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Background: Although genome-wide association studies (GWAS) have identified
14 loci associated with frailty index (FI) susceptibility, the underlying causative
genes and biological mechanisms remain elusive.

Methods: A cross-tissue transcriptome-wide association study (TWAS) was
conducted utilizing the Unified Test for Molecular Markers (UTMOST), which
integrates GWAS summary statistics from 164,610 individuals of European
ancestry and 10,616 Swedish participants, alongside gene expression
matrices from the Genotype-Tissue Expression (GTEx) Project. Validation
of the significant genes was performed through three distinct methods:
FUSION, FOCUS, and Multiple Marker Analysis of Genome-wide
Annotation (MAGMA). Exploration of tissue and functional enrichment for
FI-associated SNPs was conducted using MAGMA. Conditional and joint
analyses, along with fine mapping, were employed to enhance our
understanding of FI’s genetic architecture. Mendelian randomization was
employed to ascertain causal relationships between significant genes and FI,
and co-localization analysis was utilized to investigate shared SNPs between
significant genes and FI.

Results: In this study, two novel susceptibility genes associated with the risk of
FI were identified through the application of four TWAS methods. Mendelian
randomization demonstrated that HTT may elevate the risk of developing
frailty, whereas LRPPRC could offer protection against the onset of frailty.
Additionally, co-localization analysis identified a shared SNP between
LRPPRC and FI. Tissue enrichment analyses revealed that genomic regions
linked to SNPs associated with frailty were predominantly enriched in various
brain regions, including the frontal cortex, cerebral cortex, and cerebellar
hemispheres. Conditional, combined analyses, and fine mapping collectively
identified two genetic regions associated with frailty: 2p21 and 4q16.3.
Functional enrichment analyses revealed that the pathways associated
with frailty were primarily related to the MHC complex, PD-1 signaling,
cognition, inflammatory response to antigenic stimuli, and the production
of second messenger molecules.

OPEN ACCESS

EDITED BY

Paolina Crocco,
University of Calabria, Italy

REVIEWED BY

Hippokratis Kiaris,
University of South Carolina, United States
Serena Dato,
University of Calabria, Italy

*CORRESPONDENCE

Ting Zheng,
zhengting1223@163.com

Fei Gao,
fjslyygf@163.com

†These authors have contributed equally to
this work

RECEIVED 08 April 2024
ACCEPTED 25 June 2024
PUBLISHED 12 July 2024

CITATION

Lin D,Wu S, Li W, Ye P, Pan X, Zheng T and Gao F
(2024), A cross-tissue transcriptome-wide
association study identifies new susceptibility
genes for frailty.
Front. Genet. 15:1404456.
doi: 10.3389/fgene.2024.1404456

COPYRIGHT

©2024 Lin, Wu, Li, Ye, Pan, Zheng and Gao. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 July 2024
DOI 10.3389/fgene.2024.1404456

https://www.frontiersin.org/articles/10.3389/fgene.2024.1404456/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1404456/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1404456/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1404456/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1404456&domain=pdf&date_stamp=2024-07-12
mailto:zhengting1223@163.com
mailto:zhengting1223@163.com
mailto:fjslyygf@163.com
mailto:fjslyygf@163.com
https://doi.org/10.3389/fgene.2024.1404456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1404456


Conclusion: This investigation uncovers two newly identified genes with
forecasted expression levels associated with the risk of FI, offering new
perspectives on the genetic architecture underlying FI.
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1 Background

