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Introduction: Many loci segregate alleles classified as “genetic diseases” due to
their deleterious effects on health. However, some disease alleles have been
reported to show beneficial effects under certain conditions or in certain
populations. The beneficial effects of these antagonistically pleiotropic alleles
may explain their continued prevalence, but the degree to which antagonistic
pleiotropy is common or rare is unresolved. We surveyed themedical literature to
identify examples of antagonistic pleiotropy to help determine whether
antagonistic pleiotropy appears to be rare or common.

Results: We identified ten examples of loci with polymorphisms for which the
presence of antagonistic pleiotropy is well supported by detailed genetic or
epidemiological information in humans. One additional locus was identified for
which the supporting evidence comes from animal studies. These examples
complement over 20 others reported in other reviews.

Discussion: The existence of more than 30 identified antagonistically pleiotropic
human disease alleles suggests that this phenomenon may be widespread. This
poses important implications for both our understanding of human evolutionary
genetics and our approaches to clinical treatment and disease prevention,
especially therapies based on genetic modification.
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Introduction

Mutations in wildtype alleles can have deleterious effects on individuals and their
persistence leads to polymorphic genetic disorders. Why genetic disorders persist when
natural selection is an effective mechanism to favor advantageous alleles and eliminate
deleterious ones is a complex question. Possible mechanisms include genetic drift or
mutation selection balance, but if a mutation in an allele causes a deleterious effect while
also improving some other trait, such antagonistic pleiotropy can lead to the long-term
persistence of deleterious alleles by natural selection (Carter and Nguyen, 2011; Withrock
et al., 2015; Ukraintseva et al., 2016; Byars and Voskarides, 2020).

Antagonistic pleiotropy has historically been mainly considered in the context of how
organisms acquire their wildtype alleles. Traits that manifest during peak reproductive ages
have the strongest influence on overall fitness whereas traits selected after the peak
reproductive period are more weakly selected. Antagonistically pleiotropic mutations
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that benefit younger individuals while harming older ones may
therefore have an overall positive effect and a history of the fixation
of mutations with these age-specific benefits and detriments is
widely thought to explain the presence of senescence (Medawar,
1951; Williams, 1957; Kirkwood and Rose, 1991).

What has been less commonly considered is how antagonistic
pleiotropy may contribute to genetic variation within populations.
Studies of genetic variation in this context are more recent than the
first set of classic paper described above. Mutations classified as
disease alleles may result in higher overall fitness than expected if
they also provide unrecognized offsetting benefits. Natural selection
can also actively maintain multiple alleles that are individually
deleterious if they provide benefits in different individuals, under
different environmental conditions, or act together to increase
fitness in heterozygotes (i.e., overdominance) (Bitarello et al., 2023).

Environmental and historical context is important; the
advantages that cause high frequencies in modern populations
may or may not still be present today. For example, Crohn’s
disease may be so common today because of the bubonic plague
(Y. pestis) in Medieval Europe. An allele modifying the
ERAP2 transcript shows evidence of positive selection during the
plague and data shows that this protein influences cytokine response
to Yersinia pestis exposure (Klunk et al., 2022), but this allele is a risk
factor for Crohn’s disease in modern populations (Di Narzo et al.,
2016). A better-known example of this kind of historically
influenced antagonistic pleiotropy is sickle cell disease in which
homozygotes for the Hb-S allele have poor life expectancies due to
blood cell malformations, but heterozygotes for the Hb-S allele have
increased resistance to malaria during early childhood (Aidoo et al.,
2002). The historical advantage explains the relatively high
frequency of the allele in Africa, tropical, and Mediterranean
regions where the historical and modern risks of malaria are high
(Ashley-Koch et al., 2000).

These two examples illustrate that antagonistic pleiotropy may
be important for the prevalence of Crohn’s disease and sickle cell
disease, but how widespread is this phenomenon? To what extent is
the overall prevalence of genetic disease due to antagonistic
pleiotropy? Despite the potential importance of this process, the
idea has received little attention in medical literature (Leroi et al.,
2005; Key et al., 2014).

Therefore, following the approach of several previous authors
(Carter and Nguyen, 2011; Withrock et al., 2015; Ukraintseva et al.,
2016; Byars and Voskarides, 2020) we performed a search of the
literature to identify and describe examples of alleles associated with
increased risk of human disease which also confer a health or fitness
benefit. As the number of identified examples of such alleles
increases, the importance of antagonistic pleiotropy as an
explanation for the prevalence of human genetic disease
becomes likely.

Searches were conducted using PubMed and Web of Science
using terms such as " antagonistic pleiotropy”, “balancing selection”,
“overdominance” and “heterosis” and abstracts were screened for
further reading. We did not specify a limited set of journals or time
frame, so this analysis represents an exploration rather than a formal
meta-analysis. To avoid duplication of the information described
previously (Carter and Nguyen, 2011; Withrock et al., 2015;
Ukraintseva et al., 2016; Byars and Voskarides, 2020) we omit
providing detailed descriptions for the diseases identified in those

studies unless we found meaningful additional evidence not
described therein. The goal of this article is not to be exhaustive
in scope or detail, but rather to highlight well-supported examples of
antagonistic pleiotropy and contribute to an appreciation of their
prevalence.

Results

A-kinase-anchoring protein
2 polymorphism

The dual-specificity A-kinase-anchoring protein 2 (D-AKAP2,
encoded by the AKAP10 gene) binds protein kinase A (PKA) and is
important for the subcellular localization and functionality of PKA,
a broad serine/threonine protein kinase that regulates a variety of
cellular processes including early development (Huang et al., 1997;
Paolillo et al., 2022). In humans, the AKAP10 locus has two
common alleles defined by an A/G SNP at position 1936 which
cause an isoleucine/valine polymorphism at position 646 of the
D-AKAP10 protein. Carriers of the G allele have been reported to
exhibit an increased risk of breast (Wirtenberger et al., 2007) and
colorectal cancers (Wang et al., 2009), increased basal heart rate
(Tingley et al., 2007), increased risk of myocardial infarction
(Nishihama et al., 2007; Yoshida et al., 2007), and decreased
heart rate variability (Neumann et al., 2009).

