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The identification of genome-wide selection signatures can reveal the potential
genetic mechanisms involved in the generation of new breeds through natural or
artificial selection. In this study, we screened the genome-wide selection
signatures of prolific Suffolk sheep, a new strain of multiparous mutton sheep,
to identify candidate genes for reproduction traits and unravel the germplasm
characteristics and population genetic evolution of this new strain of Suffolk
sheep. Whole-genome resequencing was performed at an effective sequencing
depth of 20× for genomic diversity and population structure analysis. Additionally,
selection signatures were investigated in prolific Suffolk sheep, Suffolk sheep, and
Hu sheep using fixation index (FST) and heterozygosity H) analysis. A total of
5,236.338 Gb of high-quality genomic data and 28,767,952 SNPs were obtained
for prolific Suffolk sheep. Moreover, 99 selection signals spanning candidate
genes were identified. Twenty-three genes were significantly associated with
KEGG pathway and Gene Ontology terms related to reproduction, growth,
immunity, and metabolism. Through selective signal analysis, genes such as
ARHGEF4, CATIP, and CCDC115 were found to be significantly correlated with
reproductive traits in prolific Suffolk sheep and were highly associated with the
mTOR signaling pathway, the melanogenic pathway, and the Hippo signaling
pathways, among others. These results contribute to the understanding of the
evolution of artificial selection in prolific Suffolk sheep and provide candidate
reproduction-related genes that may be beneficial for the establishment of new
sheep breeds.
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1 Introduction

China has the largest sheep flock and is the largest producer of
sheep meat worldwide. According to the “National Breed List of
Livestock and Poultry Genetic Resources” (2021 edition), there are
89 sheep breeds in China, including 44 indigenous breeds,
32 improved breeds, and 13 introduced breeds. Developing sheep
breeds with high prolificacy has become a key goal in livestock
breeding (Cottle, 2010; Miao et al., 2016; Gowane et al., 2017). Many
new sheep breeds have been established in China in the past decade,
such as Luxi Black Head sheep (Liu et al., 2022), Huang-huai sheep
(Quan et al., 2020), and a new breed of prolific Suffolk sheep (Wang
et al., 2020), which was established through grading hybridization
between Suffolk sheep and Hu sheep over 12 years of breeding.
Suffolk sheep make excellent male parents for terminal crosses while
Hu sheep are known for their high fertility, and are widely used in
sheep farming in Xinjiang, China. Thus, prolific Suffolk sheep have
the advantages of high-quality meat from Suffolk sheep and
prolificacy characteristics from Hu sheep.

Selection signature analysis can help identify the genomic imprint
of livestock resulting from the process of domestication or artificial
selection. Based on this strategy, researchers can scan the regions that
are associated with important economic traits that have been subjected
to selection during the domestication of livestock, locate the selected
genes or genetic markers, and identify the genetic mutations associated
with these traits, so as to achieve variety improvement and new
germplasm creation (Horscroft et al., 2019). Additionally,
population-based resequencing can reveal the evolutionary
relationships between populations, help identify the excellent genetic
resources of each breed, and contribute to the understanding of the
genetic diversity between populations; this provides strong support for
the selection of new breeds and the promotion of the development of
animal husbandry. Li et al. conducted 25.7× whole-genome
resequencing of wild and domestic sheep, which revealed the genetic
mechanism underlying various agricultural traits in domesticated sheep
(e.g., reproduction, wool production), thereby providing valuable
genomic resources for research on sheep genetics (Li et al., 2020).
Similarly, Zhang et al. employed genome resequencing technology to
uncover the natural selection molecular imprinting of wild and
domesticated sheep. They identified IFI44, PNK2, and RNF24 as
being related to the immunity of sheep, thereby providing insights
into the molecular mechanism underpinning the origins of phenotypic
variation induced by sheep domestication and improvement (Zhang
et al., 2022). Sweet-Jones et al. used whole-genome resequencing to
perform high-depth scanning for selection signatures linked to the
adaptability of Welsh sheep (Sweet-Jones et al., 2021). The authors
reported that the RNF24, PANK2, and MUC15 genes had strong
selection signals, with potential functions in the environmental
adaptability of local Welsh breeds. Furthermore, Wang et al. (2017)
sequenced mixed pools of multiple-lamb and single-lamb Duolang
sheep populations, and identified six genes related to reproductive
performance, including INHBA, NCOA1, INGS, BMPR-IB, ARNT, and
KLHL1 (Sui, 2017). Zhang et al. used fixation index (FST) analysis to
detect genome-wide selection signals in five sheep breeds, and found
thatRXFP2, GHR, andASIPwere related to the shape, growth, and lipid
metabolism of horns (Zhang et al., 2013). Therefore, we used whole
genome resequencing technology to screen genes related to important
economic traits, reveal the genetic basis of breeding breeds, and provide

