH � (v, ε), where v is the set of amino acids, ε is
the set of edges. As shown in Table 3, we describe the node attributes
by integrating sequence and structural property, including amino
acid type, chemical properties, charges, etc., while the edge attributes
encompass connection types, distances, and structural information.
We consider four types of bond edges including Peptide Bonds,
Hydrogen Bonds, Ionic Bonds and Disulfide Bridges.

Considering that the length of peptides binding to MHC class II
is between 13–25 residues, and the length is around nine for peptides
binding to MHC class I. Therefore, the peptide length is relatively
short compared to HLAs (over 360aa). In this study, we represent
peptides as SMILES-like sequences and then transform them into
graphs using a molecular graph representation method inspired by
RDKit (https://www.rdkit.org). The attributes of each node vi are
shown in Table 4. eij ∈ ε is covalent bonds between the ith and the
jth atoms. The edge attributes depending on the electrons shared
between atoms, resulting in single, double, or triple bonds,
respectively.

TABLE 2 Immunotherapy related dataset and three cancer datasets.

Name Type Patients SNP mutations

Samstein-2019 Pan-cancer 1,662 14,876

Miao-2018 Pan-cancer 249 102,207

Razavi-2018 Breast cancer 1,756 7,420

Clinton-2022 bladder Cancers 1,245 24,277

Aaltonen-2020 Pan-cancer 2,583 347,994
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2.2.2 Graph convolutional neural network module
LetA be the adjacency matrix, andX be the feature matrix of the

given graph. Each GCN layer takesA and node embeddings as input
and outputs the final embeddings. As shown in Eqs 1, 2.

H l+1( ) � GCN H l( ), A( ) (1)
H l+1( ) � ReLU D̂

−0.5
ÂD̂

−0.5
H l( )W l+1( )( ) (2)

Where, H is the embeddings, and H(0) � X, W(l+1) are trainable
weight matrix, D̂ is the diagonal node degree matrix of A.

After obtaining the vector representations of HLA and peptide,
they are concatenated and fed into a Multi-Layer Perceptron (MLP)
to predict the binding affinity score. TheMLP consists of three linear
transformation layers, each followed by a Rectified Linear Unit
(ReLU) activation function and a dropout layer with a dropout
rate of 0.1, as in (Öztürk et al., 2019). The Mean Squared Error
(MSE) is employed as the loss function to measure the discrepancy
between predicted and actual affinity scores. MSE is defined in Eq. 3.

MSE � 1
n
∑n

i�1 Pi − Yi( )2 (3)

Where, n is the sample size, Pi and Yi are the predictive and true
values of the ith interaction pair, respectively.

2.2.3 Gradient-weighted activation mapping
While Grad-CAM has been successfully applied to various

computer vision tasks, it is not directly applicable to graph-
structured data. Therefore, in this paper we proposed a novel
results interpretation methods called Grad-WAM, which can be
used for identifying key binding related residues. Grad-WAM

FIGURE 1
The overall framework of GIHP.

TABLE 3 The node features of HLA graph.

Name Description Dim

Residue type We utilize Blosum62, 20 types of amino acids plus 1 unknown 21

Structure mapping Included α-helix (H), residue in isolated β-bridge (B), extended strand, participates in β ladder (E), hydrogen bonded turn (T),310
helix (G), π-helix (I), bend (S) and coil (C)

8

AA position the position of α-carbon in each residue to record their 3D position 3

Hydrogen donor or acceptor Donor: R, K, W. Acceptor: D, E. Donor and acceptor: N, Q, H, S, T, Y 4

Physicochemical properties We utilize a set of 7 physicochemical properties for amino acid types (AAPHY7). These features include steric parameters,
hydrophobicity, volume, polarizability, isoelectric point, helix probability, and sheet probability

7

TABLE 4 Node features of peptide graph.

Name Description Dim

Atom type [H, C, N, O, F, Cl, S, Br, I] (one-hot) 9

Atomic Num The atomic number (integer) 1

Acceptor Accepts electrons [0/1] (binary) 1

Donor Donates electrons [0/1] (binary) 1

Aromatic In an aromatic system [0/1] (binary) 1

Hybridization [sp, sp2, sp3] (one hot) 3

Hydrogens Number of connected hydrogens (integer) 1

Formal charge Formal charge of the atom (integer) 1

Explicit valence Explicit valence of the atom (integer) 1

Implicit valence Implicit valence of the atom (integer) 1

Explicit Hs Number of implicit Hs the atom is bound to (integer) 1

Radical electrons Number of radical electrons for the atom (integer) 1
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measure the contribution of each residue for the decision of
binding by taking use of the gradient information in the last
GCN layer. Grad-WAM utilizes a weighted combination of the
positive partial derivatives of the feature maps with respect to the
interaction values to generate the corresponding visual
explanations. Considering the contribution of each residue is
not equal, different from the explanation method proposed in
MGraphDTA (Yang et al., 2022), we introduce an additional
weight ω (Eq. 4) gradient values.