Presence of the G allele at the AKAP10 locus is also associated
with decreased preterm birth, however. A study of 203 newborns
showed that preterm newborns were 55% more likely to be AA
homozygotes than full term newborns, indicating a positive
association between the G allele and full-term birth (Łoniewska
et al., 2012). Those authors suggested that newborns homozygous
for the G allele may be more efficient at changing from glycolytic to
oxidative metabolism after birth.

Angiotensin-converting enzyme
polymorphism

Angiotensin-converting enzyme (ACE) cleaves angiotensin I
into angiotensin II which stimulates aldosterone synthesis and
leads to blood vessel constriction (Studdy et al., 1983). In
humans, the ACE locus has a highly-studied polymorphism
defined by the insertion I) or deletion D) of 287 base pairs in
intron 16, with the presence of the D allele raising the levels of ACE
protein in plasma (Rigat et al., 1990). Increased levels of ACE protein
and the D allele have been associated with an increased risk of
hypertension (Higaki et al., 2000; Montes-de-Oca-García et al.,
2021), coronary artery disease (Nakai et al., 1994), myocardial
infarction (Chen et al., 2013), polycystic ovary syndrome
(Ożegowska et al., 2016), and prostate cancer (Du et al., 2022).

Possession of the D allele appears to improve athletic
performance in power and sprint exercises however
(Maciejewska-Skrendo et al., 2019); higher ACE levels appearing
to provide benefits in some acute cardiovascular situations at the
expense of the chronic detrimental effects described above. The D
allele may also provide protection fromAlzheimer’s disease. Ameta-
analysis of 39 studies indicated that DD homozygotes displayed a
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significantly reduced risk of Alzheimer’s disease (Lehmann et al.,
2005). Even though Alzheimer’s disease is typically observed in
individuals of post reproductive age, reduced risk of this disease may
be selectively beneficial due to the “grandmother effect” whereby
individuals provide care and resources to their grandchildren and
improve their survival, a form of improved overall reproductive
fitness (Lachmann, 2011). In addition, a case-control study with
440 subjects suggested that males homozygous for the D allele
experience reduced risk of migraines (Lin et al., 2005). Finally,
the D allele may also be protective against infectious diseases like
SARS-CoV-2 (Delanghe et al., 2020), but the evidence is mixed (e.g.,
Sousa et al., 2023).

Apolipoprotein E polymorphism

Apolipoprotein E (ApoE) plays a role in cholesterol metabolism
by transporting cholesterol and other fats through the blood (Yang
et al., 2023). In humans, the ApoE locus has three commonly
occurring alleles defined by the amino acids present at positions
112 and 158 (apoE4 Arg112/Arg158, ApoE3 Cys112/Arg158, and
ApoE2 Cys112/Cys158) which are referred to as the E4, E3 and
E2 alleles respectively. The E4 allele appears to be ancestral with
E3 arising later and E2 arising from the E3 allele (McIntosh et al.,
2012). Carriers of the E4 allele have greater cholesterol levels than
carriers of the E3 and E2 alleles, possibly due to more efficient
intestinal absorption (Tikkanen et al., 1990), and possession of the
E4 allele is associated with increased risk of hypertension (Niu et al.,
2009), cardiovascular disease (Song et al., 2004) and Alzheimer’s
disease (Goldman, 2012; O’Neil, 2023; Liampas et al., 2024).

In menstruating women, those with at least one E4 allele
displayed 20% higher levels of luteal progesterone, a hormone
vital for maintaining the endometrium during early pregnancy
and important for a successful pregnancy, compared to women
without the E4 allele (Jasienska et al., 2015). Consistent with this, the
E4 allele was associated with 12% and 30% increases in fecundity
(for one or two E4 copies respectively compared to the E3 allele) in a
population of forager-horticulturalists (Trumble et al., 2023). Other
benefits provided by the E4 allele include increased cognitive
functions in young adults (Wozniak et al., 2002) resistance to
certain liver diseases caused by hepatitis C virus (Wozniak et al.,
2002), improved cardiac performance (Topriceanu et al., 2024),
better visual working memory (Lu et al., 2021), protection against
diarrhea in children during their first 2 years of life (Oriá et al.,
2005), and protection from negative effects on linguistic and
categorical tasks in children who did suffer severe diarrhea (Oriá
et al., 2005).

BRCA1 and BRCA2 tumor suppressor
polymorphisms

BRCA1 and BRCA2 are tumor suppressor genes that are
responsible for DNA repair, regulation of cell division, and
maintenance of chromosomal stability (Scully and Livingston,
2000). There are several polymorphisms of BRCA1 and
BRCA2 associated with increased risk of sex-specific cancers such
as breast cancer (Valentini et al., 2024), ovarian cancer (Risch et al.,

2001; Horackova et al., 2023), and endometrial cancer (Sorouri et al.,
2023)in women and prostate cancer in men (Kalampokis et al.,
2024). Both men and women with BRCA2 mutations also appear to
have increased risks of gastric cancer (Buckley et al., 2022),
pancreatic cancer (McGarry et al., 2022) and melanoma (Toussi
et al., 2020). In addition to cancer risk, possession of BRCA
mutations was associated with increased non-cancer mortality in
a population of over 5,000 subjects (Mai et al., 2009).