a basis for the selection and breeding of multiple new breeds of
mutton sheep.

In this study, we resequenced the whole genomes of 90 Hu
sheep, Suffolk sheep, and prolific Suffolk sheep to explore their
genetic structure and the genetic variance among the breeds as well
as identify candidate regions and genes related to reproductive traits.
Additionally, FST and H analysis was used to identify selection
signals unique to prolific Suffolk sheep, while functional
enrichment analysis was undertaken to identify major genes
closely related to reproductive traits. Our aim was to provide a
theoretical basis for the breeding of prolific Suffolk sheep breeds as
well as offer further insights into the selection of local sheep breeds
in China.

2 Materials and methods

2.1 Sample collection

In this study, based on pedigree information, 50 healthy and
unrelated prolific Suffolk sheep of the same age (26 rams and
24 ewes with 196% average lambing rate) were selected. The
24 ewes were divided into two groups, namely, a multi-lamb
group, consisting of 12 ewes with a 275% lambing rate
(Figure 1A), and a single-lamb group, comprising 12 ewes with
a lambing rate of 117% (Figure 1B). Twenty Hu sheep with a 230%
lambing rate (Figure 1C) and 20 Suffolk sheep with a 140%
lambing rate (Figure 1D) were also used (Supplementary Table
S6). All the sheep came from the sheep farm of Xinjiang Academy
of Agricultural and Reclamation Science. Blood samples (5 mL)
collected from the jugular vein were placed in EDTA-Na2 and
stored at −20 °C until further processing.

2.2 DNA isolation and sequencing

DNA was extracted from blood using the TIANamp Blood DNA
Kit (TIANGEN, China) according to the manufacturer’s instructions.
The quality of the genomic DNA was assessed by 1% agarose gel
electrophoresis while its concentration and purity were evaluated using
a NanoDrop 2000 spectrophotometer. DNA libraries were prepared
using the TruSeq Library Construction Kit. The DNA was randomly
fragmented to an average size of 350 bp using ultrasonication and
sequencing libraries were constructed following the manufacturer’s
instructions (Illumina, San Diego, CA, USA). The libraries were
paired-end sequenced at ~20× coverage on the Illumina
HiSeq2500 Platform (Illumina Inc.) by Beijing Compass
Biotechnology Co., Ltd (Beijing, China). To provide reliable data for
subsequent analysis, the original sequencing data were filtered to
remove reads with linker sequences, sequences with more than 10%
N content, and low-quality data (Q-value≤5). Subsequent analyses were
based on these clean data.

2.3 Read alignment and variable annotation

The effective sequencing data were compared to the sheep
reference genome (Oar_v4.0) through BWA (v.0.7.12) with the
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parameters “mem -t 4 -k 32 -M” (Li and Durbin, 2009). Individual
SNPs were detected with SAMtools (v.1.2) using the parameters
“mpileup -m 2 -F 0.002 -d 1,000” (Li et al., 2009). The filtering
criteria for minimizing variant calling errors were as follows: variant
sites with QD < 2.0, MQ < 20, and FS > 60.0 were discarded and the
remaining variants were annotated using ANNOVAR v.21-
Jun-2013.

2.4 Phylogenetic analysis and
population Dynamics

Based on the neighbor-joining (NJ) method, a phylogenetic
tree was constructed with the set of quality-filtered SNPs using
the Phylogeny Inference Package (PHYLIP) (Felsenstein, 1989).
Cluster analysis for elucidating population structure was
performed using ADMIXTURE (v.1.3.0) with the following
parameters: “for K in 2 3, do admixture --cv sheep.bed $K |
tee log${K }.out, done” with a maximum of 10,000 iterations.
Principal Component Analysis (PCA) of the 90 samples was
performed using the EIGENSOFT package, v.7.2.1 (Price
et al., 2006).

