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Breast cancer (BRCA) is one of the most common malignant tumors affecting
women worldwide. DNA methylation modifications can influence oncogenic
pathways and provide potential diagnostic and therapeutic targets for precision
oncology. In this study, we used non-parametric permutation tests to identify
differentially methylated positions (DMPs) between paired tumor and normal
BRCA tissue samples from the Cancer Genome Atlas (TCGA) database. Then, we
applied non-negative matrix factorization (NMF) to the DMPs to derive eight
distinct DNA methylation signatures. Among them, signatures Hyper-S3 and
Hypo-S4 signatures were associated with later tumor stages, while Hyper-S1
and Hypo-S3 exhibited higher methylation levels in earlier stages. Signature
Hyper-S3 displayed an effect on overall survival. We further validated the four
stage-associated signatures using an independent BRCA DNA methylation
dataset from peripheral blood samples. Results demonstrated that
24 commonly hypomethylated sites in Hypo-S4 showed lower methylation in
BRCA patients compared to healthy individuals, suggesting its potential as an
early diagnostic biomarker. Furthermore, we found that methylation of 23 probes
from four stage-related signatures exhibited predictive power for immune
therapy response. Notably, methylation levels of all three probes from the
Hypo-S4 and activity of the Hypo-S4 demonstrated highly positive relevance
to PD-L1 gene expression, implying their significant predictive values for
immunotherapy outcomes. GO and KEGG pathway enrichment analysis
revealed that genes with these 23 immunotherapy-related methylation probes
are mainly involved in glycan degradation or protein deglycosylation. These
methylation signatures and probes may serve as novel epigenetic biomarkers
for predicting tumor immunotherapy response. Our findings provide new insights
into precision oncology approaches for BRCA.
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1 Introduction

Breast cancer (BRCA) is one of the most common malignant
tumors in women worldwide and a major cause of cancer-related
deaths among women globally (Sung et al., 2021). The number of
new BRCA cases is on the rise annually across the world, particularly
in developing countries. Studies have shown that accounts for
approximately 60%–90% of BRCA-related deaths are attributed
to metastasis of tumor (Dillekas et al., 2019; Krishnan et al.,
2021). Thus, early detection is critical for BLCA treatment and
prognosis. Mammography and ultrasound have been utilized for
standardizing breast lesion risk assessment, among which
mammography screening reduced breast cancer mortality by
~20% (Screening, 2012; Christiansen et al., 2022). However, they
are susceptible to high false positive rates, resulting in unnecessary
biopsies. Particularly in case of high-density breast tissue, the
detection sensitivity is compromised. Therefore, there is a need
for new precise detection methods to compensate for the deficiency
in breast lesion detection.

The occurrence and progression of tumors are accompanied by a
series of reconstruction processes of the genome and epigenome
(Chakravarthi et al., 2016; Ushijima et al., 2021). Among them, DNA
methylation is an epigenetic mechanism that regulates gene
expression and chromatin structure in a complex way affecting
gene expression. Studies have confirmed that abnormal methylation
patterns play an important role in the occurrence and progression of
breast cancer and other malignant tumors (Kulis and Esteller, 2010;
Ma et al., 2023). Since the DNA methylation modification process
precedes protein translation, abnormal methylation patterns can be
detected in the early stages of cancer development, and thus DNA
methylation markers may have greater value in early diagnosis of
breast cancer compared to detecting cancer-related protein
expression levels. Currently, the most widely used diagnostic
application related to methylation modification is the
Sept9 methylation detection for early diagnosis of colorectal
cancer based on cell-free DNA (cf-DNA) in peripheral blood
(Galanopoulos et al., 2017; Fu et al., 2018), but its accuracy for
early diagnosis is less than 80%. For detecting breast cancer,
CA153 antigen detection is used as a breast cancer diagnostic
method (Stefan-van Staden and van Staden, 2013; Tang et al.,
2016). The antigen detected by this assay kit is significantly
elevated in the serum of late-stage breast cancer patients. Its
effectiveness for early breast cancer diagnosis is also not ideal.
Therefore, it is more commonly applied for preoperative
detection and monitoring disease progression after surgery.
Developing new methods for early breast cancer diagnosis,
especially DNA methylation biomarkers, thus has great
significance for the implementation of precision medicine for
breast cancer.

In healthy individuals, 70%–80% of CpG sequences are in a
methylated state, which is very important for maintaining body
functions (Sulewska et al., 2007). In tumor cells, specific genes
experience high methylation of CpG islands, termed CpG island
methylator phenotype (CpG island methylator phenotype, CIMP).
Different tumors have different detection sites for CIMP, but the
biological mechanisms and pathogenesis of most CIMPs have not
been clearly studied. Therefore, there are no unified identification
methods and standards. On the other hand, the activity differences

of epigenetic markers between different tumor samples are
enormous, and most do not follow a normal distribution,
limiting the application of many existing statistical methods and
mathematical modeling. Thus, it is necessary to develop new
algorithms for tumor DNA methylation signature identification
and modeling.

In this study, we performed nonparametric permutation test to
screen aberrant DNA methylation at the tissue level in the TCGA-
BRCA dataset. Then, we conducted non-negative matrix
factorization (NMF) analyses to identify DNA methylation
signatures associated with BRCA progression. Subsequently, the
blood cf-DNA methylation levels of probes in these aberrant DNA
methylation signatures were assessed in BRCA patients, and their
immunotherapy response with remarkable predictive efficacy and
high sensitivity were estimated. Our study provides new insights in
epigenetic modification and molecular mechanism in BRCA
development.