Mutations in the BRCA1 and BRCA2 loci are associated with
increased reproduction, however. In a pedigree-based study of
women living in the early part of the 20th century in Utah,
women with these mutations appeared to have approximately
two more children than control individuals and were
2.04–3.6 times more likely to have four or more children than
individuals from the control population (Smith et al., 2012). A
similar study of French Women showed a more modest, but
significant, fertility increase in women with mutations compared
to family members without (Kwiatkowski et al., 2015). The exact
mechanism of this benefit is unknown, but evidence suggests that
the BRCA1 mutation decreases shortening of telomeres (Ballal et al.,
2009) and longer telomere lengths have been associated with
increased reproductive lifespan in women (Aydos et al., 2005).

Cystic fibrosis transmembrane conductance
regulator polymorphism

Cystic fibrosis (CF) is an autosomal recessive disorder caused by
various mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) gene, but the ΔF508 mutation (a deletion of the
phenylalanine at amino acid position 508 in the protein) accounts
for 70% of CF patients (Kerem et al., 1989). Mutations in the CFTR
gene encode a nonfunctional chloride channel, causing a broad
range of deleterious effects (Ramananda et al., 2024) including
obstructive lung disease and increased susceptibility to
respiratory infections (Rowntree and Harris, 2003), pancreatic
disorders (Estivill et al., 1995), and reduced fertility in both
males (Alves et al., 2015) and females (Brunoro et al., 2011).

In contrast, comparisons of families with hereditary CF to
control families show increased sizes (Knudson et al., 1967),
likely arising from increased reproduction in heterozygous
carriers. CFTR mutations may also provide resistance to
infectious disease by reducing the amount of sulfate available to
Mycobacterium tuberculosis and cause lower rates of tuberculosis
infection (Tobacman, 2003). Theoretical population genetic
modelling of the historical and modern exposures to tuberculosis
suggests that resistance conferred by CFTR mutations may account
for the modern geographic distribution and prevalence of CFTR
mutations (Poolman and Galvani, 2007; Lubinsky, 2012; Bosch et al.,
2017). Cystic fibrosis follows a modern geographical distribution
that tracks with the historical presence of large urban centers when
tuberculosis risk was greatest; the highest incidence occurs in
European newborns (1 in 2,500) with lower rates in Indian
populations (1 in 40,000) (Powers et al., 1996) and African and
East Asian populations (extremely low) (Welsh et al., 2001). The
17th century tuberculosis epidemic in Europe followed by a more
recent spread to India and Africa during the 19th century (Bates and
Stead, 1993) is consistent with the difference in modern rates of
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cystic fibrosis. Additionally, mice that are heterozygous for CFTR
mutations show resistance to cholera toxin (Gabriel et al., 1994)
which suggests a likely similar benefit for humans. A similar
protective effect, based on pH and physical properties of mucus,
was also reported for SARS-CoV-2 patients (Tedbury et al., 2023),
but other studies disagree (Baldassarri et al., 2021).

Hereditary hemochromatosis
polymorphism

Mutations in the hemochromatosis (HFE) gene cause hereditary
hemochromatosis (HH), a disorder categorized by excessive
accumulation of iron in parenchymal organs. The most common
mutation in the HFE gene, seen in up to 1 in 8 individuals in certain
European regions, is one in which a cysteine is replaced by tyrosine
at position 282, the p.Cys282Tyr allele (Hollerer et al., 2017). This
mutation impairs binding to β2-microglobulin and as a result the
mutant HFE protein is unable to reach the cell surface and
aggregates intracellularly (Hollerer et al., 2017). Symptoms of HH
include chronic fatigue, hyperpigmentation, joint and bone
symptoms to diabetes, and liver diseases such as fibrosis,
cirrhosis, and hepatocellular carcinoma (Hollerer et al., 2017).

Recent studies have shown that the p.Cys282Tyr allele can
positively influence the immune system, improve the general
fitness and reproductive status of mutation carriers, and reduce
the risks of amyotrophic lateral sclerosis, Alzheimer’s disease,
Parkinsons disease, and atherosclerosis (Hollerer et al., 2017).
Additional evidence for a general benefit to physical fitness
comes from data showing that 80% of successful French athletes
were heterozygous for one of several HFEmutations (Hermine et al.,
2015) and a large-scale study among a Sicilian population showing
that p.Cys282Tyr heterozygous individuals, specifically women,
tended to have significantly higher life expectancies compared to
controls (Balistreri et al., 2002; Lio et al., 2002). This allele may also
protect against the effects of M. tuberculosis due to reduced iron
levels of macrophages in p.Cys282Tyr allele carriers (Olakanmi
et al., 2007; Weinberg, 2008).

Human leukocyte antigen polymorphism

The human leukocyte antigen (HLA) complex exhibits highly
polymorphic alleles that are responsible for producing the different
haplotypes of the major histocompatibility complex (MHC) (Choo,
2007; Shiina and Kulski, 2024). The wide diversity of HLA alleles is
needed for the immune system to function successfully (Bjorkman
et al., 1987; Traherne, 2008), but specific alleles have been shown to
have deleterious effects with the most highly studied of these being
the 8.1 ancestral haplotype (AH). The 8.1 AH is associated with
increased risk of non-Hodgkin lymphoma (Wang et al., 2011),
colorectal and ovarian cancer (Tóth et al., 2007), diabetes (Price
et al., 1999), and autoimmune disorders such as systemic lupus and
IgA deficiency (Price et al., 1999) and myositis (Miller et al., 2015).