2.5 Selective sweep analysis

In this study, H and the FST were calculated with VCFtools
v.0.1.14 using a sliding window approach (100-kb windows with a
50-kb step size) (Zhang et al., 2021). The parameters for the

VCFtools program were as follows: “--fst-window -size 100,000
--fst-window-step 50,000”. The top 5% FST and H values were
selected as the threshold to map the selected loci on autosomes
and identify differences between any two populations. The
intersection candidate area was considered as the selection signal
in the test.

The FST calculation formulas:
FST � HT−HS

HT
, among which HT represents the expected

heterozygosity of alleles in the total population, and HS

represents the weighted average heterozygosity of different
subgroups in the total population.

The H calculation formulas:
He � 1 −∑ pi2, among which Pi is the frequency of the ith allele,

and the expected heterozygosity of the sliding window is themean value
of the expected heterozygosity of each SNP site in the region.

2.6 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was performed to
identify clusters of functionally related genes (Harris et al., 2004;
Jiao et al., 2012). GO term analysis included the biological process
(BP), molecular function (MF), and cellular component (CC)
categories. A significance threshold of <0.05 was used to
determine GO term enrichment in a set of genes. KEGG
pathway enrichment analysis was performed using KOBAS 2.0
(http://kobas.cbi.pku.edu.cn/) and a corrected p-value of <0.05 was
set as the threshold for significance. In order to avoid false positive

FIGURE 1
Sheep breeds. (A) Prolific Suffolk sheep in the multi-lamb group. (B) Prolific Suffolk sheep in the single-lamb group. (C)Hu sheep. (D) Suffolk sheep.
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FIGURE 2
Population genetics analysis. (A) Neighbor-joining phylogenetic tree. (B) Population structure based on 90 individuals as determined using
ADMIXTURE with K = 2, 3. (C) The results of the Principal Component Analysis (PCA) for the three sheep breeds.

FIGURE 3
(A) The distribution of FST values on autosomes in prolific Suffolk sheep and Hu sheep. (B) The distribution of FST values on autosomes in prolific
Suffolk sheep and Suffolk sheep. (C) The distribution of heterozygosity (H) on autosomes in prolific Suffolk sheep. (D) Venn diagram of the unique genes in
prolific Suffolk sheep.
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results, the enrichment analysis result P was corrected by multiple
tests (False Discovery Rate, FDR).

The formula of FDR is:
FDR � P × n

(rankP), among which, P is the original p-value,
n is the number of tests, and rankP is the level of a specific
original p-value. When FDR ≤0.05, GO terms and pathways that
meet this condition are defined as significant enrichment of
candidate genes.

3 Results

3.1 Sequencing and mapping

A total of 5,245.855 Gb of raw data for 90 individuals were
obtained by resequencing on the Illumina HiSeq 2,500 platform,
with 5,236.338 Gb of clean reads remaining after filtering. The
Q20 value of the clean reads was ≥95.73% while the Q30 value
was ≥89.69%. The GC content ranged between 43.09% and 46.62%.
The genome mapping rate relative to the sheep reference genome
(Oar_v4.0) ranged between 98.65% and 99.32%. The average
coverage depth was approximately 17.39× for all three sheep
breeds, the 1 × average coverage was more than 98.06%, and the
4 × average coverage was more than 94.29%, indicating that the data
were accurate and reliable (Supplementary Table S1). SAMTools
was used to collect summary information from the input binary
alignment/map (BAM) files, compute the likelihood of each
genotype, and then convert the information into binary variant
call format (BCF). ANNOVAR software was used for the functional
annotation of gene mutations and for converting the data into
variant call format (VCF) for subsequent analysis.