ω � ∑
i
αi[ ] · ReLU ∂P

∂Ti
( ),∀ i | iϵT{ } (4)

Where, ReLU is the activation function, P is the predictive value as
in Eq. 5.Ti is the feature value of the ith node on the feature mapT of
the last GCN layer. αi is the gradient value of the ith node defined in
Eq. 6. ∂P

∂Ti
is the partial derivative as in Eq. 7.

P � ∑
i
αi · ReLU ∂P

∂Ti
( ) · Ti (5)

αi �
∂P
∂Ti

∂P
∂Ti

+ Ti · ∂2P
∂Ti( )2

(6)

∂P
∂Ti

� αi · ∂P∂Ti
+ Ti · αi · ∂2P

∂Ti( )2 (7)

In this way, the contribution of residues to the prediction of
binding affinity is calculated. For visual explanation, residues are
display utilizes colors, ranging from blue to red. A higher gradient
value corresponds to a redder color, indicating the key role of that
amino acid in the interaction.

3 Results

3.1 Performance comparisons with
other methods

Four widely used performance metrics were employed to measure
methods’ performance. Including accuracy (Acc),MatthewsCorrelation
Coefficient (MCC), sensitivity (Sn), and the specificity (Sp). The
definitions of these four metrics are as follows: Eqs 8–11.

Acc � TP + TN

TP + TN + FP + FN
(8)

Sn � TP

TP + FN
(9)

Sp � TN

TN + FP
(10)

MCC � TN × TP − FN × FP																																					
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (11)

Where, TP is True Positives, TN is True Negatives, FP is False
Positives, and FN is False Negatives. In addition, by comparing the
predicted and true values, predictions were assessed to be true or
false. The receiver operating characteristic curves (ROC) were
generated for all the methods, and the performance of each
algorithm to discriminate between binders and nonbinders was
analyzed by calculating the area under the ROC curve (AUC) as
an estimate of prediction performance.

We compare GIHP with state-of-the-art allele and pan-specific
baselines including NetMHC-4.0 (Andreatta and Nielsen, 2016),
NetMHCpan-4.0 (Jurtz et al., 2017), PickPocket-1.1 (Zhang et al.,
2009), SMMPMBEC (Kim et al., 2009), MHCFlurry (O’Donnell
et al., 2018), MixMHCpred-2.0 (Bassani-Sternberg et al., 2017) and
NetMHCcons-1.1 (Karosiene et al., 2012). To eliminate the impact
of data variations, all models were retrained and tested using our
new collected and processed dataset. 10-fold cross-validation (CV)
was applied. The data set is divided into 10 folds. During each
iteration, one of the 10 partitions is designated as the validation
dataset, while the remaining nine partitions are utilized to train the
model. The final performance is determined by calculating the
average performance across all 10 individual iterations. As shown
in Figure 2, on average, GIHP outperform all the compared
prediction methods. It is worth noting that not every method is
suitable for every HLA and peptide length. To make the
performance comparison fairer and more reasonable, we train
allele-specific models with their required HLAs and peptide
length, which included in our datasets.

To make comparisons more comparable and test methods
performance on other protein-peptide binding datasets, a
separate independent test is conducted using the data collected
from pepBDB, which have no overlap with the above training
data. This independent test data set serves as an unbiased
validation source to assess the performance of different tools,
which is relatively more objective, and can test models’
generalization ability. 10-fold cross validation is applied, after
each epoch average results are calculated. Results on the pepBDB
independent test data is shown in Figure 3.

On average, GIHP achieved highest AUC value. In this
independent test data, GIHP achieved the highest AUC of
0.88 and the highest Sp score of 0.98. In contrast, NetMHCPan-
4.0 and Pickpocket-1.1 attained AUC values of 0.76 or lower, and
Acc scores of 0.71 or lower when evaluated on this new dataset.
Difference from the results on the above part, MHCflurry got AUC
up to 0.8. Similar with our method, MHCflurry harness the power of
deep learning and a comprehensive dataset to improve the
prediction of HLA-peptide binding affinities. Our model
outperforms both allele and pan-specific methods, demonstrate
its ability to achieve higher prediction accuracy and robustness
generality for all kinds of training data.

For evaluating the performance our method under different
peptide length. We collected independent test set and external test
set fromTransPHLA, which can be downloaded from https://github.
com/a96123155/TransPHLA-AOMP/tree/master/Dataset. In the
collected datasets, 9-mer peptides comprising the largest
proportion, while the number of 13-mer and 14-mer peptides is
very small. Our model’s performance on the independent test set
and external test set for different peptide lengths are shown in
Figures 4A, B respectively. As shown in Figure 4, our methods can
achieve good performance on all kinds of peptide length.