In contrast, the presence of the 8.1 AH allele is associated with
longevity in males as evidenced by nonagenarian males having a
higher frequency of the 8.1 AH allele compared to young males and
nonagenarian females (Rea and Middleton, 1994; Caruso et al.,

2000). The 8.1 AH allele appears to provide protective effects against
narcolepsy (Hor et al., 2010). The 8.1 AH allele appears to have
modest beneficial effects on human gut microbiota (Hov et al.,
2015), and for cystic fibrosis patients it is associated with delayed
colonization of Staphylococcus aureus and Pseudomonas aeruginosa
(Laki et al., 2006; D’Antonio et al., 2019) and reduced risk of septic
shock (Aladzsity et al., 2011).

Machado-Joseph disease polymorphism

Machado-Joseph disease (MJD), also called spinocerebellar
ataxia Type 3, is an autosomal dominant neurodegenerative
disorder where individuals experience progressive clumsiness,
lurching gait, impaired eye movement, and dystonia which lacks
effective treatments (Oliveira et al., 2022). Onset of MJD occurs
around the age of 30 and is attributed to a high number of CAG
trinucleotide repeats (particularly more than 60 repeats) within the
MJD1 locus (also called ATXN3) (Paulson, 2012).

Expansion of the CAG repeats in the MJD1 locus and the
consequent MJD is associated with increased reproduction,
however. An analysis of 82 Brazilian families with MJD found
that affected women had 45% more children than the general
population and were more likely to have their first child and
undergo menopause at a younger age than both the unaffected
members of their families and the general population (Prestes et al.,
2008; Sena et al., 2021).

Methylenetetrahydrofolate reductase
polymorphism

MTHFR (Methylenetetrahydrofolate reductase), an enzyme
involved in the process of adding a methyl group to folic acid to
make it useable by the body, has two clinically relevant deleterious
polymorphisms (Dean, 2012) which reduce folate levels. At position
677 of MTHFR there is a C/T SNP and individuals heterozygous or
homozygous for the T nucleotide produce a MTHFR protein with
reduced activity which leads to lower levels of folate and higher levels
of homocysteine in the blood. Clinically, in addition to increased
risks of a variety of birth defects from the presence of the T allele (Pi
et al., 2020), is also associated with higher risks of schizophrenia
(Lewis et al., 2005), male infertility (Karimian and Colagar, 2016;
Aliakbari et al., 2020), gestational diabetes (Tan and Chen, 2023)
and recurrent pregnancy loss (Wu et al., 2012) in Asians, and
Alzheimer’s disease in Asians (Hua et al., 2011; Peng et al., 2014)
and APOE4 carriers (Peng et al., 2014). At position 1,298 of MTHFR
there is an A/C SNP with a similar biochemical effect but where the
effects of the C allele are generally less severe, but evidence shows an
association with increased cervical cancer risk (Yi et al., 2016) and
reduced sperm counts in Asian (Aliakbari et al., 2020), Moroccan
(Eloualid et al., 2012), and Indian (Singh et al., 2010) populations.
Both alleles have been associated with reduced fertility in Asians (Shi
et al., 2019) and increased risk of polycystic ovary syndrome and
ovarian cancer (Xiong et al., 2020).

These alleles appear to provide protection against some cancers,
however. Two metanalyses indicated that homozygosity at position
677 for the T Allele was associated with a significantly reduced rate
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of colorectal cancer (Hubner and Houlston, 2006; Huang et al.,
2007) and one of them indicated the same for the C allele at position
1,298 (Hubner and Houlston, 2006). A pair of meta-analyses looking
at prostate cancer risk reported that the T allele at position 677 was
associated with reduced prostate cancer risk in an Asian population
(You et al., 2024) whereas the C allele at position 1,298 was
associated with reduced prostate cancer risk in a European
population (Chen et al., 2015).

Niemann-Pick C1 disease polymorphism

Niemann-Pick C1 (NPC1) disease is a recessive autosomal
disease caused by mutations that decrease NPC1 protein activity
and result in an accumulation of LDL cholesterol in lysosomes
(Carstea et al., 1997; Lloyd-Evans et al., 2008) which affects roughly
1 in 92,104 (Wassit et al., 2016). NPC1 disease causes liver, lung,
spleen, brain, and motor control problems and the afflicted typically
die before adulthood (Sarna et al., 2003; Lamri et al., 2018; Wheeler
and Silence, 2020). NPC1 disease alleles are also associated with
neurological problems in murine models due to Purkinje cell
degeneration (Sarna et al., 2003) and NPC1 knockout mice
showed a formation of aortic atherosclerosis when fed a high
lipid diet, indicating that functional NPC1 likely provides
protective effects against atherosclerosis (Zhang et al., 2008).

Increased storage of fat may have been advantageous in
historical periods of famine, and genomic evidence suggests that
balancing selection favoring heterozygotes may have occurred in the
past (Chiorean et al., 2020). Reduced levels of the functional
NPC1 protein may also protect against some viral infections.
Tissue culture evidence demonstrates that the NPC1 protein is
needed for host cell entry by the Ebola (Carette et al., 2011; Côté
et al., 2011) and Marburg (Carette et al., 2011) filoviruses for viral
entry. An NPC1 knockdown study using human and murine cells
infected with the Ebolavirus showed a virus titer reduction of greater
than 99% in the infected cells (Sadewasser et al., 2019).
NPC1 homozygous knockout mice exposed to Mouse-adapted
versions of these viruses were highly resistant whereas control
mice mutations died quickly, but heterozygous mice
demonstrated increased virus resistance without NPC1 disease
problems (Herbert et al., 2015). Consistent with this, studies
using cell lines derived from green monkey and human tissue
showed a decrease in the ability of Ebola and Marburg viral
analogs to infect cells with SNPs inserted into the
NPC1 sequence (Kondoh et al., 2018). Finally, several antiviral
drugs work by blocking the NPC1 protein in patients (Ahmad
et al., 2023), suggesting that heterozygotes are likely to experience
increased resistance to such infections.