3.2 SNP identification and annotation

Additionally, 84,505,591 SNPs in all three sheep breeds and
28,767,952 SNPs in prolific Suffolk sheep were annotated with

SAMTools v.0.1.19. In the prolific Suffolk sheep population,
204,304 exonic SNPs, 1,520,657 non-synonymous mutations
(5.29%), and 2,101,043 synonymous mutations were identified.
In the Hu sheep population, a total of 29,080,742 SNPs were
annotated, 207,059 of which were located in exons; 620,064 non-
synonymous mutations (2.13%) and 866,996 synonymous
mutations were also identified. In Suffolk sheep, a total of
26,656,897 SNPs were annotated; 187,316 of these SNPs were
located in exons, while 606,196 non-synonymous mutations
(2.27%) and 838,500 synonymous mutations were identified.
The non-synonymous/synonymous ratio was 0.72 in all three
sheep breeds (Supplementary Table S2).

3.3 Phylogenetic analysis

To investigate the genetic relationship among the three sheep
breeds, a genetic distance matrix was calculated based on the SNPs
after whole-genome quality control, and a phylogenetic tree of the three
populations was constructed using the NJ method. The NJ tree was
constructed based on the JTT + G model with 1,000 bootstrap
replicates. NJ tree analysis showed that the three sheep varieties
were separated into three independent genetic groups (Figure 2A).

3.4 Population genetic Structure

As shown in Figure 2B, at K = 2, Hu sheep clustered into one
type, prolific Suffolk sheep and Suffolk sheep clustered into
another type, and there was gene flow within them. At K = 3,
prolific Suffolk sheep were clearly separated from both Hu and
Suffolk sheep. Prolific Suffolk sheep and Suffolk sheep were
clustered together. Hu sheep had a long genetic distance from
the other two populations. Also, a close genetic relationship was
discovered between prolific Suffolk sheep and Suffolk sheep,
which was also consistent with the breeding process of
the former.

TABLE 1 Enriched items and genes related to reproduction in prolific Suffolk sheep.

Term Count Gene FDR

KEGG: Wnt signaling pathway 3 WNT10A, SENP2, WNT6 0.012556028

KEGG: Circadian entrainment 1 PRKAA1 0.04687154

KEGG: Oocyte meiosis 2 SPDYA, PPP1CB 0.012556028

KEGG: Insulin resistance 2 PPP1CB, PRKAA1 0.012556028

GO: Prostaglandin biosynthesis 1 CD74 0.04687154

GO: Positive regulation of gene expression 1 KANK1 0.04687154

GO: Negative regulation of oocyte maturation 1 SHB 0.04687154

GO: Intrauterine embryonic development 1 CUL4A 0.022834044

GO: Sperm development 1 FNDC3A 0.04687154

GO: Spermatogenesis 3 IFT81, PIWIL2, PAIP2 0.04687154

GO: Oogenesis 1 PIWIL2 0.04687154

GO: Regulation of circadian rhythm 1 PRKAA1 0.04687154
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3.5 Principal component analysis

To examine the genetic relationship among and within the three
varieties, we conducted a PCA. The first Eigenvector clearly
distinguished Hu sheep from Prolific Suffolk sheep and Suffolk
sheep, while the second Eigenvector distinguished prolific Suffolk
sheep from Suffolk sheep (Figure 2C). As expected, the results of the
PCA were similar to those obtained for the phylogenetic tree and
population genetic structure analysis, showing that the selected
samples had good consistency.

3.6 Selective imprints of prolific Suffolk
sheep, Suffolk sheep, and Hu sheep

To accurately identify the biological markers associated with
the germplasm characteristics of prolific Suffolk sheep, the
sliding window method (window size: 100 kb, step size: 50 kb)
was used to scan the selection signals on autosomes. The top 5%

FST and H values were selected as the threshold to map the
selected loci on autosomes and identify differences between any
two populations. A total of 137 selected regions were scanned and
154 candidate genes were mapped in the comparison between
prolific Suffolk sheep and Hu sheep (FST > 0.249001 and H <
0.224707) (Figures 3A,C; Supplementary Tables S3 and S4). For
prolific Suffolk sheep versus Suffolk sheep, a total of 99 selected
regions were screened and 59 candidate genes were mapped
(FST > 0.178916 and H < 0.224707) (Figures 3B,C;
Supplementary Tables S3 and S4). Repeats were removed from
the 213 candidate genes in the two comparison groups. Finally,
190 candidate genes were screened, 14 of which were related to
reproduction traits, including WNT10A, SENP2, and WNT6
(Table 1). Furthermore, 23 genes, including ARHGEF4,
CATIP, CCDC115, and CDK5R2, were found to be unique to
prolific Suffolk sheep (Figure 3D; Supplementary Table S5).
These genes may represent the germplasm-specific genetic
information retained during prolific Suffolk sheep breeding
and selection (Table 2).