Frailty (Dent et al., 2019; Hoogendijk et al., 2019) is recognized
as a prevalent geriatric syndrome characterized by the increased
vulnerability of older adults to stress due to declining physical
function and reduced physiological reserve capacity. Contrary to
aging, defined as a natural and irreversible process characterized by
changes at physiological, molecular, and cellular levels, frailty
represents a preventable and treatable condition, a phenotype of
aging that, with prolonged exposure, escalates the risk of adverse
outcomes including falls, disability, long-term care, and death
(McIsaac et al., 2020; Shi et al., 2021), highlighting the critical
significance and intrinsic complexity of this trait. The global
prevalence of frailty among individuals aged ≥50 years is
reported to be 24% (Nguyen et al., 2015; O’Caoimh et al., 2021),
with its prevalence increasing with age, and women exhibiting a
higher prevalence than men. Frailty is commonly quantified using
the (FI) (Cesari et al., 2014; Kojima et al., 2018), which assesses an
individual’s level of frailty by evaluating the number of deficits
across a range of physiological parameters, diseases, disabilities, and
health indicators. Although GWAS has pinpointed 14 genetic loci
associated with FI, these variants account for only 11% of the FI’s
heritability (Atkins et al., 2021). Currently, there are few studies on
frailty from the perspective of genetics. A more comprehensive
understanding of the genetic basis of frailty and the exploration of
genes associated with frailty indices and their functions hold
significant potential for promoting healthy aging by revealing the
molecular mechanisms affecting the development of frailty, such as
muscle degradation, reduced immune function, and increased
inflammatory response (Ferrucci and Fabbri, 2018). This
understanding can help to identify new therapeutic targets.
Meanwhile, the current diagnosis of frailty mainly relies on
relevant scales. However, scale assessment is somewhat subjective,
and patients are often already in the clinical stage by the time of
detection. Investigating the genetic basis of frailty can help identify
new biomarkers to early and objectively recognise frailty, thus
reducing the incidence of adverse outcomes.

Transcriptome-wide association studies (TWAS) (Wainberg
et al., 2019) represent an approach that combines gene
expression data with genomic association studies (GWAS) to
identify statistical associations between specific phenotypes or
disease states and gene expression levels. Through this approach,
researchers are able to identify genes that may influence disease risk
through altered expression, offering insights for subsequent
functional validation and studies on biological mechanisms, even
if the gene variants themselves are not directly associated with
disease in conventional GWAS. The Unified Test for Molecular
Signatures (UTMOST) (Hu et al., 2019), a tool for TWAS, analyzes
and integrates multiple datasets across organizations, enhancing
statistical power and is more adept at uncovering significant genetic

associations that might have been missed in traditional single-
organization or single-study research. FUSION (Mai et al., 2023)
identifies genes potentially influencing the phenotype via their
expression levels by utilizing publicly available gene expression
data and GWAS summary statistics, which aids in unraveling the
underlying molecular mechanisms and biological pathways of
diseases, crucial for comprehending the disease’s biology and
developing novel therapeutic strategies. FOCUS (Lu et al., 2022)
constitutes an advanced TWAS method specifically designed to
accurately delineate gene expression patterns associated with
phenotypes, utilizing fine-mapping techniques, FOCUS aims to
more precisely identify specific genes contributing to variations
in disease risk, minimize false-positive findings, and enhance the
interpretability of genetic signals compared to conventional TWAS
methods. The Multi-marker Analysis of GenoMic Annotation
(MAGMA) (de Leeuw et al., 2015) serves as a tool for genomic
data analysis, conducting gene association analysis, gene set
enrichment analysis, and tissue-specific analysis. By analyzing
genetic data at the gene and gene set levels, MAGMA can assist
in identifying genes and pathways as potential biomarkers or
therapeutic targets. Recently, cross-tissue association analysis has
become widely utilized to screen for candidate susceptibility genes
for complex multi-system diseases, including cardiovascular
diseases, autoimmune diseases, and a variety of cancers.

In this work, we conducted a cross-tissue TWAS by integrating
eQTL data from the Genotyped Tissue Expression (GTEx) project
with the largest FI GWAS in Europe using the UTMOST method.
We utilized three methods—FUSION, FOCUS, and MAGMA—to
validate candidate susceptibility genes in parallel, employing
conditional and joint analyses for genes independently associated
with FI. Subsequent Mendelian randomisation and co-localisation
analyses were conducted to further elucidate the relationship
between genes and phenotypes. The detailed flowchart of these
analyses is presented in Figure 1.

