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Motivation: Genomic structural variation refers to chromosomal level variations
such as genome rearrangement or insertion/deletion, which typically involve larger
DNA fragments compared to single nucleotide variations. Deletion is a common
type of structural variants in the genome,whichmay lead tomangy diseases, so the
detection of deletions can help to gain insights into the pathogenesis of diseases
and provide accurate information for disease diagnosis, treatment, and prevention.
Many tools exist for deletion variant detection, but they are still inadequate in some
aspects, and most of them ignore the presence of chimeric variants in clustering,
resulting in less precise clustering results.

Results: In this paper, we present LcDel, which can detect deletion variation based
on clustering and long reads. LcDel first finds the candidate deletion sites and then
performs the first clustering step using two clustering methods (sliding window-
based and coverage-based, respectively) based on the length of the deletion. After
that, LcDel immediately uses the second clustering by hierarchical clustering to
determine the location and length of the deletion. LcDel is benchmarked against
someother structural variation detection tools onmultiple datasets, and the results
show that LcDel has better detection performance for deletion. The source code is
available in https://github.com/cyq1314woaini/LcDel.
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1 Introduction

Genome sequences are very different between species, even within the same species.
Genome variation refers to heritable changes in the composition or arrangement of base pairs
at the molecular level of a gene, including single nucleotide variants, indels, structural variants
(He et al., 2009), and copy number variants. A single nucleotide variation refers to the
variation of one nucleotide base to another under the influence of certain factors; indels refers
to the addition or subtraction of a small fragment to the genome that occurs within 50 bp of
the length of the small fragment; Copy Number Variation refers to a rearrangement of the
genome that has occurred and generally refers to an increase or decrease in the copy number
of a genomic segment that is 1 kb or more in length; Structural Variations refer to mutations
that occur on chromosomes in segments larger than 50 bp, including forms such as insertions,
deletions, duplications, and inversions (Figure 1 below). Deletions account for a certain
proportion of structural variants and have a large impact on the human body. Deletions in
some genomes may lead to disease (Beyter et al., 2021), for example, deletions of genes related
to the nervous systemmay lead toHuntington’s chorea, and deletions of key genesmay lead to
cystic fibrosis and autism (Aganezov et al., 2020). Therefore, the detection of deletion variants
can provide more precise information for the diagnosis, treatment and prevention of diseases.
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Genome sequencing technology has a significant impact on the
detection of structural variants, and sequencing technology has gone
through the first generation of sequencing technology, the second
generation of sequencing technology, and the third generation of
sequencing technology. The first-generation sequencing technology
is known as Sanger sequencing technology (Sanger et al., 1977) and
is widely used for genome sequencing. The read length of the first-
generation sequencing technology can reach 1,000 bp with an
accuracy of 99.99%, but the shortcomings of high sequencing
cost and low throughput restrict its further application. Second-
generation sequencing technology is also known as high-throughput
sequencing (Maxam and Gilbert, 1992), which has the advantages of
low cost, low sequencing error rate and high throughput, but the
sequencing reads are shorter in length, which is more suitable for the
detection of shorter structural variations, and the detection of
structural variations in repetitive regions and regions with a high
GC content has some difficulties. Third-generation sequencing
technology, also known as single-molecule real-time technology
(Korlach et al., 2010), is capable of directly sequencing longer
DNA fragments and providing more comprehensive genomic
information, but the sequencing error rate is high and therefore
structural variants are not detected in sufficiently accurate locations.
Cycle-consistent sequencing technology (Wenger et al., 2019) can
sequence highly accurate long reads that cover repetitive and GC-
rich regions of the genome, and can therefore be well suited for
detecting structural variants.

Hi-C sequencing (de Wit and de Laat, 2012) is a high-
throughput sequencing technology used to study the three-
dimensional structure of chromosomes and genome interactions,
which joins DNA fragments from different chromosomal regions by
enzymatic cleavage and ligation techniques to form a DNA
molecular library, which is then subjected to high-throughput
sequencing to obtain sequences of multiple DNA reads. A
number of methods for structural variation detection based on
Hi-C reads have emerged, such as HiNT (Wang et al., 2020),
HiCNV (Chakraborty and Ay, 2018), HiSV (Li et al., 2023),
EagleC (Wang et al., 2022), etc. HiNT is a method for detecting
interchromosomal translocations using Hi-C read. It utilizes a 1 Mb

bin chromosome contact matrix as input. HiNT first calculates the
Gini coefficient and maximum contact frequency of the
interchromosomal contact matrix to identify potential
translocated chromosome pairs. Then, it employs the breakpoint
function from the R package ‘struchanger’ to approximate the
breakpoints of the translocation. Finally, it utilizes an algorithm
based on soft-clipped read counts to achieve precise breakpoint
detection at single base pair resolution. HiCNV is a method for
detecting copy number variations (CNVs) based on Hi-C read. It
first processes the contact counts at the level of individual restriction
enzyme fragments to utilize Hi-C data with as high resolution as
possible. HiCNV calculates one-dimensional read coverage for each
restriction enzyme, normalizes for GC content, mappability, and
fragment length, smoothes using kernel density estimation, and
finally identifies potential CNV segments using a hidden Markov
model. HiSV is a structural variation detection method based on a
significance detection model, capable of identifying large-scale
structural variations from Hi-C read. Firstly, HiSV calculates a
distance-normalized Hi-C contact matrix to avoid interference
from strong interactions on the diagonal. Then, HiSV computes
the local spatially weighted dissimilarity for each pixel to measure
significance, thus separating significant regions from complex
backgrounds. Finally, HiSV uses a global variation segmentation
approach to partition sparse significant subsets into segments,
considering a segment as a structural variation event if the
interaction frequency after segmentation exceeds a predefined
threshold. EagleC transforms the problem of identifying
structural variations from Hi-C maps into a multi-label image
classification problem. It is an ensemble learning framework
based on 50 different models and utilizes convolutional neural
networks as individual models for prediction. Additionally,
EagleC proposes a data augmentation algorithm to ensure a
balanced distribution of samples across different types of
structural variations and genomic regions. These methods
compare the interaction levels between normal and variant
regions; large variant regions exhibit clear interaction patterns,
while small variant regions exhibit less distinct interaction
patterns. Therefore, these methods perform well in detecting