TABLE 2 Genetic variation information for prolific Suffolk sheep.

CHR Gene SNP physical location

1 SENP2 199,647,970, 199,655,961

2 ARHGEF4 114,458,386

2 CCDC115 113,068,460, 113,068,647

2 FEV 219,905,212

2 MFAP3L 110,044,500, 110,059,546, 110,059,801, 110,059,990, 110,060,096

2 PPP2R2A 39,204,255

2 CATIP 219,363,185, 219,363,553, 219,364,173, 219,364,174

2 SFT2D3 116,650,526, 116,650,551

2 SNX30 10,873,818, 10,885,812, 10,885,813

2 TFCP2 185,493,910, 185,500,093, 185,547,870, 185,547,984

2 TPO 719,199, 719,200, 719,210, 719,221, 722,337, 724,813, 724,819, 726,979, 748,143

2

2 WDR33 116,584,306, 116,588,784, 116,597,221, 116,597,328, 116,597,342, 116,629,864, 116,629,945

2 XRCC5 217,112,784, 217,115,691, 217,115,696, 217,115,780, 217,133,944, 217,176,443

2 CDK5R2 219,882,633, 219,882,634

2 GALNTL6 107,356,681

2 LIMS2 116,728,390, 116,728,516, 116,728,884, 116,729,018, 116,729,124, 116,738,675, 116,738,777, 116,738,830

2 TMEM169 217,095,393, 217,095,612

2 TUBGCP5 112,982,203, 112,985,801, 112,987,176, 113,001,713, 113,013,684, 113,034,954

2 WNT10A 219,838,113, 219,838,119

13 SNRPB2 10,045,752

19 OGG1 16,885,800, 16,886,615, 16,892,224, 16,893,120, 16,893,156

19 TADA3 16,853,617, 16,859,465

22 INPP5A 50,041,342, 5,0,041,821, 50,047,784, 50,048,122, 50,048,133, 50,048,234, 50,048,253, 50,048,344, 50,048,365, 50,048,407, 50,048,478,
50,048,503, 50,048,560, 50,048,649, 50,051,633, 50,092,909, 50,096,284, 50,096,399, 50,143,465
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3.7 Functional enrichment analysis

Additionally, GeneOntology (GO) enrichment analysis revealed key
biological processes associated with germplasm-specific genes in prolific
Suffolk sheep. Candidate genes were enriched in positive regulation of
defense response to virus by host, and G protein-coupled purinergic
nucleotide receptor activity and other processes and were mainly related
to signal transduction. Meanwhile, KEGG pathway enrichment analysis
indicated that the candidate genes WNT10A, PPP2R2A, and WDR33
were enriched in the mTOR signaling pathway, melanogenesis, and the
Hippo signaling pathway (p < 0.05) (Figure 4).

3.8 Selective imprints of reproduction traits
in prolific Suffolk sheep

Next, we explored the selective imprints of reproduction traits in
prolific Suffolk sheep resulting from artificial selection. For this,

selection signals were compared between the multi-lamb and single-
lamb groups using 100-kb sliding windows with a step size of 50 kb
across the genome. A combination of both FST and H analysis
methods was also employed to scan for selection signals on
autosomes. We identified 29 selected regions and 24 candidate
genes (Figures 5A,B; Table 3). Genes related to reproductive
traits, such as MTNR1A, ITSN1, and GBE1, among others, were
subjected to GO and KEGG enrichment analysis and were found to
be associated with litter size. Furthermore, the identified genes were
mainly enriched in circadian entrainment, MAPK signaling
pathway, AMPK signaling pathway, and mTOR signaling
pathway (Figures 5C,D).