3.2 Key binding residues on HLAs

The binding of peptides to HLA molecules occurs within
specialized regions called binding pockets. HLA class I molecules
have a peptide-binding groove formed by two alpha helices (α1 and
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α2) and a beta sheet platform. Within this groove, there are seven
pockets (numbered from A to F, shown in Figure 5A) that interact
with specific amino acid residues of the bound peptide. HLA class II
molecules are involved in presenting peptides derived from
extracellular proteins to helper T cells. HLA class II binding
pockets are formed by two chains: the alpha chain (α) and the
beta chain (β). Each chain consists of two domains: the α1 and
β1 domains form the peptide-binding groove, while the α2 and

β2 domains provide structural support. The binding groove of HLA
class II molecules is open at both ends, allowing longer peptides to
bind compared to HLA class I molecules. The binding pockets in
HLA class II molecules are referred to as P1, P4, P6, P7, P9
(Figure 5B). With our GIHP results interpret module, many key
binding residues on both HLA class molecules and the
corresponding peptides are identified. Although some residues
with high activity scores locates outside of binding pockets, most

FIGURE 2
Performance comparison results.

FIGURE 3
Independent test results on pepBDB datasets.
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of them locates on one of the binding pockets. As shown in Figures
5C,D, 45 residues with highest activity scores onHLAs are identified,
among them 26 locates on HLA class I pockets, and 19 locates on
HLA class II pockets.

Position 159 has the highest activity score on pockets A. Other
positions including 59, 171, 167, seven and 66. According to current
research, position seven is a pocket A’s floor residue. This residue
creates a hydrophobic environment within the pocket A and interact
with the side chain of the anchor residue. Although residue on
position 159 has no evidence of directly involved in peptide binding
interactions, it has structural and functional implications for the
overall stability and conformation of the pocket A region (Ma et al.,
2020). It potentially contributes to the shape and electrostatic
properties of the pocket, indirectly affecting the binding
preferences and stability of the peptides presented by the HLA
class I molecule. However, the specific role and impact of residue
159 on the pocket A’s function vary among different HLA alleles and
need further study for a comprehensive understanding. On pockets
B, substitutions at positions 70 was found to yield a significantly
distinct peptide-binding repertoire in HLA-A molecules when
compared to HLA-B molecules. Positions 167 and position 67 on
pocket B has been demonstrated as key peptide-binding residues.
Besides, substitutions at positions 67 and nine exert a significant
influence on the peptide-binding repertoire (van Deutekom and
Keşmir, 2015). Position 97 has the highest activity score on pockets
C. Position 97 is known to be a critical residue for peptide binding
and presentation. This residue locates near the C-terminal anchor
residue of the bound peptide and contributes to the formation of the
peptide-binding groove. The amino acid at position 97 can
significantly influence the peptide-binding specificity and affinity
of the HLA molecule. Substitutions or variations at this position can
alter the size, shape, or electrostatic properties of the pocket C,
thereby affecting the recognition and binding of specific peptides.
Several studies have investigated the impact of position 97 on
peptide binding and immunological responses (Moutaftsi
et al., 2006).

Considering the residues with high activity scores on HLA class
II pockets, position nine is crucial for determining the peptide-
binding specificity of the HLA class II molecule. The amino acid at

position nine of the bound peptide interacts with residues in the
P1 pocket, influencing the peptide-binding preferences. Position
86 plays a critical role in peptide binding and presentation (Brown
et al., 1993). The amino acid at position 86 interacts with the peptide
residue and contributes to the stability and specificity of the HLA-
peptide class II complex (Stern et al., 1994). Among our identified
important positions, positions 13 and 74 are critical for determining
the peptide-binding specificity and stability of HLA class II
molecules. The interactions between peptide residues and the
residues in these pockets are essential for the recognition and
presentation of antigenic peptides to CD4+ T cells. Except these
positions, we also prioritized many other residues, such as positions
63 and 57. These positions within the peptide-binding grooves of
HLA class II molecules is crucial for understanding the molecular
basis of antigen presentation and immune responses. Researchers
can gain valuable information about the molecular interactions
governing antigen presentation and T cell recognition.
Furthermore, these results can help designing personalized
immunotherapies (Boukouaci et al., 2024).

Figures 5E, F show the motif analysis results. In the two figures,
the Y-axis describes the amount of information in bits. The X-axis
shows the position in the alignment. At each position there is a stack
of symbols representing the amino acid. Large symbols represent
frequently observed amino acids, big stacks represent conserved
positions and small stacks represents variable positions. Therefore,
positions 2, 4 and nine have frequently observed amino acids in HLA
class I and class II respectively.