FIGURE 1
(A) insertion; (B) deletion; (C) duplication; (D) inversion (deletion is the loss of a portion of a chromosome; an insertion is the insertion of a portion of
a chromosome; a duplication is the repetition of a portion of a chromosome; and an inversion is the reverse complementation operation of a portion of a
chromosome.).
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large variant regions but less effectively for small ones. Moreover,
since cancer cell lines often contain a higher proportion of large
variant regions, these methods are effective in identifying variant
regions in cancer cell lines and can be used for disease prediction.

The recently emerged Pore-C technology (Zhong et al., 2023),
on the other hand, refers to a new technology that combines
chromatin conformation capture technology with Nanopore
sequencing technology to capture the information of chromatin
multiregional interactions, and is able to form a single long read
frommultiple sequence fragments that are in close proximity to each
other in three-dimensional space. This technique is capable of
generating long reads on a genome-wide scale; however, these
techniques generate less information about interactions in regions
larger than three. Because of the complexity and diversity of
structural variants, methods for detecting structural variants
based on Pore-C reads are not yet available.

Most of the deletion variant detection tools (Mahmoud et al.,
2019) that currently exist are based on short or long read, and
although short read have a low sequencing error rate, they are short
in length and do not completely find the deletion site. Although the
sequencing error rate of long reads is high, the length is relatively
long and it can span the deletion breakpoints well, so most of the
tools nowadays detect the deletion by long reads, mainly by utilizing
two methods, which are traditional method or deep learning.

The traditional method mainly involves first extracting
candidate loci by characterizing various variants, and then
clustering the candidate loci to determine the exact variant loci
and length. CuteSV (Jiang et al., 2022) analyzes the characteristics
of each type of structural variation and uses them to find potential
loci for each variation separately, and clusters and further refines
the clustering of read from heterozygous ratios in localized regions
to accurately distinguish between pure and heterozygous variants.
Finally, a few specific rules are used for structural variant detection
and genotyping. Svim (Heller and Vingron, 2019) also collects
structural variant features from the alignment files of the input
sequences, then clusters the detected features using a clustering
method based on graph and structural variant feature distance
metrics, and finally outputs the final result by merging multiple
structural variant events. Sniffles (Sedlazeck et al., 2018) uses the
results from the NGMLR alignment as input and utilizes features
from the segmented reads alignment, high mismatch regions, and
coverage to identify structural variants. To overcome the high
error rate in the reads, sniffles also evaluates candidate structural
variants based on features such as length, location, and consistency
of breakpoints. SKSV(Liu et al., 2021) is a skeleton-based structural
variation detection analysis toolkit that performs pseudo
alignment from reads and generates a alignment skeleton
through sparse dynamic programming. The generated
alignment skeleton supports rapid read finding and non-
collinear segments in the alignment skeleton indicate potential
structural variant events. Compared to other methods, SKSV is
extremely fast and achieves high sensitivity and accuracy in both
structural variant detection and genotyping. Svsearcher (Zheng
et al., 2023) differs from previous methods in that it first finds
candidate structural variant regions by variant characterization,
then clusters read within the candidate regions to find candidate
structural variants, and sets a stricter criterion to filter out
erroneous structural variants.

Structural variation detection based on deep learning is mainly
based on first extracting various features according to the type of
structural variation, and then through the continuous training of the
neural network, and then through the neural network to make
predictions. INSnet (Gao et al., 2023) is a deep learning-based
insertion variant detection method that firstly divides the
reference genome into contiguous sub-regions and acquires five
features for each locus. INSnet uses a convolutional neural network
to extract variant features and a gated recurrent unit to analyze
connections between subregions. MAMnet (Ding and Luo, 2022), a
structural variation detection method based on the combination of
convolutional neural networks and long and short-term memory
networks, achieved a better F1-score compared to other comparison
tools. SVcnn is a deep learning method that can accurately detect
deletion, insertion, duplication and inversion variants. SVcnn
(Zheng and Shang, 2023) first identifies candidate structural
variant regions from the BAM file, then converts the candidate
structural variant regions into images and constructs a LetNet
model, which filters out the erroneous structural variants and
outputs the final structural variants. cnnLSV (Ma et al., 2023) is
also a deep learning based structural variation detection method that
utilizes alignment information of long reads and convolutional
neural networks to achieve overall higher performance and
utilizes principal component analysis and k-means clustering
algorithms to efficiently eliminate mislabeled samples during the
training model phase. The results show that cnnLSV outperforms
existing methods in detecting insertions, deletions, inversions and
duplicate variants.

The traditional method ignores the occurrence of two different
lengths of deletion variants at the same locus and directly clusters the
candidate deletion sites, which may affect the final results of the
detection of deletion variants. And deep learning can take a lot of
time when extracting features and training. Therefore, this paper
proposes an effective deletion variant detection algorithm LcDel.
LcDel firstly merges the deletion variants that are closer when
finding candidate deletion sites, then uses two clustering
algorithms to perform the first level of clustering according to
the length of deletion and uses hierarchical clustering to perform
the second level of clustering, respectively, and finally filters out the
candidate clusters that do not match to identify the location and
length of deletion.