4 Discussion

Sheep farming plays an important role in the global animal
husbandry industry, supplying a wide range of products such as

FIGURE 4
Enrichment results for specific genes in prolific Suffolk sheep. (A) GO term enrichment. (B) KEGG pathway enrichment.
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wool, meat, milk, and skin. In China, sheep farming has been an
important part of the agricultural economy and rural life for
many centuries. Over recent years, the meat sheep breeding
industry has undergone rapid development, characterized by
an increasing abundance of germplasm resources, a gradually
improving breeding system, and a steadily increasing level of
sheep production (Meadows and Kijas, 2010). However, overall,
there is still a large gap between China and developed countries in
this respect, a limitation that can mostly be explained by the low
fecundity of most Chinese breeds (Han et al., 2015). Litter size is a
complex trait that is influenced by many factors, including
genetic background, nutritional level, and feeding
management. It is the main trait in sheep reproductive
performance and one of the main selection objectives in meat
sheep breeding programs (Baelden et al., 2005). Increasing litter
size proved to be an effective means of improving the economic
benefits of the mutton industry (Dong et al., 2013). Therefore, in
this study, we performed genome-wide resequencing to analyze
germplasm-specific genes, genetic variation, and the genome
map of self-bred prolific Suffolk sheep. Furthermore, we
identified the main genes and SNPs related to their
reproductive traits. Our findings contribute to unraveling the
germplasm characteristics and population genetic evolution of
this new strain of Suffolk sheep and provide a basis for the
creation of new breeds of prolific meat sheep in China.

Prolific Suffolk sheep is a new strain developed by our group
through 12 years of breeding in Xinjiang, China. Hu sheep served
as the female parents and Suffolk sheep as the male parents in
hybrid breeding. The breeding process involved hybridization,

fixation in a two-way crossbreed closed flock, and herd
propagation, resulting in a breed with high prolificacy and
high-quality meat performance. The new strain is a stabilized
composite breed made up of 87.5% Suffolk blood proportion and
12.5% Hu blood proportion (Yang et al., 2021a). In this study, we
found that the Hu sheep breed was highly distinct from the other
two breeds, exhibiting a large genetic distance from both, which
was also consistent with the breeding process of prolific Suffolk
sheep. Through selective signal analysis, theWNT10A, PPP2R2A,
and WDR33 genes were found to be significantly related to
reproductive traits in prolific Suffolk sheep and were highly
associated with the mTOR signaling pathway, the melanogenic
pathway, and the Hippo signaling pathway, among others.
mTOR is a highly conserved serine-threonine protein kinase
that forms two distinct complexes, mTORC1 and mTORC2
(Sui et al., 2021). mTOR complexes are sensitive to growth
factor, amino acid, and oxidative stress stimulation and are
involved in multiple biological processes, such as lipid
metabolism, autophagy, protein synthesis, and nucleosome
biosynthesis (Yao et al., 2021). The melanogenesis pathway
involves a complex series of enzymatically and chemically
catalyzed reactions (Pillaiyar et al., 2017). The MC1 receptor
(MC1R) and its ligand melanocortin are important positive
regulators of melanin production (Dnyane and Gadgil, 2020).
MC1R activates cyclic AMP (cAMP) response element binding
protein (CREB). Tyrosinase (TYR) is the rate-limiting enzyme in
melanin synthesis, which occurs in specialized cell organelles,
called melanosomes, which are transferred to keratinocytes
through mechanisms that have not been fully characterized

FIGURE 5
Selective imprints of the reproductive traits inmulti-lamb and single-lamb groups. (A) Selection signals in themulti-lamb and single-lamb groups. (B)
Distribution of heterozygosity (H) on the autosome of the multi-lamb group. (C)GO term enrichment analysis for genes related to reproductive traits. (D)
KEGG pathway enrichment analysis for genes related to reproductive traits.
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(Varghese et al., 2021). The results of the present study indicated
that phenotypic uniformity was achieved in prolific Suffolk sheep
during the 12 years of breeding. The appearance of pure black
coat color on the head and limbs is one of the characteristics of
the breed, indicating that differences in melanin production may
underlie this phenotype. Additionally, the Hippo and WNT
signaling pathways are closely related. The Hippo signaling
pathway comprises a group of conserved kinases that can
inhibit the normal growth of cells and participates in the
regulation of organ and tissue size (Heallen et al., 2011; Yang
et al., 2021b). The phosphorylation of the protein kinase Warts, a
constituent of the Hippo signaling pathway, results in its