3.3 Key binding residues on peptides and
their corresponding genes

In this paper, we focus on finding immunotherapy efficiency
related key residues and their corresponding genes. With the
identified residue positions and the corresponding gene mutation,
we try to verify whether they can be biomarkers to separate patients
into different survival groups. We applied GIHP to immunotherapy
related datasets (Samstein-2019 andMiao-2018 in Table 2). For each
SNP mutation site, we extract the corresponding 9-mer peptide

FIGURE 4
The performance of our model on the independent test set and external test set for the different peptide lengths. (A) Performance on the
independent test set. (B) Performance on the external tet set.
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around it and predict the binding affinities with all the 223 HLAs. By
paired t-test statistical comparing the binding affinity change before
and after residue substitution, along with GIHP returned activity
scores of each residue, significant key binding residues are identified.
To get the functions of these mutation related genes, we conducted
GO enrichment analysis by ShinyGO-0.80 (Ge et al., 2020). As
shown in Figure 6, most of key residues locate on genes related to
pathways in cancer and cancer related signaling pathways.

Since we interest in findingmutations related to immunotherapy
response, therefore, we further analyzed key residues enriched in
T cell receptor signaling pathway (Figure 6). The enriched genes
include RHOA, HLA-B, HRAS, IL10, NRAS and KRAS. RHOA has
been implicated in T cell activation and migration, which are critical
for effective anti-tumor immune responses (Bros et al., 2019).
Altered RHOA signaling could potentially impact T cell function
and infiltration into the tumor microenvironment, influencing
immunotherapy response. HLA-B plays a crucial role in immune

recognition, as it presents peptide antigens derived from
intracellular proteins to cytotoxic T cells. HRAS, NRAS, and
KRAS are genes that belong to the RAS family of oncogenes.
These genes encode proteins involved in intracellular signaling
pathways regulating cell growth, survival, and proliferation. The
presence of RASmutations has been associated with poorer response
rates to certain immunotherapies, including immune checkpoint
inhibitors (East et al., 2022). IL10 can suppress the activity of
cytotoxic T cells and natural killer (NK) cells, which are critical
for tumor surveillance and elimination. High levels of IL10 in the
tumor microenvironment have been associated with
immunosuppression and reduced response to immunotherapy
(Salkeni and Naing, 2023).

Next, we investigated the impact of biomarker gene mutations
on patient survival outcomes using a cohort of individuals
(Samstein-2019 dataset in Table 2) with immunotherapy
treatment. The patients were categorized into two groups based

FIGURE 5
The key binding residues on HLA pockets and HLA binding peptides motif. (A) Binding pockets on HLA class I molecules. (B) Binding pockets on HLA
class II molecules. (C) The identified key binding residue locations and activity scores on each pocket of HLA class I molecules, where R represent residue
location analyzed HLA molecules. (D) The identified key binding residue locations and activity scores on each pocket of HLA class II molecules. (E)
Distribution of preferred peptide residues of HLA class I molecules using Seq2logo2.0. (F) Distribution of preferred peptide residues of HLA class I
molecules using Seq2logo2.0.
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on the presence or absence of the biomarker gene mutation. Kaplan-
Meier survival curves were generated, and a log-rank test was
performed to compare the survival between the two groups. The
results revealed a significant difference in survival between the two
groups, with patients harboring the biomarker gene mutation
exhibiting a higher risk of adverse events compared to those
without the mutation. These findings highlight the potential
prognostic significance of the biomarker gene mutation and
underscore its relevance in patient stratification and personalized

treatment approaches. Furthermore, we compared our results with
TMB score provided in (Samstein et al., 2019). As shown in Figure 7,
patients with biomarker mutations tend to have poor survival status.

As shown in Figure 7, our methods can separate patients more
significantly. Although TMB can separate patients, TMB is an
overall measure, its hard to know which gene mutations play key
roles in differentiating patients’ response. Our methods not only can
separate patients significantly, moreover, we also know which
residue substitutions play key roles. To further test the

FIGURE 6
GO enrichment results of key residues related genes.

FIGURE 7
Results on immunotherapy data. (A) patient groups separated by GIHP identified biomarker mutations. (B) TMB separated patient groups.
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performance of these biomarker genes, we analyzed Miao-2018
datasets (Table 2), results is show in Figure 8.

As illustrated in Figure 8, the identified biomarker mutations are
also able to effectively separate patient groups with statistical
significance. Our findings provide compelling evidence that the
identified biomarker genes may possess valuable predictive power
for immunotherapy response and patient survival outcomes. This
highlights their potential as clinically relevant targets for the
development of personalized treatment approaches. The results of
this study advance the understanding of the underlying molecular
mechanisms governing immunotherapy efficacy, and offer

promising directions for future research and therapeutic
interventions.

3.4 Performance on other cancer datasets

In this section, we test whether these key residue mutations and their
corresponding genes can separate other cancer patients. Results are shown
in Figures 9A–C. Detail information of these three cancer datasets are
shown in Table 2. We can see that our biomarker genes can differentiate
the three-cancer type significantly. Especially for the pan cancer datasets.

FIGURE 8
Results on Miao-2018 datasets.