2 Methods

LcDel is a long reads-based deletion variant detection method
where the input is a sorted bam file including the alignments
between long reads and genome reference. There are four main
steps in LcDel: 1) Identification of candidate deletion sites by intra-
read alignment and inter-read alignment; 2) Multiple large clusters
are generated by performing the first layer of clustering based on
deletion lengths using sliding window-based and coverage-based
methods, respectively; 3) Generate candidate clusters based on the
differences between deletion lengths for large clusters using
hierarchical clustering; 4) Set the support read threshold to filter
out non-compliant candidate clusters and determine the location
and length of the deletion. LcDel workflow is shown in
Figure 2 below.
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FIGURE 2
Workflow diagram of LcDel, step1 denotes identification of deletion sites, step2 denotes the first level of clustering to generate large clusters,
step3 denotes the second level of clustering to generate candidate clusters, and step4 denotes the determination of the location and length of
the deletion.
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2.1 Identify candidate deletion site

Since small deletion variants are aligned to the reference
genome, the alignment tool will directly display the deletion
information in the cigar string, while large deletions are not
directly displayed in the cigar string, but will be aligned to two
non-contiguous regions of the same chromosome by splitting the
reads, LcDel identifies candidate deletion loci by intra-read
alignment and inter-read alignment, respectively.

LcDel first filters out alignments with mapping quality scores
lower than 20 and unaligned ones, and then finds the ‘D’ identifiers
with lengths greater than 30 in the cigar string, records the position
and length of the deletion event on the reference genome, considers
it as a deletion site and represents it as a quaternion Dt=(chr, start,
svlen, end), where chr denotes the chromosome that the reads are
aligned, start, and end denote the start and end positions of the
deletion on the chromosome, respectively, and svlen denotes the
length of the deletion on the chromosome. Due to the high
sequencing error rate of long reads, which may result in a single
deletion region being split into multiple smaller deletion regions
during sequencing and alignment, it is necessary to determine
whether merging can be performed if there are two deletion sites
on the same read. For two quaternions Dt1= (chr1, start1, svlen1,
end1) and Dt2= (chr2, start2, svlen2, end2) for the same read, where
Dt1 is assumed to be located in front of Dt2, calculate the gap by
using gap = start2-end1, and if 0<gap≤ 30, then Dt1 and Dt2 are
combined into a quaternion Dt= (chr1, start1, svlen1+svlen2, end2),
the new quaternion represents a large deletion variant.

For an alignment containing segmented reads, each matched
read is represented as a hexadecimal Sig=(chr, Refs, Refe, Reads,
Reade, orient), respectively, where chr denotes the chromosome to
which the read is aligned, Refs and Refe denote the start and end
points of the read alignment to the reference genome, respectively,
Reads and Reade denote the start and end points of the segment of
reads that are matched to the reference genome in the reads,
respectively, and orient denotes the direction in which the read is
aligned to the reference genome. As shown in Figure 3, the read is
aligned to the reference genome due to the presence of variants
resulting in splitting the read into two segments to be aligned to the
reference genome separately, denoting the two alignments as the
hexameric group Sig1= (chr1, Ref1s, Ref1e, Read1s, Read1e, orient1)
and Sig2= (chr2, Ref2s, Ref2e, Read2s, Read2e, orient2), respectively.
For two read segments of a split read comparison, which are aligned

to the same chromosome in the same direction, i.e., chr1 = chr2 and
orient1 = orient2, the spacing Distance_ref on the chromosome, the
spacing Distance_read on the read, and the difference in their
spacing Distance are computed, respectively. The setting of the
upper limit of the distance threshold is described in detail in the
results section 3.5.

Distance ref � Ref2s − Ref1e

Distance read � Read2s − Read1e

Distance � Distance ref −Distance read

⎧⎪⎨
⎪⎩

If Distance lies between the interval [50, 100,000], it indicates
that this splitting read contains a deletion event, which is considered
as a candidate deletion site and represented as a quaternion
Deletion= (chr, Ref1e, Distance, Ref2s).

2.2 Generate large cluster

Clustering is commonly used for grouping data points in a dataset
with similar characteristics into one category to help us better
understand and utilize the information in the dataset, discover
patterns and regularities in the data, and provide useful tasks for
subsequent prediction and classification. The traditional methods for
structural variant detection are generally to first find potential
candidate variant sites through coverage, split reads and other
features, and then filter the clusters with higher confidence as
candidate clusters through clustering, and find the appropriate
variant sites from the candidate clusters as the final result. In
structural variation detection, a sliding window-based clustering
method is usually used, which can effectively cluster candidate loci
representing the same variant site together to facilitate structural
variation detection. Clustering methods based on sliding windows
need to set the window size in advance, and since the window size is
fixed, when the window is set too large or too small it will result in the
final finding of structural variants that are not complete. Since the
coverage of the deletion region is lower than that of the normal region,
the deletion region can be found by observing the coverage, so LcDel
clusters in the first layer of clustering according to the length of
deletion variation based on the two clustering methods of the sliding
window and coverage, respectively, which can effectively cluster the
deletion events that are mutated at the same locus together.

LcDel first sets a length threshold of 2000 and then refers to
deletion lengths less than this threshold as small candidate deletion

FIGURE 3
Split alignment of long read.
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sites and deletion lengths greater than this threshold as large
candidate deletion sites. The small candidate deletion sites are
then clustered using a coverage-based clustering method, while
the large candidate deletion sites are clustered using a sliding
window-based clustering method.