2 Materials and methods

2.1 FI GWAS data source

The GWAS data on frailty originated from the study conducted
by Janice L. Atkins et al. (2021), representing the most
comprehensive study to date on FI, including 164,610 individuals
of European origin and 10,616 Swedish participants, all aged
between 60 and 70 years. The FI was calculated using a
cumulative assessment of deficits, referring to the proportion of
an individual’s potentially unhealthy measures to all measures at a
given point in time. It includes multidimensional health variables
such as somatic, functional, psychological, and social variables,
based on 49 self-reported items on symptoms, disabilities, and
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diagnosed illnesses. The FI ranges from 0 to 1, with higher values
indicating higher levels of individual frailty. GWAS summary
statistics for FI are available for download from the GWAS
Catalog (study accession code GCST90020053).

2.2 TWAS analyses in cross-tissue and
single tissue

First, inter-tissue association testing was explored using the
UTMOST method. UTMOST (Hu et al., 2019; Rodriguez-
Fontenla and Carracedo, 2021) can define gene-trait associations
by considering SNP joint effects across linkage disequilibrium (LD)
regions and integrating organismal GTEx data to create individual
and cross-organisational covariance matrices. Next, we validated the
results of UTMOST using three methods: FUSION, FOCUS, and
MAGMA. FUSION (Gusev et al., 2016; Rodriguez-Fontenla and
Carracedo, 2021) is a suite of tools for performing transcriptome-
wide and regulator-wide association studies (TWAS and RWAS). It
enables the creation of predictive models of the genetic component
of a functional/molecular phenotype and the use of GWAS to
summarise statistical predictions and test the association of that
component with disease. FOCUS (Mancuso et al., 2019) assigns
probabilities for interpreting observed association signals to each
gene within a risk region by modelling correlations between TWAS
signals. It is a probabilistic fine mapping method that prioritises

genes with strong evidence of causality. MAGMA (Sey et al., 2023)
first projects a gene’s SNP matrix onto its principal components,
removes principal components with very small eigenvalues, and
then uses these principal components as predictor variables for
phenotype in linear regression models. This method is advantageous
in the study of polygenic traits and in the exploration of the
functional and biological mechanisms behind the genetic
components of traits. Combining these complementary methods
enhances the reliability of the results. Differences were deemed
significant upon employing the Benjamini-Hochberg (B-H)
correction method and establishing an FDR threshold below 0.05.

2.3 Conditional and joint analyses

In this study, conditional and association analyses were
performed using FUSION software. Initially, the linkage
disequilibrium (LD) matrices between SNPs were calculated for
the genotype data and automatically generated by FUSION software
based on the data from the 1,000 Genomes Project. Conditional
analyses were performed through the assoc_test function of the
FUSION software. Conditional analyses (Byrne et al., 2021) are
mainly used in GWAS to identify multiple genetic variants with
independent effects, which can help to distinguish whether the effect
is the result of a single SNP or multiple SNPs working together, and
determine the presence of other variants independently affecting the

FIGURE 1
Overview of the transcriptome-wide association study design of FI. FDR, false discovery rate; GWAS, genome-wide association study; TWAS,
transcriptome-wide association study.
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risk of disease. Joint analyses are performed through the joint_test
function of the FUSION software. Joint analyses (Deng and Pan,
2018) are particularly suitable for the detection of small effect
variants and improve the identification of rare variant associations.

2.4 Tissue-specific and pathway
enrichment analysis

Using MAGMA, analyses for tissue-specific enrichment and
gene set enrichment were conducted (de Leeuw et al., 2015). By
integrating gene expression data (e.g., from the GTEx project),
MAGMA can assess the expression patterns of genes across
various tissues and determine their correlation with specific
phenotypes. MAGMA can identify pathways or functional classes
that are strongly associated with a disease or phenotype, by
evaluating the collective performance of a specific gene set (e.g.,
genes within a certain pathway) in an association analysis.

2.5 Colocation analysis

Colocation analysis is a statistical method utilized to ascertain
whether signals shared across two or more genetic study result sets
(e.g., GWAS summary statistics from different diseases or
phenotypes) originate from the same genetic variant. Colocation
analyses were conducted using coloc. Coloc uses a Bayesian
algorithm to generate posterior probabilities for five mutually
exclusive hypotheses regarding shared causal variants in genomic
regions, namely H0 (no association), H1 or H2 (associated with only
one trait), H3 (associated with two traits, two different SNPs), and
H4 (associated with two traits, one shared SNP). If the calculated
posterior probabilities of H4 and H3 (PPH4 and PPH3) are greater
than 0.5, the locus is considered co-localised.