FIGURE 9
Survival curves on breast, bladder and pan cancer datasets.
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4 Conclusion

In summary, we proposed a newGCNN-based framework called
GIHP for pan-specific HLA-peptide binding affinity prediction.
GIHP harness both structure and sequence information and
utilized Grad-WAM for visual interpretation. Extensive
comparison with state-of-the-art methods verified the better
performance of our methods. Collectively, the findings provide
evidence that the GIHP framework has improved the
generalization and interpretability capabilities of HLA-peptide
binding prediction models. Furthermore, we have identified
numerous key binding-related amino acid residues that can serve
as potential biomarkers for differentiating patient groups based on
immunotherapy response. When applying these identified
biomarkers on datasets from other cancer types, they were also
able to effectively differentiate patient groups with statistical
significance. These findings highlight the potential prognostic
significance of the biomarker gene mutation and underscore its
relevance in patient stratification and personalized immunotherapy
treatment approaches.

Data availability statement

The data presented in the study are deposited in the Github,
accession link: https://github.com/sdustSu/GIHP.

Author contributions

LS: Funding acquisition, Methodology, Writing–original draft,
Writing–review and editing. YY: Formal Analysis, Methodology,
Validation, Visualization, Writing–review and editing. BM: Data
curation, Formal Analysis, Investigation, Writing–review and

editing. SZ: Formal Analysis, Methodology, Resources,
Visualization, Writing–review and editing. ZC: Conceptualization,
Project administration, Resources, Supervision, Writing–original
draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by Natural Science Foundation of Shandong Province
(Youth Program, Grant No. ZR2022QF136), the Elite Program of
Shandong University of Science and Technology and the National
Science Foundation of China (Grant No. 62302277).

Conflict of interest

Author YY was employed by Shandong Guohe Industrial
Technology Research Institute Co. Ltd. BM was employed by
Qingdao UNIC Information Technology Co. Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Andreatta, M., and Nielsen, M. (2016). Gapped sequence alignment using artificial
neural networks: application to the MHC class I system. Bioinformatics 32, 511–517.
doi:10.1093/bioinformatics/btv639

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., et al.
(2021). Accurate prediction of protein structures and interactions using a three-track
neural network. Science 373, 871–876. doi:10.1126/science.abj8754

Bassani-Sternberg, M., Chong, C., Guillaume, P., Solleder, M., Pak, H., Gannon, P. O.,
et al. (2017). Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen
predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13,
e1005725. doi:10.1371/journal.pcbi.1005725

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The protein data bank.Nucleic Acids Res. 28, 235–242. doi:10.1093/nar/28.1.235

Boukouaci, W., Rivera-Franco, M. M., Volt, F., Lajnef, M., Wu, C. L., Rafii, H., et al.
(2024). HLA peptide-binding pocket diversity modulates immunological complications
after cord blood transplant in acute leukaemia. Br. J. Haematol. 204, 1920–1934. doi:10.
1111/bjh.19339

Bros, M., Haas, K., Moll, L., and Grabbe, S. (2019). RhoA as a key regulator of innate
and adaptive immunity. Cells 8, 733. doi:10.3390/cells8070733

Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L.,
et al. (1993). Three-dimensional structure of the human class II histocompatibility
antigen HLA-DR1. Nature 364, 33–39. doi:10.1038/364033a0

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012).
The cBio cancer genomics portal: an open platform for exploring multidimensional
cancer genomics data. Cancer Discov. 2, 401–404. doi:10.1158/2159-8290.CD-12-0095

Cheng, J., Bendjama, K., Rittner, K., and Malone, B. (2021). BERTMHC: improved
MHC-peptide class II interaction prediction with transformer and multiple instance
learning. Bioinformatics 37, 4172–4179. doi:10.1093/bioinformatics/btab422

Clinton, T. N., Chen, Z., Wise, H., Lenis, A. T., Chavan, S., Donoghue, M. T. A., et al.
(2022). Genomic heterogeneity as a barrier to precision oncology in urothelial cancer.
Cell Rep. 41, 111859. doi:10.1016/j.celrep.2022.111859

Consortium, I. T. P., Abascal, F., Abeshouse, A., Aburatani, H., Adams, D. J., Agrawal,
N., et al. (2020). Pan-cancer analysis of whole genomes. Nature 578, 82–93. doi:10.1038/
s41586-020-1969-6

East, P., Kelly, G. P., Biswas, D., Marani, M., Hancock, D. C., Creasy, T., et al. (2022).
RAS oncogenic activity predicts response to chemotherapy and outcome in lung
adenocarcinoma. Nat. Commun. 13, 5632. doi:10.1038/s41467-022-33290-0

Ge, S. X., Jung, D., and Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool
for animals and plants. Bioinformatics 36, 2628–2629. doi:10.1093/bioinformatics/
btz931