When clustering large candidate deletion sites, LcDel first sorts
the large candidate deletion sites in ascending order according to
their position on the reference genome, and then sets up a window of
length 1,500, as shown in Figure 4 below. The starting position of the
sliding window is the position of the first large candidate deletion
site on the reference genome, and then keep sliding the window, if
there is no large candidate deletion site in the sliding window at a
certain moment, the next large candidate deletion site will be taken
as the new starting point of the sliding window directly, and if the
sliding window contains a large candidate deletion site, the next
sliding window will need to take the end position of the window as
the new starting point. In the process of continuously sliding the
window, the large candidate deletion sites contained within the
sliding window are clustered together to form a cluster, which is
considered as a large cluster.

Since the coverage of the deletion region is significantly lower
than that of the normal region, analyzing the feature of coverage can
detect the deletion region, so the small candidate deletion sites are
clustered using the coverage-based clustering method. LcDel sets up
a list of chromosomes in the reference genome of length
corresponding to the length of the corresponding chromosome,
respectively, and the initial values of the list are all 0. Each position in
the list corresponds to the corresponding base site on the reference
genome. Then LcDel traverses each small candidate deletion site,
looks at the region where each small candidate deletion site is
located, takes out the list corresponding to the reference genome
where the small candidate deletion site is located, and then adds 1 to
the value of the list corresponding to the deletion region, and

continually continues this process until all the small candidate
deletion sites have been traversed. LcDel uses each locus of the
reference genome as a horizontal coordinate and the list value
corresponding to that locus as a vertical coordinate to build a
planar graph.

As shown in Figure 1, step 2, the deletion region will form a
shape similar to a mountain peak. Find the interval corresponding to
that peak and cluster the small candidate deletion sites within that
interval together to form a large cluster. In the first layer of clustering
process, based on the sliding window and coverage clustering is
carried out for different candidate deletion sites, the two clustering
methods are independent of each other, so the two clustering
methods are carried out at the same time, and the clustering for
each chromosome is also processed in parallel by multi-threading,
which makes LcDel extremely fast in the first layer of clustering. At
the end of the first layer of clustering, all candidate deletion sites are
clustered into multiple large clusters.

2.3 Generate candidate cluster

Since one human chromosome is composed of two homologous
chromosomes, however, deletion variants of different lengths may
have occurred on the two homologous chromosomes, such as
deletion events of lengths 108 and 216 at locus 1,120,034 on
chromosome 1, respectively. If the large clusters from the first
level of clustering are used directly as final candidate clusters, the
deletion length at that location may be determined incorrectly when
determining the deletion length, affecting the final detection results.
In order to separate these deletion variations, LcDel uses a
hierarchical clustering method for a second clustering, which
makes the clustering results more accurate and helps to
determine the subsequent deletion length.

FIGURE 4
Clustering of large candidate deletion sites based on sliding windows.
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LcDel treats each candidate deletion site in a large cluster as a
small cluster, and the average of the lengths of all the deletions in the
small cluster is considered as the deletion length of the small cluster.
LcDel calculates the length difference between any two small clusters
contained in the large cluster each time, and then LcDel merges the
two small clusters with the smallest length difference, and keeps
iterating this merging process until the final large cluster contains only
two small clusters. For two small clusters with deletion lengths of len1
and len2, respectively, the length difference rate between them can be
calculated by the following formula. At this point, candidate deletion
sites that support different deletion length variants can be clustered
together to form small clusters. Finally, it is necessary to determine
whether two small clusters represent the same deletion variant based
on the difference in length between them, and to determine whether
two small clusters in a large cluster can be merged into a single cluster.
If the difference in the length of two clusters is less than 20%, the two
clusters are merged into one candidate cluster, otherwise both clusters
are considered as candidate clusters.

rate � abs len1, len2( )
max len1, len2( )

2.4 Determine location and length
of deletion

Candidate clusters have been identified through the previous
two layers of clustering. LcDel then sets a support read threshold
that filters out the following two types of candidate clusters: 1) The
large cluster contains only one candidate cluster and the number of
candidate deletion sites in the candidate cluster is less than the
supported read threshold; 2) The large cluster contains two
candidate clusters, and the number of candidate deletion sites in

the candidate clusters is less than half of the threshold of supported
reads. To better illustrate the benefits of splitting our filtering of
candidate clusters into two cases, we also benchmarked the
HG002 CLR dataset in one case (filtering out candidate clusters
smaller than the threshold of supported reads), and the results are
shown in Table 1 below. By analyzing LcDel on CLR datasets with
different coverage, it can be seen that LcDel can effectively improve
the detection of deletion variants when filtered in two cases.

For the candidate clusters that are left behind, the average of the
deletion positions and lengths in that candidate cluster is calculated,
and the candidate deletion site with the deletion position and length
closest to the average in that candidate cluster is taken as the
final result.

3 Results

In order to objectively evaluate the detection performance of
LcDel for deletion variants, this paper compares LcDel with four of
the more frequently used current structural variant detection tools.
The four structural variant detection tools, all of which perform
variant detection based on long reads, are cuteSV, sniffles, svim, and
pbsv. High-confidence deletion variant regions collected by the
Genome in a Bottle program were used as the reference standard
dataset for this experiment, and Truvari was used to evaluate and
record precision, recall, and F1-scores for all experimental results. In
order to fully evaluate the deletion detection performance of LcDel,
three human sample datasets that are currently more commonly
used were selected: HG002 CLR (average length: 7938bp),
HG002 CCS (average length: 13,478bp), and detailed information
of the datasets is shown in Table 2 below. Additionally, this paper
sets appropriate support read thresholds for each detection tool
separately, with specific settings for detection performance on each
dataset presented in the Detection Performance section.