2.6 Mendelian randomization

To explore the potential causal link between significant
genes and frailty, Mendelian randomization analyses were
carried out on the eQTL data for genes and the GWAS data
for frailty. These analyses used inverse variance weighting
(IVW) (Burgess et al., 2017) and employed the
“TwoSampleMR” R packages, focusing on associations
indicative of a causal relationship (p < 0.05).

3 Results

3.1 Transcriptome-wide association study
results of FI

In the single-tissue internal validation using the FUSION
method, of the 8,799 genes included in our genotype data
showing significant cis-genetic expression in whole blood
according to the GTEx dataset, 107 genes revealed significant
association signals in the TWAS with a pFDR less than 0.05, as
detailed in Supplementary Table S2 and illustrated in Figure 2. Four

candidate genes overlapped, meeting stringent criteria in both cross-
tissue and single-tissue analyses, as listed in Table 1.

3.2 Conditional and joint analyses

To confirm whether genes were independently associated with
phenotypes, we conducted conditional and joint analyses. Table 2
demonstrates that four distinct loci, which include essential genes
such as LRPPRC (located at 2p21), HTT (at 4q16.3), and both
SNU13 and CCDC134 (found at 22q13.2), serve as independent
markers, each signaling different genetic information (with a
conditional p-value of less than 0.05). It has been noted that the
expression of certain genes, which are regulated genetically, can be
the driving force behind some of the signals identified in GWAS. For
instance, LRPPRC accounted for the majority of the signal at the
2p21 locus (Figure 3A), HTT for the majority at the 4q16.3 locus
(Figure 3B), while SNU13 and CCDC134 accounted for most of the
signal at the 22q13.2 locus (Figure 3C). The results for LRPPRC,
HTT, SNU13, and CCDC134 remained significant after conditional
analyses, indicating that these genes are independently associated
with FI by themselves, not due to the locus being in linkage
disequilibrium.

3.3 Statistical fine mapping

FOCUS was performed to calculate the probability estimate of
causality (PIP) for each feature. We found a PIP > 0.5 for LRPPRC,
HTT, suggesting that these features may be associated with FI
(Table 3; Figures 4A, B). The highest probability of causality
occurred in LRPPRC GTEx whole blood (PIP = 0.997).

3.4 MAGMA analysis

A total of 437 genes exhibited statistically significant signals (p <
0.05) following FDR correction in cross-tissue transcriptome
association studies employing MAGMA (Supplementary Figure
S1). Following FDR correction, these significant genes were
predominantly enriched in 14 pathways primarily associated with
MHC_CLASS_II, PD-1 signaling, cognition, inflammatory response
to antigenic stimuli, and the production of second messenger
molecules (Figure 5; Supplementary Table S3). Analyses using
MAGMA focusing on tissue specificity uncovered that SNPs
linked to frailty were primarily found in the cerebral frontal
cortex (BA9), the broader cerebral cortex, the anterior cingulate
cortex (BA24), the cerebellar hemispheres, the thalamus, and
additional areas of the brain (Supplementary Figure S2).

3.5 Comparison of TWAS for different
genetic approaches

Following FDR correction, the Venn diagram demonstrates that
two critical genes (LRPPRC and HTT) associated with FI were
identified using four methods: UTMOST, FUSION, FOCUS, and
MAGMA (Figure 6).
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3.6 Colocation of eQTL and GWAS
associations

Colocation analyses were then conducted to assess the likelihood
that GWAS and eQTL signals are shared. Among four significant
susceptibility genes in whole blood tissues (LRPPRC, HTT, SNU13,
and CCDC134), it was observed that the LRPPRC gene at 2p21 may
share identical GWAS and eQTL signals, evidenced by a posterior
probability of PP4 (0.98) exceeding 0.75. SNPs in strong linkage

disequilibrium (LD) with rs4953032 exhibited the strongest
association with FI risk, with variants within 1 Mb of
rs4953032 concurrently increasing the risk of FI (Figure 7).