activation, leading to a series of changes in signaling pathways
associated with reproduction traits in female livestock (Vitezslav
and Vladimir, 2018; Hidayah et al., 2019). TheWNT10A gene has
been shown to act in the canonical Wnt/β-catenin signaling
pathway. It is expressed in epithelial and mesenchymal cells
throughout tooth development and plays an important role in
this process (Kanchanasevee et al., 2020; Zeng et al., 2021). In this
study, we found that the selected genes were enriched in theWNT
and mTOR signaling pathways, suggesting that WNT10A may
have contributed to changes in tooth development, hair follicle
growth, and reproductive performance during the breeding of
prolific Suffolk sheep. Similarly, the PPP2R2A gene is mainly

TABLE 3 Variation information for genes in prolific Suffolk sheep.

CHR Gene SNP physical location Function

1 ADAMTS5 127,446,705, 127,446,839, 127,447,076, 127,447,184, 127,472,912, 127,472,921, 127,482,912, 127,484,992,
127,485,082, 127,485,157, 127,488,111, 127,495,988

Energy metabolism

1 DONSON 120,015,059 Reproduction

1 DUSP27 117,131,442, 117,190,778, 117,191,119, 117,191,316, 117,191,349, 117,191,445, 117,191,529, 117,191,628,
117,191,743, 117,191,816, 117,192,087, 117,192,525, 117,192,657, 117,192,823

Metabolism

1 GART 120,073,957, 120,074,050 Purine metabolism

1 GBE1 1,47,518,295, 1,47,520,159, 1,47,520,174, 147,563,933, 147,577,172, 147,577,187, 147,582,028, 147,683,665,
147,723,202

Reproduction

1 HUNK 1,21,618,954, 1,21,619,011, 1,21,619,040, 121,646,603, 121,646,696, 121,749,125 Metabolism

1 ILDR2 116,851,460, 116,852,804 Immunity and adaptability

1 ITSN1 119,732,240, 119,735,835, 119,735,886, 119,782,548, 119,816,398 Reproduction

1 OLIG2 120,627,151, 120,627,152, 120,627,540, 120,627,668, 120,629,854, 120,630,177 Growth and development

1 SON 120,015,059 Immunity and adaptability

3 KRT1 133,403,474, 133,404,568 Woolly hair

3 KRT2 133,430,103, 133,433,319, 133,435,631, 133,437,302, 133,437,345, 133,437,386 Woolly hair

3 KRT72 133,462,372, 133,464,780, 133,467,935, 133,472,160, 133,472,188, 133,472,212, 133,472,242, 133,473,817,
133,473,983

Woolly hair

3 KRT74 133,485,704, 133,485,900, 133,485,980, 133,486,008, 133,486,034, 133,486,870, 133,488,025, 133,492,003,
133,492,044

Woolly hair

6 LAMTOR3 69,999,643, 69,999,944, 69,999,951 Reproduction

8 TBC1D32 16,875,389, 16,890,269, 16,890,271, 16,980,424, 16,980,503, 16,995,212, 17,006,420, 17,017,115, 17,018,856,
17,018,917, 17,029,097

Immunity and adaptability,
reproduction

10 CAB39L 19,271,752, 19,271,767, 19,271,770, 19,271,800 Reproduction

17 HECTD4 61,559,479, 61,559,548, 61,559,617, 61,559,769, 61,564,204, 61,568,425, 61,581,290, 61,581,291, 61,596,568,
61,615,697, 61,618,000, 61,622,821, 61,634,588, 61,634,683, 61,652,374, 61,653,187, 61,653,543, 61,656,956,
61,657,049, 61,657,362, 61,657,875, 61,657,899, 61,657,926, 61,657,971, 6,1,661,760, 6,1,661,991, 6,1,662,093,
61,664,342, 61,665,879, 61,665,918, 61,667,268, 61,667,478, 61,671,616, 6,1,671,723