Gfeller, D., Guillaume, P., Michaux, J., Pak, H. S., Daniel, R. T., Racle, J., et al. (2018).
The length distribution and multiple specificity of naturally presented HLA-I ligands.
J. Immunol. 201, 3705–3716. doi:10.4049/jimmunol.1800914

Giguere, S., Drouin, A., Lacoste, A., Marchand, M., Corbeil, J., and Laviolette, F.
(2013). MHC-NP: predicting peptides naturally processed by the MHC. J. Immunol.
Methods 400-401, 30–36. doi:10.1016/j.jim.2013.10.003

Gizinski, S., Preibisch, G., Kucharski, P., Tyrolski, M., Rembalski, M., Grzegorczyk, P.,
et al. (2024). Enhancing antigenic peptide discovery: improved MHC-I binding
prediction and methodology. Methods 224, 1–9. doi:10.1016/j.ymeth.2024.01.016

Frontiers in Genetics frontiersin.org12

Su et al. 10.3389/fgene.2024.1405032

https://github.com/sdustSu/GIHP
https://doi.org/10.1093/bioinformatics/btv639
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1371/journal.pcbi.1005725
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1111/bjh.19339
https://doi.org/10.1111/bjh.19339
https://doi.org/10.3390/cells8070733
https://doi.org/10.1038/364033a0
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1093/bioinformatics/btab422
https://doi.org/10.1016/j.celrep.2022.111859
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41467-022-33290-0
https://doi.org/10.1093/bioinformatics/btz931
https://doi.org/10.1093/bioinformatics/btz931
https://doi.org/10.4049/jimmunol.1800914
https://doi.org/10.1016/j.jim.2013.10.003
https://doi.org/10.1016/j.ymeth.2024.01.016
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1405032


Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., et al.
(2018). Improved methods for predicting peptide binding affinity to MHC class II
molecules. Immunology 154, 394–406. doi:10.1111/imm.12889

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589. doi:10.1038/s41586-021-03819-2

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., and Nielsen, M. (2017).
NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating
eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368. doi:10.
4049/jimmunol.1700893

Kallingal, A., Olszewski, M., Maciejewska, N., Brankiewicz, W., and Baginski, M.
(2023). Cancer immune escape: the role of antigen presentation machinery. J. Cancer
Res. Clin. Oncol. 149, 8131–8141. doi:10.1007/s00432-023-04737-8

Karosiene, E., Lundegaard, C., Lund, O., and Nielsen, M. (2012). NetMHCcons: a
consensus method for the major histocompatibility complex class I predictions.
Immunogenetics 64, 177–186. doi:10.1007/s00251-011-0579-8

Karosiene, E., Rasmussen, M., Blicher, T., Lund, O., Buus, S., and Nielsen, M. (2013).
NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including
all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ.
Immunogenetics 65, 711–724. doi:10.1007/s00251-013-0720-y

Kim, K., Kim, H. S., Kim, J. Y., Jung, H., Sun, J. M., Ahn, J. S., et al. (2020).
Predicting clinical benefit of immunotherapy by antigenic or functional
mutations affecting tumour immunogenicity. Nat. Commun. 11, 951. doi:10.
1038/s41467-020-14562-z

Kim, Y., Sidney, J., Buus, S., Sette, A., Nielsen, M., and Peters, B. (2014). Dataset size
and composition impact the reliability of performance benchmarks for peptide-MHC
binding predictions. BMC Bioinforma. 15, 241. doi:10.1186/1471-2105-15-241

Kim, Y., Sidney, J., Pinilla, C., Sette, A., and Peters, B. (2009). Derivation of an amino
acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior.
BMC Bioinforma. 10, 394. doi:10.1186/1471-2105-10-394

Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., and Nielsen, M.
(2008). NetMHC-3.0: accurate web accessible predictions of human, mouse and
monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36,
W509–W512. doi:10.1093/nar/gkn202

Ma, L., Zhang, N., Qu, Z., Liang, R., Zhang, L., Zhang, B., et al. (2020). A glimpse of the
peptide profile presentation by Xenopus laevis MHC class I: crystal structure of pXela-
UAA reveals a distinct peptide-binding groove. J. Immunol. 204, 147–158. doi:10.4049/
jimmunol.1900865

Meng, Z., Chen, C., Zhang, X., Zhao, W., and Cui, X. (2024). Exploring fragment
adding strategies to enhance molecule pretraining in AI-driven drug discovery. Big Data
Min. Anal., 1–12. doi:10.26599/bdma.2024.9020003

Miao, D., Margolis, C. A., Vokes, N. I., Liu, D., Taylor-Weiner, A., Wankowicz, S. M.,
et al. (2018). Genomic correlates of response to immune checkpoint blockade in
microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281. doi:10.1038/s41588-
018-0200-2

Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D. C., Sidney, J., Bui, H. H., et al.
(2006). A consensus epitope prediction approach identifies the breadth of murine
T(CD8+)-cell responses to vaccinia virus. Nat. Biotechnol. 24, 817–819. doi:10.1038/
nbt1215