In the following experiments, we detected deletion variation on
chromosomes 1–22. The structural variation detectionmethods based
on deep learning commonly selects a portion of chromosomes as the
training set and a portion of chromosomes as the validation set. These
models are continuously trained through the training and validation
sets, and finally the remaining chromosomes are predicted in the test
set. Therefore, it is not appropriate to compare LcDel with the
methods using deep learning.

3.1 Detection performance of the structural
variation detection tools on the CLR dataset

First, we benchmark LcDel, cuteSV, svim, sniffles and pbsv
detection tools on the HG002 CLR dataset, and the experimental

TABLE 1 Detection performance of LcDel in different situations.

Coverage one_situation two_situation

69X precision 0.9535 0.9611

recall 0.9725 0.9832

F1 0.962 0.9721

35X precision 0.9387 0.9485

recall 0.9561 0.9764

F1 0.9473 0.9623

20X precision 0.9293 0.9369

recall 0.9341 0.9446

F1 0.9316 0.9407

10X precision 0.9186 0.9273

recall 0.8563 0.8671

F1 0.8861 0.8962

5X precision 0.9412 0.9573

recall 0.6765 0.6866

F1 0.7871 0.7997

TABLE 2 Description of the dataset.

HG002 CLR HG002 CCS

Read Count 2,915,733 6,596,012

Average Length 7,938 13,478

Coverage 69X 28X
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results are shown in Table 3 below. In order to fully evaluate the
deletion detection performance of LcDel on datasets with different
coverage, we also randomly downsampled the HG002 CLR dataset
to 35X, 20X, 10X and 5X and benchmarked it. For datasets with 69X,
35X, 20X, 10X and 5X coverage, the support read thresholds were set
to 10, 5, 3, 2 and 2, respectively.

Compared to the other four popular structural variation
detection tools, as shown in Table 3, LcDel achieves the
highest recall and F1-score on all coverage CLR datasets. For
the 69X dataset, the precision of LcDel detection is not the
highest, but it is only 0.3% less than the first place, while the
recall and F1-score are the highest, with the recall being 3.6%
higher than the second place and the F1-score being 1.77% higher
than the second place, which indicates that LcDel has a better
performance of deletion detection on the high coverage dataset.
For the CLR dataset with 35X coverage, LcDel detection had the
lowest precision, 1.5% lower than the first place, but the recall was
0.9% higher than the second place and the F1-score was 1.2%
higher than the second place. For the 20X CLR dataset, the
precision of LcDel detection was also the lowest, 2.5% lower
than the first place, but the recall was 3.5% higher than the second
place, achieving the highest F1-score. The performance of
structural variant detection tools for deletion variant detection
decreases with decreasing sequencing depth. For the 10X dataset,
the precision of LcDel detection was 3.9% lower than the first
place, but the recall was 2.8% higher than the second place,
achieving the highest F1-score. For the dataset of 5X, the
precision of LcDel detection is 1.5% lower than that of pbsv,
but the recall is 28.24% higher than that of pbsv, achieving the
highest recall and F1-score, which indicates that LcDel has a
better performance of deletion detection on CLR datasets of
different coverage.

3.2 Performance of structural variation
detection tools on different deletion lengths

In order to evaluate the performance of structural variant
detection tools for different deletion lengths, in this paper, the
variant lengths are categorized into five intervals of [50, 200],
[200, 500], [500, 1,000], [1,000, 2000], and [2000+] for
benchmarking respectively. The structural variation detection tool
was benchmarked on the 69X、10X and 5X datasets of the
HG002 CLR and the results are shown in Table 4 and 5 below,
respectively.

Compared with the other four commonly used structural
variation detection tools, as shown in Table 4, LcDel achieved
the highest F1-scores at different deletion lengths, which
indicates that LcDel has a better detection effect for different
deletion lengths on the 69X dataset of HG002 CLR. On the [50,
200] interval, the precision of LcDel detection was 1.2% lower than
the first place, but the recall was 3.5% higher than the second place,
and the F1-score was 1.34% higher than the second place, which
indicates that LcDel has a better detection effect on small deletion
variants. On the [200, 500] interval, although the LcDel detection
had the second highest recall, only 0.15% lower than the first place, it
achieved the highest precision and F1-score. On the [500,1000]
interval, although LcDel did not detect the highest precision, it
achieved the highest recall and F1-score. On the [1,000,2000]
interval, LcDel achieved the highest precision, recall, and F1-
score, which were 1.06%, 1.05%, and 1.29% higher than the
second place, respectively. By analyzing in the intervals [200,
500], [500, 1,000] and [1,000, 2000], it was found that LcDel has
better performance for large deletion variant detection. On the
[2000+] interval, LcDel also achieved the highest precision, recall,
and F1-score, which were 2.7%, 1.8%, and 2.6% higher than the

TABLE 3 Performance comparison of SV detection tools on CLR Dataset.

Coverage LcDel cuteSV Sniffles Svim pbsv

69X Precision 0.9611 0.9557 0.964 0.9595 0.9617

Recall 0.9832 0.9436 0.9438 0.9461 0.9472

F1 0.9721 0.9496 0.9538 0.9527 0.9544

35X Precision 0.9485 0.9527 0.9641 0.957 0.9634

Recall 0.9764 0.9361 0.9261 0.9368 0.9368

F1 0.9623 0.9443 0.9447 0.9468 0.9499

20X Precision 0.9369 0.9504 0.9622 0.958 0.9609

Recall 0.9446 0.9091 0.8794 0.9052 0.8736

F1 0.9407 0.9293 0.919 0.9309 0.9152

10X Precision 0.9273 0.9434 0.9559 0.9396 0.967

Recall 0.8671 0.8377 0.7918 0.8389 0.6496

F1 0.8962 0.8874 0.8662 0.8864 0.7772

5X Precision 0.9573 0.9656 0.9649 0.9647 0.973

Recall 0.6866 0.6632 0.6285 0.6586 0.4042

F1 0.7997 0.7864 0.7612 0.7828 0.5712
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second place, respectively, which demonstrated LcDel’s better
detection performance even for larger deletion variants.