RH factor polymorphism

The Rh blood group system consists of two tightly linked loci, a
D locus, and a C/E locus (Avent and Reid, 2000) with a
polymorphism for a full deletion of the D locus and its encoded
D allele protein defining the clinically important Rh positive/
negative blood group. While evidence exists for a variety of
poorer health metrics in Rh negative individuals than in Rh

positive individuals (Flegr et al., 2015), the largest impact on
fitness involves reproduction. Pregnant women with Rh-/Rh-
genotypes can mount an immune system attack against their
Rh+/Rh- fetuses if their bodies have become sensitized to the Rh
+ antigens (typically by a previous pregnancy). This immune system
attack targets the red blood cells of the fetus and can lead to serious
anemia and death, with fetal mortality estimated at 24% when
untreated (Bhutani et al., 2013). Despite this risk, the Rh- allele
is present in individuals of European ancestry at frequencies of
approximately 15%, with some populations as high as 40%, while
being much rarer in other populations (Perry et al., 2012).

Interestingly, the risk of the Rh- allele also works in a frequency
dependent manner. In populations in which the Rh- allele becomes
common, its relative detriment declines because Rh + males begin to
experience reduced fitness (due to mating with Rh- females) while
the cost of being a Rh- female is ameliorated by the higher frequency
of Rh+/Rh- and Rh-/Rh- males who pose less risk. Modelling of this
situation (Haldane, 1941; Perry et al., 2012) indicates that at the
frequencies seen in Europe, the net strength of selection against the
Rh- allele is very weak. Consistent with this is a study of
112 Hutterite families (a population with large families and well
recorded pedigrees), in which families at risk (i.e., Rh- women with
Rh + husbands) had only 3% fewer children on average and this
difference was not significant (p > 0.7) (Potter, 1948).

On the beneficial side, A study on women in Baltimore also
reported that Rh- women of European ancestry had significantly
more living children than Rh + ones (Glass, 1950). The Rh negative
allele has also been reported to be associated with reduced pregnancy
induced hypertension (Dahlén et al., 2021), and appears to provide
protection against some infectious diseases such as Chikungunya
fever (Lokireddy et al., 2009; Kumar et al., 2010), and SARS-Cov-2
(Zietz et al., 2020; Butler et al., 2023).

Discussion

We have described 10 loci with alleles where antagonistic
pleiotropy was demonstrated in humans and one (NPC1) where
evidence from animal studies and modelling suggests it is likely to
exist. Table 1 summarizes these results. Our previous paper (Carter
and Nguyen, 2011) identified 7 examples strongly supported by data
in humans and 7 others with support from animal studies. Other
articles have described 6 strong examples (Byars and Voskarides,
2020), 7 strong examples with 5 suggestive ones (Withrock et al.,
2015), and 12 suggestive examples (Ukraintseva et al., 2016). Some
of these examples overlap, but there is now good evidence for
antagonistic pleiotropy being involved in 39 genetic
disorders (Table 2).

The number of examples identified is likely to be an
underestimate due to the relative lack of attention given to
identifying and demonstrating beneficial effects in genetic disease
research. The examples we presented relied on focused studies
examining the individual mechanisms by which fitness or
medical differences are evident. These well-supported examples
of antagonistic pleiotropy therefore come from studies of
individual loci of pre-existing interest for which the negative
effects have been well-studied and often the beneficial effects
were discovered incidentally. The number of individual loci that
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have received this degree of attention, from a genome with over
20,000 loci, represents a small minority of possible candidates.

Because of the historical attention paid to antagonistic
pleiotropy (e.g., sickle cell anemia), and the relatively
straightforward way to identify it (i.e., identify benefits and
detriments as done above), it represents a form of balancing
selection familiar to many individuals interested in medical
genetics. Balancing selection encompasses a wider range of
phenomena than just antagonistic pleiotropy however.

The theoretical importance of balancing selection, selection
which acts to maintain multiple alleles and genetic diversity
rather than selection which purges diversity, and a few key
examples have been known for a long time (Fisher, 1922;
Dobzhansky, 1955; Lewontin, 1987). Several different
mechanisms which lead to balancing selection have been
identified, each with their own distinct causes and dynamics.

The first mechanism, heterozygote advantage or heterosis, was
first described in Fisher’s foundational paper (Fisher, 1922;
Charlesworth, 2022) where he argued for a process in which
higher fitness in heterozygotes than in either homozygote could
act to preserve genetic diversity at a locus. This scenario is best

exemplified by the classic sickle cell example in which heterozygotes
for the sickle cell mutation experience improved resistance to
malaria while rarely suffering the negative effects of blood cell
sickling (Esoh and Wonkam, 2021). This mechanism is most
likely to be present when the deleterious effects of an otherwise
beneficial mutation tend to be recessive.

Another cause of heterosis is situations in which increased
variation at a locus is inherently advantageous, with neither allele
at a locus truly inferior to the other but the presence of distinct alleles
providing a benefit. Such a process appears to be important for loci
which code for olfactory receptors (Alonso et al., 2008) and immune
system recognition proteins like the MHC (Radwan et al., 2020) and
Toll-like receptors (TLRs) (Minias and Vikler, 2022), proteins
involved in biological processes in which a wider array of distinct
proteins is advantageous.

A second balancing selection mechanism is negative frequency
dependent selection, a process in which an allele’s fitness increases as
it becomes rarer (Brisson, 2018; Christie and McNickle, 2023). In
this manner multiple alleles can be maintained because whenever
one becomes rare it experiences increased fitness, driving the other
allele lower in frequency which then benefits that second allele,

TABLE 1 Antagonistically pleiotropic disease alleles described in this paper. The effects of these polymorphisms are well-supported by detailed human
genetic or epidemiological information, except for NPC1 where the evidence is based on animal models. For the alleles listed, the one associated with the
disease or deleterious effect is listed first.