Murata, K., Ly, D., Saijo, H., Matsunaga, Y., Sugata, K., Ihara, F., et al. (2022).
Modification of the HLA-A*24:02 peptide binding pocket enhances cognate peptide-
binding capacity and antigen-specific T cell activation. J. Immunol. 209, 1481–1491.
doi:10.4049/jimmunol.2200305

Nielsen, M., Lundegaard, C., and Lund, O. (2007). Prediction of MHC class II binding
affinity using SMM-align, a novel stabilization matrix alignment method. BMC
Bioinforma. 8, 238. doi:10.1186/1471-2105-8-238

Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S. L., Lamberth, K., Buus, S.,
et al. (2003). Reliable prediction of T-cell epitopes using neural networks with novel
sequence representations. Protein Sci. 12, 1007–1017. doi:10.1110/ps.0239403

O’Donnell, T. J., Rubinsteyn, A., Bonsack, M., Riemer, A. B., Laserson, U., and
Hammerbacher, J. (2018). MHCflurry: open-source class I MHC binding affinity
prediction. Cell Syst. 7, 129–132. doi:10.1016/j.cels.2018.05.014

O’Donnell, T. J., Rubinsteyn, A., and Laserson, U. (2020). MHCflurry 2.0: improved
pan-allele prediction of MHC class I-presented peptides by incorporating antigen
processing. Cell Syst. 11, 418–419. doi:10.1016/j.cels.2020.09.001

Öztürk, H., Ozkirimli, E., and Özgür, A. (2019). WideDTA: prediction of drug-target
binding affinity. arXiv:1902.04166.

Quiros, M., Grazulis, S., Girdzijauskaite, S., Merkys, A., and Vaitkus, A. (2018). Using
SMILES strings for the description of chemical connectivity in the Crystallography
Open Database. J. Cheminform 10, 23. doi:10.1186/s13321-018-0279-6

Razavi, P., Chang, M. T., Xu, G., Bandlamudi, C., Ross, D. S., Vasan, N., et al. (2018).
The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34,
427–438. doi:10.1016/j.ccell.2018.08.008

Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020). NetMHCpan-
4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by
concurrent motif deconvolution and integration of MSMHC eluted ligand data. Nucleic
Acids Res. 48, W449–W454. doi:10.1093/nar/gkaa379

Salkeni, M. A., and Naing, A. (2023). Interleukin-10 in cancer immunotherapy: from
bench to bedside. Trends Cancer 9, 716–725. doi:10.1016/j.trecan.2023.05.003

Samstein, R. M., Lee, C. H., Shoushtari, A. N., Hellmann, M. D., Shen, R., Janjigian, Y.
Y., et al. (2019). Tumor mutational load predicts survival after immunotherapy across
multiple cancer types. Nat. Genet. 51, 202–206. doi:10.1038/s41588-018-0312-8

Seidel, R. D., Merazga, Z., Thapa, D. R., Soriano, J., Spaulding, E., Vakkasoglu, A. S.,
et al. (2021). Peptide-HLA-based immunotherapeutics platforms for direct modulation
of antigen-specific T cells. Sci. Rep. 11, 19220. doi:10.1038/s41598-021-98716-z

Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L.,
et al. (1994). Crystal structure of the human class II MHC protein HLA-DR1 complexed
with an influenza virus peptide. Nature 368, 215–221. doi:10.1038/368215a0

van Deutekom, H. W. M., and Keşmir, C. (2015). Zooming into the binding groove of
HLA molecules: which positions and which substitutions change peptide binding most?
Immunogenetics 67, 425–436. doi:10.1007/s00251-015-0849-y

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., et al.
(2022). AlphaFold Protein Structure Database: massively expanding the structural
coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res.
50, D439–D444. doi:10.1093/nar/gkab1061

Venkatesh, G., Grover, A., Srinivasaraghavan, G., and Rao, S. (2020). MHCAttnNet:
predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-
based deep neural model. Bioinformatics 36, i399–i406. doi:10.1093/bioinformatics/
btaa479

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., et al.
(2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 47,
D339–D343. doi:10.1093/nar/gky1006

Wang, M., and Claesson, M. H. (2014). Classification of human leukocyte antigen
(HLA) supertypes.Methods Mol. Biol. 1184, 309–317. doi:10.1007/978-1-4939-1115-8_17

Wang, P., Sidney, J., Dow, C., Mothe, B., Sette, A., and Peters, B. (2008). A systematic
assessment of MHC class II peptide binding predictions and evaluation of a consensus
approach. PLoS Comput. Biol. 4, e1000048. doi:10.1371/journal.pcbi.1000048

Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., et al. (2010). Peptide
binding predictions for HLA DR, DP and DQ molecules. BMC Bioinforma. 11, 568.
doi:10.1186/1471-2105-11-568