As shown in Table 5, LcDel achieved the highest recall and F1-
score on different intervals, which indicates that LcDel has a better
detection effect for different deletion lengths on the 10X dataset of
HG002 CLR. On the [50, 200] interval, although the pbsv detection
had the highest precision, the LcDel detection had 20.58% higher
recall and achieved the highest F1-score. On the [200, 500] interval,
LcDel achieved the second highest precision, only 0.59% lower than
the first place, but the recall and F1-score were 0.7% and 0.76%
higher than the second place, respectively. On the [500, 1,000]
interval, although the precision of LcDel detection was 1.97%
lower than sniffles, the recall was 5.59% higher, achieving the
highest F1-score. LcDel achieved the highest precision, recall, and
F1-score on both the [1,000, 2000] and [2000+] intervals.

Although LcDel, cuteSV, sniffles, svim, and pbsv were all
detected poorly on the 5X of the HG002 CLR dataset, LcDel still
achieved the highest F1 scores on each interval, which suggests that
LcDel has a better detection performance for deletion variants of
different lengths even at low coverage.

3.3 Performance of LcDel on different
support read parameters

Too large or too small support reads can affect the performance
of detection of deletion variants, in order to evaluate the
performance of LcDel in detecting deletion variants under
different support reads thresholds, so this paper sets the support
read support to 2, 3, 5 and 10 on 69X, 35X and 10X datasets of
HG002 CLR to benchmark LcDel, respectively. The test results are
shown in Table 6, which shows that on the 69X HG002 CLR dataset,
as the number of supported reads continues to increase, the

precision continues to increase and the recall continues to
decrease, but the F1 score generally increases until a better
detection result is achieved at a number of supported reads of 10.
On the HG002 CLR dataset of 35X, it was found that LcDel achieves
better deletion detection performance when the number of
supported reads is set to 5. On the 20X dataset, better deletion
detection results are achieved when the number of supported reads
is set to 3. From the above analysis, it is found that the larger the
support read are set, the greater the precision of LcDel detection and
the smaller the recall.

3.4 Detection performance of the structural
variation detection tool on the CCS dataset

In order to fully evaluate the performance of LcDel on different
datasets for deletion variant detection, in addition to the CLR dataset
of HG002, this paper also benchmarked LcDel, cuteSV, sniffles, svim,
and pbsv on the CCS dataset of HG002, respectively. In addition to
that, in this paper, the CCS dataset is randomly downsampled to 10X
and 5X, and the support reads are set to 3, 2, and 1 for benchmarking,
respectively, and the results are shown in Table 7. On CCS datasets
with different coverage, although none of LcDel’s precision is the
highest, its recall is the highest and it achieves a good F1 score, which
shows that LcDel can achieve similar deletion detection performance
on CCS datasets as other detection tools.

3.5 Deletion detection performance of LcDel
at different distance thresholds

Since reads spanning small deletion regions are compared with
the reference genome, the deletion information is displayed directly

TABLE 4 Comparison of detection performance for different deletion lengths.

Coverage Interval LcDel cuteSV Sniffles Svim pbsv

69X Precision 0.9394 0.936 0.9514 0.9446 0.947

50–200 Recall 0.9768 0.9018 0.9208 0.9217 0.9416

F1 0.9577 0.9186 0.9359 0.933 0.9443

Precision 0.9846 0.9718 0.9778 0.9754 0.9744

200–500 Recall 0.9831 0.9831 0.9846 0.9792 0.9669

F1 0.9838 0.9774 0.9812 0.9774 0.9706

Precision 0.9692 0.9447 0.9741 0.9489 0.9659

500–1,000 Recall 0.9594 0.9543 0.9543 0.9441 0.8629

F1 0.9643 0.9494 0.9641 0.9465 0.9115

Precision 0.9793 0.9687 0.9639 0.9585 0.9502

1,000–2000 Recall 0.9844 0.9687 0.9739 0.9635 0.8958

F1 0.9818 0.9687 0.9689 0.961 0.9222

Precision 0.9719 0.9386 0.9419 0.9444 0.9354

2000+ Recall 0.9811 0.9622 0.8679 0.9088 0.9119

F1 0.9765 0.9503 0.9034 0.9262 0.9235
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in the cigar string, e.g., the presence of 100D in the cigar string
indicates that the region to which the read is compared on the
reference genome contains a deletion region of 100 bp in length.
And for some reads containing large deletion regions do not display
the deletion information directly in the cigar string when compared
with the reference genome, they will be compared to two non-
adjacent regions of the same chromosome by clipping the reads.
Therefore, for the alignment with clipped reads, we need to set
certain conditions to determine whether the alignment contains a
deletion variant or not. If two segments of a read are aligned to the
same chromosome in the same direction, the distance between the

two segments on the read, Distance_read, is computed separately,
and the distance between the two segments on the read, Distance_
ref, is further computed for the two segments on the read aligned to
the reference genome. Normally Distance_read should be 0, but due
to sequencing errors and alignment tools, Distance_read may not be
0. In order to determine whether the alignment contains a deletion
variant, it is necessary to determine whether the difference between
them, Distance, is greater than 50; if Distance is greater than 50, then
the alignment contains a deletion variant, but an upper threshold
needs to be set for Distance. In order to explore a suitable upper
threshold, we set different upper thresholds (Dt) to test the

TABLE 5 Comparison of detection performance for different deletion lengths.