3.7 Mendelian randomization

An analysis employing the two-sample Mendelian
randomization approach utilized eQTL data for LRPPRC and

FIGURE 2
Manhattan plot of the cross-tissue transcriptome-wide association results for FI. 107 genes was specifically associated with the risk of FI. The y-axis
represents p-value in –log(10) scale. A significance threshold after FDR-correction was used.

TABLE 1 Significant genes for FI in cross-tissue and single-tissue TWAS analysis.

UTMOST_Discovery FUSION_Replication

Gene Chr BP0 BP1 Putmost PFDR Top GWAS ID Z score Pfusion PFDR

LRPPRC 2 43996004 43996005 3.32E-05 1.03E-02 rs4953032 −5.20 1.96E-07 1.32E-
04

HTT 4 3074680 3074681 1.51E-08 5.63E-05 rs362273 4.30 1.68E-05 4.04E-
03

SNU13 22 41690503 41690504 1.15E-04 2.40E-02 rs1052717 −4.03 5.57E-05 1.04E-
02

CCDC134 22 41800678 41800679 1.94E-04 3.15E-02 rs1052717 3.97 7.25E-05 1.22E-
02

BP0, start base position; BP1, end base position; Top GWAS ID, rsID of the most significant GWAS SNP in the locus.

TABLE 2 Results of conditional analyses of multiple loci.

CytoBand Gene TWAS.Z TWAS.P Cond.Z Cond.P

2p21 LRPPRC −5.20 1.96E-07 −5.20 1.96E-07

4q16.3 HTT 4.30 1.68E-05 4.30 1.68E-05

22q13.2 SNU13 −4.03 5.57E-05 −2.40 0.02

CCDC134 3.97 7.25E-05 2.30 0.02

Cond.P, p-value of the gene after conditional analysis; Cond.Z, Z-value of the gene after conditional analysis; TWAS.P, p-value of the gene in FUSION TWAS analysis; TWAS.Z, Z-value of the

gene in FUSION TWAS analysis.
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HTT from whole blood tissues, in conjunction with GWAS data
related to frailty. All SNPs utilized in the Mendelian randomization
analysis were considered powerful instruments (F > 10). Thus, there
is a causal relationship between the LRPPRC and HTT genes and FI.

Patients carrying the LRPPRC gene are 10% less likely to develop
frailty than non-carriers (OR = 0.90, 95% CI: 0.85–0.95), while
patients carrying the HTT gene are 15% more likely to develop
frailty than non-carriers (OR = 1.15, 95% CI: 1.03–1.30) (Figure 8).

FIGURE 3
Conditional and joint analyses of FI (A) Chromosome 2p21 regional association plot. (B) Chromosome 4q16.3 regional association plot. (C)
Chromosome 22q13.2 regional association plot. Genes independently associated with FI are highlighted in green. SNPs associated with FI before
conditional analysis are highlighted in grey, and secondary SNPs associated with FI after conditional analysis are highlighted in blue.
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4 Discussion

To date, few TWAS studies have been conducted on frailty
indices, and we systematically estimated the association between
genetically predicted gene expression and FI risk, utilizing the largest
FI GWAS dataset available. Following FDR correction, 36 candidate
genes were identified via UTMOST, and three additional validation
methods (FUSION, FOCUS, MAGMA) were employed to identify
more reliable genes.

The synthesis of findings from four distinct methodologies led to
the identification of two genes, LRPPRC and HTT, as having a
strong association with FI. This discovery offers significant new
understanding of the genetic basis underpinning frailty. Research by
Atkins et al. (2021) and Ye et al. (2023) identified genetic loci in the
HTT gene concerning frailty, previously linked to amino acid, lipid
metabolism, and BMI (Faquih et al., 2023). The difference is that the
study by Atkins et al. concentrated on older adults, employing FI,