Disease/Locus/alleles Deleterious Effect(s) Beneficial Effect(s)

A Kinase-Anchoring Protein 2 (AKAP10): position
1936 A/G SNP.

Increase breast and colorectal cancer, increased heart rate
and risk of myocardial infarction

Decreased risk of preterm birth

Angiotensin-Converting Enzyme (ACE): 287 bp
Insertion/deletion

Increased risk hypertension, coronary artery disease,
myocardial infarction, polycystic ovary syndrome,
prostate cancer

Improved acute cardiovascular fitness, decreased risk of
Alzheimer’s disease and migraines, protective vs. SARS-
CoV-2

Apolipoprotein E (ApoE): E4, E3, and E2 alleles Increased risk hypertension, cardiovascular disease,
Alzheimer’s disease

Increased fertility, cognitive function, and resistance to
liver disease; reduced risk from severe childhood
diarrhea

Breast Cancer Type 1 (BRCA1): position 185 AG
deletion

Increased risk of breast, ovarian, endometrial, and
prostate cancer

Increased reproduction

Breast Cancer Type 2 (BRCA2): position 6174 T deletion Increased risk of melanoma and breast, ovarian, and
pancreatic cancers

Increased reproduction

Cystic Fibrosis (CFTR): position 508 Phe deletion Obstructive lung disease, respiratory infection,
pancreatic disorders, reduced fertility

Resistance to tuberculosis (and maybe cholera and
SARS-CoV-2)

Hemochromatosis (HFE): position 282 Cys/Tyr
polymorphism

Chronic fatigue, hyperpigmentation, joint and bone
disorders, liver disorders

Improved general fitness, reduced risk of amyotrophic
lateral sclerosis, Alzheimer’s disease, Parkinsons disease,
atherosclerosis; resistance to tuberculosis

Human Leukocyte Antigen (HLA): 8.1 ancestral
haplotype (AH)

Increased risk of non-Hodgkin lymphoma, colorectal
and ovarian cancer, diabetes, autoimmune disorders, and
myositis

Increase male longevity, resistance to Staphylococcus
aureus and Pseudomonas aeruginosa and septic shock in
cystic fibrosis (CF) patients, protective versus narcolepsy

Machado-Joseph Disease (MJD): CAG trinucleotide
repeat number

Progressive clumsiness, lurching gait, impaired eye
movement, and dystonia

Increase reproduction

Methylenetetrahydrofolate Reductase (MTHFR):
Position 677 C/T SNP

Increased risk of birth defects, schizophrenia, infertility,
gestational diabetes, cervical cancer, recurrent pregnancy
loss, reduced fertility, polycystic ovary syndrome, and
Alzheimer’s disease

Reduced risk of colorectal cancer

Niemann-Pick Disease, type C1 (NPC1): many alleles Liver, spleen, brain, and motor control problems; death
before adulthood

Resistance to filoviruses (Ebola and Marburg) - evidence
from tissue culture and mouse studies

Rhesus (RH) factor blood groups: positive and negative
for D locus

General poor health, fetal anemia and mother’s immune
system attacks fetus

Increase reproduction, reduced pregnancy induced
hypertension, resistance to Chikungunya fever;
frequency dependent mechanism
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TABLE 2 Antagonistically pleiotropic disease alleles described in three other review papers (Carter and Nguyen, 2011; Withrock et al., 2015; Ukraintseva
et al., 2016; Byars and Voskarides, 2020) and this one. For the 39 loci/alleles listed, the name and the review papers in which they are described is shown.
Descriptions that include studies using human, epidemiological or clinical data are shown with “XXX” symbols while descriptions that rely exclusively on
animal models or circumstantial evidence are shown with the “X" symbol.

Disease or locus name Carter and
Nguyen (2011)

Withrock et al.,
2015

Ukraintseva et al.
(2016)

Byars and
Voskarides (2020)

This
paper

A kinase anchor protein 2 (AKAP10) XXX

Angiotensin I converting enzyme (ACE) X XXX

Androgen receptor (AR) XXX

Apolipoprotein B variable number of
tandem repeats region 3’(3′-APOB-
VNTR)

X

Apolipoprotein E e4 (ApoE e4) X XXX

Beta-thallasemia XXX XXX

Breast cancer 1 (BRCA1) XXX XXX

Breast cancer 2 (BRCA2) XXX XXX

C-C chemokine receptor type 5 (CCR5) XXX

CDG-11b (MOGS) X

Coronary heart disease XXX

Cystic fibrosis (CF) XXX XXX XXX XXX

Cytotoxic T lymphocyte antigen-4
(CTLA-4)

X

Duffy antigen X

Enoyl Coenzyme A hydratase, short
chain, 1(ECHS1)

X

Epithelial cancer (TNFRSF11B) X

Glucose-6-phosphate dehydrogenase
deficiency (G6PD)

XXX XXX

Hemochromatosis (HFE) X XXX XXX

Hemosiderosis X

Hepatocellular carcinoma (PTNP11) X

Human Leukocyte antigen (HLA) XXX

Huntington’s Disease (HTT) XXX XXX

Lipoprotein Lp(a) (LPA) X

Machado-Jacob disease (MJD) XXX

Methylenetetrahydrofolate reductase
(MTHFR)

X XXX

Myasthenia gravis (MG) X

Niemann-Pick disease, type C1 (NPC1) X X

NRDE2 X

Osteoporosis (ALOX15) XXX

Phenylketoneurea (PKU) X XXX X

Plasminogen activator inhibitor-1
(PAI-1)

X

Pyruvate kinase deficiency XXX

RH blood groups (RH) XXX

(Continued on following page)
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creating a cycle which maintains both alleles. While often studied in
the context of behavioral processes and sexual selection where
individuals with the unusual behavior or phenotype experiences
higher fitness (Janif et al., 2014; Uhl and Carter, 2023), recent studies
have also examined evidence for negative frequency dependence in
medically relevant human alleles (Villanea et al., 2015). As an
example of this process, in our discussion of the Rh blood group
factors above, the reduction in fitness cost to females with the Rh
negative allele when it is rare is a major aspect of what allows it to
persist. Despite its potential for influencing human health, studies of
this mechanism appear underrepresented in the medical literature.