Interval LcDel cuteSV Sniffles Svim pbsv

Precision 0.886 0.9221 0.9383 0.9169 0.9566

50–200 Recall 0.844 0.7975 0.7568 0.8113 0.6382

F1 0.8645 0.8553 0.8378 0.8609 0.7656

Precision 0.9709 0.9626 0.9709 0.9609 0.9768

200–500 Recall 0.8985 0.8915 0.8754 0.8907 0.7154

F1 0.9333 0.9257 0.9207 0.9246 0.8259

Precision 0.95 0.9389 0.9697 0.9389 0.952

10X 500–1,000 Recall 0.868 0.8578 0.8121 0.8579 0.6041

F1 0.9072 0.8965 0.8839 0.8966 0.7391

Precision 0.9583 0.9464 0.9491 0.9509 0.9357

1,000–2000 Recall 0.8385 0.8281 0.776 0.8073 0.5313

F1 0.8944 0.8833 0.8539 0.8732 0.6778

Precision 0.9446 0.9283 0.9346 0.9387 0.9302

2000+ Recall 0.8585 0.8144 0.6289 0.7705 0.5031

F1 0.8995 0.8677 0.7519 0.8463 0.6531

Precision 0.886 0.9221 0.9383 0.9169 0.9566

50–200 Recall 0.844 0.7975 0.7568 0.8113 0.6382

F1 0.8645 0.8553 0.8378 0.8609 0.7656

Precision 0.9709 0.9626 0.9709 0.9609 0.9768

200–500 Recall 0.8985 0.8915 0.8754 0.8907 0.7154

F1 0.9333 0.9257 0.9207 0.9246 0.8259

Precision 0.95 0.9389 0.9697 0.9389 0.952

5X 500–1,000 Recall 0.868 0.8578 0.8121 0.8579 0.6041

F1 0.9072 0.8965 0.8839 0.8966 0.7391

Precision 0.9583 0.9464 0.9491 0.9509 0.9357

1,000–2000 Recall 0.8385 0.8281 0.776 0.8073 0.5313

F1 0.8944 0.8833 0.8539 0.8732 0.6778

Precision 0.9446 0.9283 0.9346 0.9387 0.9302

2000+ Recall 0.8585 0.8144 0.6289 0.7705 0.5031

F1 0.8995 0.8677 0.7519 0.8463 0.6531

The above analysis reveals that LcDel has good detection performance for different deletion variant lengths on both high coverage (69X) and low coverage (10X and 5X) datasets of HG002 CLR.
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HG002 CLR dataset respectively, and the test results are shown in
Table 8 below.

The above table shows that when the upper limit of the Distance
threshold is set too small, LcDel has higher precision but lower recall
in the detection results. As the upper limit of the Distance threshold
continues to increase, the precision of the LcDel detection results
gradually decreases, but the recall gradually increases. The reason for
this analysis is that the upper limit of the Distance threshold is set
too high causing many false positive events to be treated as missing
events. If the upper Distance threshold is not set, LcDel will regard
many false-positive events as deletion events, so it will ultimately
lead to lower accuracy and higher recall of LcDel’s detection results.
Therefore, setting an appropriate upper Distance threshold is
especially important for the detection of missing variants, and
the upper Distance threshold is set to 100,000 by the above table.

3.6 Comparison of deletion performance of
LcDel at the first level of clustering using
different methods

Since the length of large candidate deletion variant sites is
generally longer, the effect may not be so obvious if the clustering

is done using the coverage-based method, while the use of the
sliding window-based clustering of deletion variants with larger
lengths can have good results. Due to the short length of small
candidate deletion sites, the deletion detection performance of
LcDel may be reduced if a sliding window-based approach is
directly used to cluster all deletion sites at the first level. In order
to assess the impact of using the sliding window clustering
method on small candidate deletion sites, we performed
benchmarking on the first layer of clustering on the
HG002 CLR dataset using sliding window based one method
alone (SW) and using sliding window, coverage based two
methods (SW + CG), the benchmarking results are shown in
Table 9 below.

From Table 9, it can be seen that if all candidate deletion sites are
clustered using the sliding window-based method, it does not have a
better detection performance than clustering using both sliding
window-based and coverage-based methods. Consequently,
clustering of small candidate deletion sites using the sliding
window-based method decreases the detection performance of
LcDel, which may be due to the relatively large window setting,
resulting in some small candidate deletion sites that are relatively
close to each other being clustered together, affecting the accuracy
of LcDel.

TABLE 6 LcDel deletion detection performance at different supported read.

Coverage Support>=2 Support>=3 Support>=5 Support>=10

69X 0.6094 0.7419 0.8755 0.9611

0.9965 0.9942 0.9922 0.9832

0.7563 0.8498 0.9302 0.9721

35X 0.7602 0.8721 0.9488 0.9818

0.9934 0.9908 0.9764 0.8503

0.8612 0.9277 0.9624 0.9113

20X 0.8708 0.9393 0.9774 0.9924

0.9796 0.9444 0.8188 0.4103

0.922 0.9418 0.8911 0.5806

TABLE 7 Comparison of the performance of SV detection tools on the CCS dataset of HG002.

Coverage LcDel cuteSV Sniffles Svim pbsv

28X Precision 0.9378 0.9366 0.9487 0.9443 0.9459

Recall 0.9504 0.9414 0.9399 0.9446 0.9346

F1 0.9441 0.939 0.9433 0.9444 0.9402

10X Precision 0.9346 0.9447 0.9525 0.9382 0.9567

Recall 0.9113 0.9016 0.8787 0.9040 0.8214

F1 0.9228 0.9226 0.9141 0.9208 0.8839

5X Precision 0.9109 0.9217 0.9581 0.9164 0.9722

Recall 0.8818 0.8731 0.6994 0.8743 0.5017

F1 0.8962 0.8968 0.8085 0.8949 0.6618
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3.7 Comparison of detection performance of
LcDel on HG002 CLR dataset for different
window sizes

The use of sliding window based method in clustering large
candidate deletion sites will achieve good results, but the setting of

the window size may affect the detection performance of LcDel on
deletion variants to a certain extent, so this paper attempted to set
the sliding window (ws) to 500, 1,500, 2,500, 4,000 and 5,000 on the
CLR dataset of HG002 for benchmarking, and the results are as
follows in Table 10.