whereas Ye et al. included 386,565 individuals of European descent
with an average age of 57 years, using the abbreviated Fried Frailty
Score (FFS) to define the frailty phenotype. Previous research has
shown that the LRPPRC gene encodes a protein involved in several
critical biological processes, notably in cellular energy production
and metabolic regulation (Cui et al., 2019). This gene notably plays a
crucial role in mitochondrial function, regulating mitochondrial
RNA stability and expression, potentially influencing early,
multisystem, and neurological manifestations of mitochondrial
disease (Oláhová et al., 2015). Frailty is frequently linked to
reduced energy metabolism, muscle hypomobility, and systemic
inflammation (Barros et al., 2022); thus, the LRPPRC gene might
indirectly affect these physiological processes tied to frailty through
its impact on mitochondrial function. Our study demonstrated an
association between this gene and FI through various TWAS
methods, aligning with the findings of Willems et al. In their
research, the LRPPRC gene was associated with grip strength and
psychomotor deficits (Willems et al., 2017), widely regarded as
indicators of muscular fitness and markers of weakness.

Our tissue enrichment analysis, conducted via MAGMA,
demonstrated that genomic areas linked to SNPs associated with
frailty showed elevated functional expression specifically in
brain tissues, including the cerebral frontal cortex (BA9),
cerebral cortex, anterior cingulate cortex (BA24), cerebellar
hemispheres, thalamus, in comparison to other types of
tissues. In a prospective cohort study, frailty was associated

TABLE 3 Statistical fine mapping results: potential causal features.

Location Gene SNP weight set FOCUS PIP

Chr2:
43996004–43996005

LRPPRC GTEx whole blood 0.997

Chr4:3074680–3074681 HTT GTEx whole blood 0.900

Chr, chromosome; GTEx, genotype tissue expression; PIP, posterior inclusion probability.

FIGURE 4
FOCUS plot for each gene in one region. (A) The plot contains the predicted expression correlation, TWAS summary statistics, and PIP for each gene
in the genomic locus Chr2: 43996004–43996005 in the whole blood. (B) The plot contains the predicted expression correlation, TWAS summary
statistics, and PIP for each gene in the genomic locus Chr4: 3074680–3074681 in the whole blood.
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with cognitive functions related to the frontal cortex in patients
with Alzheimer’s disease (Chang et al., 2022). Patients with
frailty have been shown to exhibit abnormal functioning of
the right prefrontal cortex during the early stages of cognitive

decline (Maruya et al., 2021). As age advances, the cerebellum
undergoes structural and functional changes associated with
mobility and cognitive deficits, subsequently contributing to
the development of frailty (Arleo et al., 2023). Patients

FIGURE 5
Significant types of pathways in terms of the GO and KEGG enrichment analyses through KEGG. BP, biological process; CC, cellular component; MF,
molecular function; KEGG: KEGG pathways.
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experiencing physiological cognitive decline during aging show
significant reductions in grey matter volumes in areas such as the
bilateral amygdala and thalamus, the right hippocampus, the
right temporo-occipital cortex, and the left cerebellar regions VI
and V (Liu et al., 2020), which partially aligns with our findings.

Two genetic regions associated with frailty were identified
through conditional, combined analyses, and fine mapping:
2p21 and 4q16.3. Previous research has suggested that 2p21 may
be linked to Lewy body dementia (Peuralinna et al., 2015), and
cognitive decline in Lewy body dementia could exacerbate frailty,
affecting activities of daily living, quality of life, and independence
due to impaired cognitive functioning. Research on the
4q16.3 region is limited, highlighting the importance of further
investigation into the role of genes within this region concerning
health and disease.

Functional enrichment analyses were also conducted using
MAGMA, identifying pathways predominantly related to MHC_
CLASS_II, PD-1 signaling, cognition, inflammatory response to
antigenic stimuli, and the production of second messenger
molecules. The MHC protein complex and PD-1 signaling are
intricately linked to immune response and immunomodulation
(Wilson et al., 2017; Pansarasa et al., 2019). Frailty, a complex
geriatric syndrome, has etiology and pathogenesis that remain