A third mechanism which leads to balancing selection is sexual
conflict. This describes a situation in which an allele is advantageous
in one sex while deleterious in the other (Bonduriansky and
Chenoweth, 2009; Kasimatis et al., 2017). This arises most
naturally for traits related to sexual reproduction and primary
sex characteristics, but can apply to any trait for which the sexes
differ. Intralocus sexual conflict describes alleles at the same locus
having opposing fitness effects in the sexes whereas interlocus sexual
conflict describes similar interactions across multiple loci. Of these,
intralocus sexual conflict is more directly tied to balancing selection.
As an example, men and women differ in optimal height and alleles
at loci influencing height are selected in different directions (Stulp
et al., 2012). Also, as described above, the 8.1 AH allele in the HLA
complex appears more beneficial in males while more deleterious in
females (Caruso et al., 2000). Genetic studies of specific loci involved
in sexual conflict with detailed fitness measurements are rare and
come mainly from animal studies (Barson et al., 2015).

A fourth mechanism of balancing selection comes from
antagonistic pleiotropy. As described in the introduction, the initial
conceptions of antagonistic pleiotropy were strongly associated with
aging (Medawar, 1951; Williams, 1957; Kirkwood and Rose, 1991),
one function being good in youth at the expense of another being
worse at older age. Several of the examples discussed above (e.g.,
AKAP, ApoE, BRCA1/2, MJD) can be seen in this light, but the
majority of our examples do not fall cleanly and entirely within this
classic senescence-based viewpoint. A recent study examining genetic,
reproductive, and lifespan data for over 275,000 individuals showed
results consistent with the presence of this senescence-based
antagonistic pleiotropy (Long and Zhang, 2023), but the presence
of this type of antagonistic pleiotropy does not undermine arguments
for the prevalence of other types of antagonistic pleiotropy.

In this paper we have used a broader concept of antagonistic
pleiotropy to describe any locus in which alleles can have multiple
effects on fitness, whether at different stages of life, across different
sexes, or in different physiological systems within the same
individual (Bitarello et al., 2023). Our focus has been on alleles
that would otherwise be classified as named diseases or serve as
major risk factors for health conditions.

A fifth mechanism of balancing selection is selection driven by
spatial variation in optimal alleles across a reproductively connected
population. In this scenario, different alleles may be positively
selected in different regions or subpopulations of the population
and result in the persistence of multiple alleles. Alleles that are
beneficial in one region may be detrimental and even be classified as
“diseases” in another. The classic sickle cell example exhibits aspects
of this mechanism, whereby the heterozygote advantage possessed in
regions with malaria is absent in regions without, which accounts for
its geographic distribution (Piel et al., 2010). As described above,
cystic fibrosis shows geographic patterns consistent with the spatial
distribution of tuberculosis (Lubinsky, 2012; Bosch et al., 2017).

A sixth mechanism of balancing selection is driven by temporal
variation, termed fluctuating selection. Fluctuating selection may be
involved in the maintenance of some immune system alleles since
diseases vary over time and the optimal alleles in immune system
pathogen recognition systems are therefore unlikely to remain the
same. The analysis of TLRs cited above as an example of heterosis
reported that while both processes were likely important, the
evidence for fluctuating selection as the cause of maintained
variation was stronger (Minias and Vikler, 2022).

These six mechanisms of balancing selection are not mutually
exclusive and individual genetic diseases may experience several of
these simultaneously. Examples of antagonistic pleiotropy as we
have considered in this paper often bridge the divides between these
different balancing selection mechanisms. The cystic fibrosis
example described above combines elements of antagonistic
pleiotropy (i.e., lung illness and disease resistance and an illness)
with spatial selection (i.e., geographic patterns of disease prevalence)
and fluctuating selection (i.e., historical periods of high and low rates
of disease).

Studies which identify the details of the multiple selective forces
at play in the variety of types of balancing selection described above
are relatively labor intensive, with multiple studies needed to
elucidate the details for each example. Other methods which rely

TABLE 2 (Continued) Antagonistically pleiotropic disease alleles described in three other review papers (Carter and Nguyen, 2011; Withrock et al., 2015;
Ukraintseva et al., 2016; Byars and Voskarides, 2020) and this one. For the 39 loci/alleles listed, the name and the review papers in which they are described
is shown. Descriptions that include studies using human, epidemiological or clinical data are shown with “XXX” symbols while descriptions that rely
exclusively on animal models or circumstantial evidence are shown with the “X" symbol.

Disease or locus name Carter and
Nguyen (2011)

Withrock et al.,
2015

Ukraintseva et al.
(2016)

Byars and
Voskarides (2020)

This
paper

Schizophrenia (6p22-p24, 11q21-22) X

Sickle cell (Hbb) XXX XXX

Superoxide dismutase 2 (SOD2) X

Tay-Sachs (HEXA) X XXX

Triosephosphate isomerase
deficiency (TPI)

X

Tumor protein p53 (TP53) X
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on broader large-scale statistical analyses may also reveal evidence of
antagonistic pleiotropy. More precisely, these studies look for
genomic evidence of balancing selection.