Wang, X., Wu, T., Jiang, Y., Chen, T., Pan, D., Jin, Z., et al. (2024). RPEMHC:
improved prediction of MHC-peptide binding affinity by a deep learning approach
based on residue-residue pair encoding. Bioinformatics 40, btad785. doi:10.1093/
bioinformatics/btad785

Wang, Y., Jiao, Q., Wang, J., Cai, X., Zhao, W., and Cui, X. (2023). Prediction of
protein-ligand binding affinity with deep learning. Comput. Struct. Biotechnol. J. 21,
5796–5806. doi:10.1016/j.csbj.2023.11.009

Wen, Z., He, J., Tao, H., and Huang, S. Y. (2019). PepBDB: a comprehensive structural
database of biological peptide-protein interactions. Bioinformatics 35, 175–177. doi:10.
1093/bioinformatics/bty579

Yang, Z., Zhong, W., Zhao, L., and Yu-Chian Chen, C. (2022). MGraphDTA: deep
multiscale graph neural network for explainable drug-target binding affinity prediction.
Chem. Sci. 13, 816–833. doi:10.1039/d1sc05180f

You, R., Qu, W., Mamitsuka, H., and Zhu, S. (2022). DeepMHCII: a novel binding
core-aware deep interaction model for accurate MHC-II peptide binding affinity
prediction. Bioinformatics 38, i220–i228. doi:10.1093/bioinformatics/btac225

Zhang, H., Lund, O., and Nielsen, M. (2009). The PickPocket method for predicting
binding specificities for receptors based on receptor pocket similarities: application to
MHC-peptide binding. Bioinformatics 25, 1293–1299. doi:10.1093/bioinformatics/
btp137

Zhao, W., and Sher, X. (2018). Systematically benchmarking peptide-MHC binding
predictors: from synthetic to naturally processed epitopes. PLoS Comput. Biol. 14,
e1006457. doi:10.1371/journal.pcbi.1006457

Frontiers in Genetics frontiersin.org13

Su et al. 10.3389/fgene.2024.1405032

https://doi.org/10.1111/imm.12889
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1007/s00432-023-04737-8
https://doi.org/10.1007/s00251-011-0579-8
https://doi.org/10.1007/s00251-013-0720-y
https://doi.org/10.1038/s41467-020-14562-z
https://doi.org/10.1038/s41467-020-14562-z
https://doi.org/10.1186/1471-2105-15-241
https://doi.org/10.1186/1471-2105-10-394
https://doi.org/10.1093/nar/gkn202
https://doi.org/10.4049/jimmunol.1900865
https://doi.org/10.4049/jimmunol.1900865
https://doi.org/10.26599/bdma.2024.9020003
https://doi.org/10.1038/s41588-018-0200-2
https://doi.org/10.1038/s41588-018-0200-2
https://doi.org/10.1038/nbt1215
https://doi.org/10.1038/nbt1215
https://doi.org/10.4049/jimmunol.2200305
https://doi.org/10.1186/1471-2105-8-238
https://doi.org/10.1110/ps.0239403
https://doi.org/10.1016/j.cels.2018.05.014
https://doi.org/10.1016/j.cels.2020.09.001
https://doi.org/10.1186/s13321-018-0279-6
https://doi.org/10.1016/j.ccell.2018.08.008
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1016/j.trecan.2023.05.003
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41598-021-98716-z
https://doi.org/10.1038/368215a0
https://doi.org/10.1007/s00251-015-0849-y
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/bioinformatics/btaa479
https://doi.org/10.1093/bioinformatics/btaa479
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1007/978-1-4939-1115-8_17
https://doi.org/10.1371/journal.pcbi.1000048
https://doi.org/10.1186/1471-2105-11-568
https://doi.org/10.1093/bioinformatics/btad785
https://doi.org/10.1093/bioinformatics/btad785
https://doi.org/10.1016/j.csbj.2023.11.009
https://doi.org/10.1093/bioinformatics/bty579
https://doi.org/10.1093/bioinformatics/bty579
https://doi.org/10.1039/d1sc05180f
https://doi.org/10.1093/bioinformatics/btac225
https://doi.org/10.1093/bioinformatics/btp137
https://doi.org/10.1093/bioinformatics/btp137
https://doi.org/10.1371/journal.pcbi.1006457
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1405032

	GIHP: Graph convolutional neural network based interpretable pan-specific HLA-peptide binding affinity prediction
	1 Introduction
	2 Materials and methods
	2.1 Data collection and processing
	2.2 Methods
	2.2.1 Input representation
	2.2.2 Graph convolutional neural network module
	2.2.3 Gradient-weighted activation mapping


	3 Results
	3.1 Performance comparisons with other methods
	3.2 Key binding residues on HLAs
	3.3 Key binding residues on peptides and their corresponding genes
	3.4 Performance on other cancer datasets

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