Through Table 10, it can be found that when the window setting
is small it will reduce the detection performance of LcDel, and when
the window size is 1,500, no matter how to increase the window, it
has little effect on the detection effect of LcDel, which is largely due
to the hierarchical clustering in the second layer. If the setting of the
window is very large, it will cluster many close deletion variants
together to form a cluster, if the exact deletion site is determined
directly at this time it will lead to misidentification or miss
identification of the deletion variants, but the hierarchical
clustering can separate them very well, so the effect of LcDel
does not decrease with the increase of the window. Through
analysis, LcDel sets the window size to 1,500.

4 Discussion

In this paper, we propose a long read based deletion variant
detection method LcDel using two-layer clustering. LcDel first finds
candidate deletion sites from the sorted bam file by intra-read
alignment and inter-read alignment. A method of heuristics was
used to merge relatively close deletion sites. Use sliding window and
coverage methods based on deletion length to perform the first layer
clustering and generate multiple large clusters. Then, hierarchical
clustering is used to further cluster the large clusters and generate
candidate clusters, in order to improve the accuracy of clustering
and facilitate the determination of deletion positions and lengths in
the future. Finally, the candidate clusters containing candidate

TABLE 8 LcDel results for different upper Distance thresholds on the CLR dataset.

Coverage Dt ≤ 1,000 Dt ≤ 5,000 Dt ≤ 10,000 Dt ≤ 50,000 Dt ≤ 100,000 Dt ≤ 200,000

69X precision 0.9627 0.9638 0.9642 0.9635 0.9611 0.9605

recall 0.9239 0.9521 0.9761 0.9791 0.9832 0.9832

F1 0.9429 0.9579 0.9701 0.9712 0.9721 0.9717

35X precision 0.9495 0.9488 0.9495 0.9487 0.9485 0.9487

recall 0.9195 0.9455 0.9696 0.9764 0.9764 0.9764

F1 0.9343 0.9471 0.9594 0.9624 0.9623 0.9624

20X precision 0.9381 0.9393 0.9403 0.9393 0.9369 0.9314

recall 0.8877 0.9144 0.9378 0.9443 0.9446 0.9446

F1 0.9122 0.9267 0.939 0.9406 0.9407 0.9379

10X precision 0.9281 0.9287 0.9289 0.9286 0.9273 0.9286

recall 0.8092 0.8386 0.8605 0.8663 0.8671 0.8671

F1 0.8646 0.8813 0.8934 0.8961 0.8962 0.8964

5X precision 0.9611 0.9614 0.9613 0.9612 0.9573 0.9505

recall 0.637 0.6666 0.6819 0.6845 0.6866 0.6865

F1 0.7662 0.7873 0.7978 0.7995 0.7997 0.7972

TABLE 9 Performance comparison of LcDel on different clustering
methods.

Coverage SW SW + CG

69X precision 0.9596 0.9611

recall 0.9691 0.9832

F1 0.9643 0.9721

35X precision 0.9483 0.9485

recall 0.9616 0.9764

F1 0.9549 0.9623

20X precision 0.9443 0.9369

recall 0.9322 0.9446

F1 0.9382 0.9407

10X precision 0.8633 0.9273

recall 0.8566 0.8671

F1 0.86 0.8962

5X precision 0.9062 0.9573

recall 0.6766 0.6866

F1 0.7747 0.7997
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deletion sites are filtered out, and the position and length of the
deletion are determined from the remaining candidate clusters. To
evaluate the detection performance of LcDel for deletion variants,
we compared it with four currently popular structural variant
detection tools on multiple datasets. The experimental results
show that LcDel has better detection performance for deletions.

However, LcDel still has some limitations in some aspects. First,
LcDel only detects deletion variants but not other types of structural
variants such as insertions, translocations and inversions. Second,
LcDel does not genotype the detected deletions. We will gradually
improve the above problems in our future work.
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TABLE 10 Comparison of LcDel’s detection performance on different window sizes.

Coverage ws = 500 ws = 1,500 ws = 2,500 ws = 4,000 ws = 5,000

69X precision 0.9512 0.9611 0.9541 0.9635 0.9635

recall 0.9627 0.9832 0.9811 0.9832 0.9832

F1 0.9569 0.9721 0.9674 0.9733 0.9733

35X precision 0.941 0.9485 0.9435 0.9485 0.9483

recall 0.9657 0.9764 0.9744 0.9764 0.9764

F1 0.9531 0.9623 0.9587 0.9622 0.9621

20X precision 0.9315 0.9369 0.9393 0.9393 0.9393

recall 0.9343 0.9446 0.9444 0.9443 0.9443

F1 0.9328 0.9407 0.9418 0.9418 0.9418

10X precision 0.9181 0.9273 0.9286 0.9286 0.9286

recall 0.8556 0.8671 0.8663 0.8663 0.8663

F1 0.8857 0.8962 0.8964 0.8961 0.8964

5X precision 0.9518 0.9573 0.9608 0.9608 0.9601

recall 0.6761 0.6866 0.6765 0.6763 0.6765

F1 0.7906 0.7997 0.7937 0.7938 0.7937
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