Building on older statistical tests for selection in individual
alleles (Tajima, 1989; Kreitman, 2000), genomic data can be
analyzed for signs of selection in alleles (Key et al., 2014;
Fijarczyk and Babik, 2015; Quintana-Murci, 2016; Bitarello
et al., 2018).

Genomic studies have revealed evidence for patterns of
selection consistent with antagonistic pleiotropy or other
forms of balancing selection, but often the details are less than
complete. For example, an analysis of an allele at the cadherin
related family member 3 (CHDR3) receptor locus showed
evidence of selection more consistent with negative frequency-
dependent selection than the expected positive selection, but the
authors were unclear on what the cause of that selection may be
(O’Neill et al., 2020). Similarly, the human salivary agglutinin
gene (DMBT1) gene shows population genetic evidence for
balancing selection and one allele is known to inhibit infection
by Streptococcus mutans, but the other selection factors that
result in balancing selection instead of purely positive
selection are unknown (Alharbi et al., 2022). In cases such as
these, the story is incomplete - with statistical evidence for
multiple opposing selective forces at play and one factor
identified, but the opposing factor unknown.

In fact, multiple genomic studies now provide evidence for
balancing selection at large numbers of loci but are then left to
speculate on the selective factors in the absence of direct studies of
the individual alleles. Typically, these are hypothesis-free studies
looking for genetic patterns of balancing selection and identifying
them in a large number of loci, but often without any more detail
than knowing the functional classes of the loci (e.g., Andrés et al.,
2009; Abraham et al., 2022; Velazquez-Arcelay et al., 2022; Aqil
et al., 2023). While reliable and complete identification of the types
of balancing selection revealed are unresolved, at a minimum it
seems that previous suggestions that balancing selection is rare or
irrelevant (Asthana et al., 2005; Hedrick, 2012) are weakened by this
increasing evidence.

Recently, some genomic studies have explicitly looked for
antagonistic pleiotropy. For example, a GWAS approach revealed
many loci which have been associated with autism spectrum
disorders also showed evidence of positive selection, but those
antagonistic positive effects are unknown (Polimanti and
Gelernter, 2017). An interesting broader recent approach has
been to attempt a direct test of predictions from the traditional,
senescence-based, antagonistic pleiotropy model whereby
deleterious alleles which effect the young should be rarer than
those that effect the old (Rodríguez et al., 2017; Long and Zhang,
2019; Rodríguez et al., 2019). This general pattern was observed, and
about 10% of these early-effect alleles showed evidence of some kind
of pleiotropy (Rodríguez et al., 2017). A related study on fixation
rates of early and late expressed genes showed similar patterns of
stronger purifying selection on early vs. late expressed genes (Cheng
and Kirkpatrick, 2021). These methods cannot cleanly distinguish
between alleles differentially selected due to antagonistic pleiotropy
or mutation accumulation (a non-pleiotropy model for senescence
which predicts a similar pattern) however, so more studies like this
should be done.

If antagonistic pleiotropy is as widespread as we suggest it may
be, the implications for humanity’s long-term evolutionary future
may be profound. With many deleterious effects of genetic disease
reduced by modern medicine, the continued benefits conferred by
these alleles would contribute to a higher net advantage and these
disease alleles may therefore be expected to increase in frequency
from their current levels, making genetic disease more common over
time. This process will be a slow one however, taking many
generations to make meaningful changes in the population.

In the short-term, the prevalent nature of antagonistic
pleiotropy presents two major implications for the research and
treatment of genetic diseases.

First, identification of pleiotropic alleles that confer protection
from diseases and understanding their mechanisms of action may
aid medical and epidemiological research. Novel treatments for
certain conditions may arise from studying these alleles. For
example, by understanding the mechanisms utilized by mutations
in the BRCA1 and BRCA2 to increase reproductive fitness, we may
be able to further our understanding of the reproductive system and
potentially discover novel treatments for infertility.

Second, our results also suggest that genetically based
treatments for diseases must be used with caution. The
CRISPR/Cas9 gene editing technique has potential to treat
genetic diseases (Hsu et al., 2014; Sander and Joung, 2014;
Abdelnour et al., 2021). At present, primary concerns in the
development of these techniques include off-site modifications
in addition to the intended ones (Liang et al., 2015; Wang and
Wang, 2019) or de novo LINE-1 insertions (Tao et al., 2022), but
even if specificity of the modification is perfect such genetic
techniques should be used carefully to avoid negative
consequences arising from the loss of a beneficial pleiotropic effect.

In cases where benefits from a genetic disease allele do not exist,
or when the disease allele is extremely deleterious or lethal, complete
editing of the disease allele to the wildtype may be the best approach.
However, for many diseases with smaller effects the calculation is
different. The lack of attention paid to potential pleiotropic benefits
means that widespread genome editing may inadvertently eliminate
many presently unrecognized yet beneficial genetic effects in our
population. For example, using gene editing techniques to correct
mutations in the AKAP10 allele may decrease risk for breast cancer
and colorectal cancer, but at the cost of increasing the risk of pre-
term birth. Recognizing this duality of effects may allow us to
recommend treatment schedules such as one in which an
AKAP10-focused genetic treatment to reduce cancer risk be
delayed until after child-bearing years to avoid the increased risk
of pre-term births.

Ideally, instead of completely editing or silencing a disease allele,
selectively editing the deleterious aspects of the pleiotropic system
while still maintaining the beneficial ones provides a more optimal
approach. The first step in looking for these pleiotropic effects and
creating these better treatments is an appreciation for the potential
ubiquity of antagonistic pleiotropy.
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