partially understood. During frailty, the immune system
undergoes changes, termed “immune senescence” and
“inflammation” (Tran Van Hoi et al., 2023). These
phenomena are defined by imbalances in immune response
related to aging, along with changes in the fundamental
cellular processes. Comprehensive, untargeted LC-MS
metabolomics analyses of human blood have indicated that
screening for frailty markers partially correlates with
cognition (Kameda et al., 2020).Inflammation is described as
the overstimulation of the innate immune system due to aging,
which results in a persistent, low-intensity, non-infectious state
of inflammation (Soysal et al., 2016). Studies have demonstrated
that older adults exhibit elevated levels of CRP, cytokines,
chemokines, and abnormal leukocyte distribution, reflecting a
dysregulated inflammatory state associated with aging (Marcos-
Pérez et al., 2020; Minhas et al., 2021). Chronic inflammation is
regarded as a key factor in the development of frailty, with
intracellular second messengers like cyclic adenosine
monophosphate (cAMP), calcium ions (Ca2+), and various
phosphorylated proteins playing vital roles in the regulation
of immune cells, production of inflammatory factors, and other
cellular processes linked to inflammation (Langmann et al.,
2017; López-Otín et al., 2023).

FIGURE 6
Venn plot reveals the overlap of the significant genes identified by four different methods with FDR < 0.05.
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As research on aging progresses, identifying biological pathways and
potential therapeutic targets associated with resilience becomes
increasingly important, instead of focusing solely on disease risk

factors (Montine et al., 2019; Vetrano et al., 2021). This paradigm
shift is crucial for understanding characteristics like frailty, which reflect
an individual’s overall functional status. Given this context, our study

FIGURE 7
Colocation of eQTL and GWAS associations in LRPPRC. Scatterplot illustrating the overlap of GWAS and eQTL associations for LRPPRC. The y-axis
represents GWAS p-values on a log10 scale for FI. The x-axis represents eQTL p-values on a −log10 scale for LRPPRC. The degree of linkage
disequilibrium for all SNPs with rs4953032 is indicated by color.

FIGURE 8
Bi-directional Mendelian Randomization (MR) analyses between LRPPRC/HTT and FI (Causal effect of LRPPRC/HTT on FI). Estimates and 95% CI
were represented with square plots and error bars.
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reveals novel and significant findings. Utilizing two-sample Mendelian
randomization analyses, we investigated the causal relationship between
specific genes and the development of frailty and discovered that HTT
may elevate the risk of frailty, while LRPPRC could serve as a protective
factor against its development. Furthermore, through co-localization
analysis, a shared SNP between LRPPRC and FI was identified, implying
LRPPRC’s central role in the development of frailty, suggesting that
interventions targeting this gene or its pathways could potentially
prevent or ameliorate the condition of frailty.

There are some limitations to our study. First, our data source was
the frailty index, and exploring additional assessmentmethods for frailty,
like the Fried frailty phenotype and the Edmonton Frailty Scale, could
facilitate the identification of genes of interest across various dimensions,
including physical performance, cognitive, and psychosocial aspects.
Second, since our data predominantly come fromEuropean sources, this
restricts the applicability of our findings to other ethnic groups.
Therefore, it’s critical to perform similar studies among varied ethnic
populations to enhance the universality of our results. Lastly,
environmental factors, such as diet, physical activity, and stress,
impact frailty to different extents, and employing Mendelian
randomization to examine the effects of various environmental
factors on frailty could aid in identifying modifiable factors that
mitigate frailty’s severity or lower its risk.

5 Conclusion

In conclusion, this study identified two novel susceptibility genes
associated with FI risk through four TWAS methods, with Mendelian
randomization revealing that HTT may increase frailty risk, while
LRPPRC could serve as a protective factor against its onset.
Additionally, co-localization analysis identified a shared SNP between
LRPPRC and FI. Tissue enrichment analysis indicated that genomic
regions linked to frailty-associated SNPswere predominantly enriched in
brain tissue. Conditional, combined analyses, and fine mapping
pinpointed two genetic regions associated with frailty: 2p21 and
4q16.3. Functional enrichment analyses uncovered that frailty-
associated pathways primarily involve the MHC complex, PD-1
signaling, cognition, inflammatory responses to antigenic stimuli, and
the production of second messenger molecules. This discovery offers
valuable new insights into the genetic foundations of FI and emphasizes
the importance of investigating these genes’ roles in frailty development.
Not only does this deepen our understanding of frailty’s biological basis,
but it also promises new targets for developing preventive and
therapeutic strategies against frailty.
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