Immunity and adaptability

20 CD2AP 20,634,974 Immunity and adaptability

22 DPYSL4 49,746,131, 4,9,752,001, 49,753,954, 49,753,979, 49,755,852, 49,757,414, 49,758,062, 49,760,159 Immunity and adaptability

22 EDRF1 44,115,409, 44,115,468, 44,118,262, 44,119,817, 44,119,856, 44,119,862, 44,124,147, 44,125,748, 44,132,651,
44,133,143

Immunity and adaptability

22 JAKMIP3 49,711,228, 49,711,258, 49,711,290, 49,711,320, 49,711,340, 49,711,341, 49,711,376, 4,9,711,775, 49,712,254,
49,720,952, 49,723,089, 49,723,111, 49,723,204

Growth and development

22 STK32C 49,763,343, 49,771,613, 49,774,512, 49,774,515, 49,774,906, 49,775,889, 49,775,907 Metabolism

26 MTNR1A 15,099,004, 15,099,204, 15,099,296, 15,099,314, 15,099,391 Reproduction
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involved in signal transduction and may participate in the growth
and development of mammals (Zhang et al., 2020). Cui et al.
showed that the downregulation of PPP2R2A by CRISPR/Cas9-
mediated deletion inhibits the growth of non-small cell lung
cancer cells (Cui et al., 2020), which was similar to the results of
this study. This suggests that the WNT10A and PPP2R2A genes
may have played a role in the breeding process of prolific Suffolk
sheep, affecting their growth and development, hair follicle
growth, and reproductive performance.

Furthermore, selective imprint analysis indicated that the
MTNR1A and GBE1 genes were mainly involved in circadian
entrainment, metabolism, and signal transduction, and were
closely related to the high fecundity of prolific Suffolk
sheep. In addition, MTNR1A has been reported to be related
to sheep litter size (Luridiana et al., 2020; Stari et al., 2020).
MTNR1A is a G protein-coupled seven-transmembrane receptor
that mediates the effects of melatonin on mammalian circadian
rhythms, thereby affecting mammalian reproductive function
(Cosso et al., 2021). Notably, the MTNR1A gene is a key
regulator of the reproductive traits of sheep and may be
closely related to the litter size trait in prolific Suffolk
sheep. He et al. analyzed the association between MTNR1A
gene polymorphism and litter size in Small Tail Han sheep
and showed that the mutation (TT) in the g.15118756C > T
locus significantly increased litter size (He et al., 2012).
Additionally, Starič et al. investigated the correlation between
MTNR1A gene polymorphism and litter size in Slovenian sheep
and similarly found that the g.17355452 locus had a significant
effect on litter size (Stari et al., 2020). These results were similar
to those recorded in this study. The protein encoded by the GBE1
gene is a glycogen-branching enzyme that may be involved in
energy regulation during animal growth (Li et al., 2018).
UROIIIS, encoded by the UROS gene, may be involved in
metabolic regulation during growth (Blouin et al., 2021). Our
results suggested that the GBE1 and UROS genes may regulate the
growth, development, and metabolism of prolific Suffolk sheep.

Through selective signature analysis, we identified the genes that
were specifically differentially expressed in prolific Suffolk sheep, a
new strain developed by crossing Hu sheep and Suffolk sheep. These
genes were mainly enriched in pathways related to reproduction,
immunity, growth, energy metabolism, and sugar metabolism. Our
findings provide both a basis for the molecular breeding of new
breeds of prolific meat sheep as well as target genes and functional
sites for the establishment of other new sheep breeds.

In conclusion, this study provided a comprehensive insight into
the germplasm characteristics of prolific Suffolk sheep. We
identified several germplasm-specific candidate genes and
markers under selection in prolific Suffolk sheep, Suffolk sheep,
and Hu sheep. These genes play essential roles in reproduction,
growth and development, among other economic traits. The large
number of genetic variants identified in the study represents an
opportunity for further exploring the genetic diversity and the
associated phenotypic variation in prolific Suffolk sheep. Our
results contribute to the understanding of the genetic makeup of
prolific Suffolk sheep and provide valuable information for future
development and improvement of new breeds.
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