2 Materials and methods

2.1 Data sources

Paired DNA Methylation chip data (Illumina Infinium 450 K
methylation microarray data) and gene expression of BRCA patients
were downloaded from TCGA database, comprising 447 tumor and
52 paired normal samples. The corresponding clinical data including
cancer stages, survival time, and tumor purity, was also downloaded.
Another DNA methylation data based on peripheral blood were
obtained from GEO database under accession
number (GSE214344).

2.2 Identification of differential methylation
sites (DMPs)

On the basis of our previously constructed method for
identifying tumor-specific methylation markers (Qin et al., 2024),
we screened differential methylation sites (DMPs). Firstly, we
performed probe quality control by: 1) removing probes with
more than 90% missing values in samples, 2) excluding sites
located on the X and Y chromosomes, and 3) eliminating non-
probe sites. Ultimately, we obtained 383,561 sites. Subsequently, we
selected tumor tissues with paired samples and with the tumor
purity greater than 0.6 (estimated using the ESTIMATE method).
This resulted in a final cohort of 57 BRCA patients with paired
tumor and normal samples. Finally, we employed a nonparametric
permutation test to compare the paired samples in this cohort. The
model is as follows:

βij � β0 + β1 × TYi + TOi + εij

βij is the methylation level (0,1)of the jth probe of the ith sample, TYi

is the tissue type of the ith sample (cancer or paracancerous tissue),
β0 is the intercept, β1 is the coefficient related to tissue type, εij is
Gaussian error.

According to the aforementioned model, we performed
1,000 permutations for each methylation site to obtain the
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corresponding p-value for the methylation level between cancer
tissues and adjacent normal tissues. Probes with a p-value less than
0.001 were defined as BRCA associated DMPs. Then, we calculated
the difference value of methylation level (Δβ = β_cancer - β_normal)
for each sample in the cohort of 57 paired samples. Probes with Δβ >
0 in 80% of the samples were defined as putative hypermethylated
positions (Hyper-DMPs), while probes with Δβ < 0 in 80% of the
samples were defined as putative hypomethylated positions (Hypo-
DMPs). This resulted in a total of 51,736 putative Hyper-DMPs and
27,405 putative Hypo-DMPs.

To further determine the methylation level of each probe, we
calculated the median Δβ value and (medianΔβ − Δβ) value for the
57 samples. Moreover, to better control unspecific variation of the
Δβ values, we set up a second-step threshold. Detailly, based on the
distribution of median − Δβ values, we selected the top 5% of the
51,736 Hyper-DMPs, threshold of 0.4124, as the cutoff for
identifying final Hyper-DMPs, and the bottom 5% of Hypo-
DMPs (n = 27,405), the threshold of −0.4125, to identify final
Hypo-DMPs (Supplementary Figure S1).

2.3 DNA methylation signature screening

We performedmethylation signature profiling in BRCA patients
according to previously published methods (Qin et al., 2024). Firstly,
we selected a BRCA population from the TCGA database with
tumor tissue purity greater than 0.6 (N = 447). Then, we applied
non-negative matrix factorization (NMF) (Lee and Seung, 2000) on
the Hyper-DMPs and Hypo-DMPs from the 447 samples. We used
two different algorithms, nsNMF (using Kullback-Leibler
divergence for multiplicative updates) and Lee (based on
Euclidean distance), to perform matrix factorization. Each matrix
was iterated 100 times. NMF is an unsupervised learning algorithm
that decomposes a non-negative matrix into two matrices, show
as following.

Mp×n � Ep×k × Sk×n

M is a p × n matrix of methylation, where
p � 2, 587 (Hyper − DMPs); p � 1, 370(Hypo − DMPs), and
n � 447. S is a matrix of k methylation signatures for n tumor
samples, and matrix E is a weight matrix of p probes for k
methylation signature.

The optimal number of labels was selected based on the
cophenetic coefficient and average silhouette widths. Finally, we
obtained three high methylation labels (Hyper-S1, Hyper-S2, and
Hyper-S3) and five low methylation labels (Hypo-S1, Hypo-S2,
Hypo-S3, Hypo-S4, and Hypo-S5). NMF classified the probes
based on their contribution to the labels’ weights, including:
Hyper-DMPs:890 probes in Hyper-S1, 855 in Hyper-S2, 842 in
Hyper-S3; Hypo-DMPs: 335 in Hypo-S1, 287 in Hypo-S2, 316 in
Hypo-S3, 188 in Hypo-S4, and 244 in Hypo-S5.

2.4 Immunotherapy response assessment

Several evaluation indices were used to assess the classification
performance of methylation probes for immunotherapy response,

including sensitivity, specificity, precision, and accuracy. Sensitivity
refers to the ability of the probes to identify positive events (in this
case, immune therapy response). Specificity refers to the ability to
identify negative events (non-response). Precision considers the
false positive rate, defined as the number of incorrectly predicted
responses divided by the total number of predicted responses.
Accuracy measures the proportion of true results (both true
positives and true negatives) among the total number of cases
examined. Four

Sensitivity � TP
TP + FN

Specificity � TN
TN + FP

Precision � TP
TP + FP

Accuracy � TP + TN
TP + TN + FP + FN

TP: True positive rate; TN: True negative rate; FP: False positive
rate; FN: False negative rate.

Furthermore, the predictive abilities of the DNA methylation
probes were estimated using under the curve (ROC AUC). The
calculation formula of the AUC is: AUC � ∫1

0
TRP(FPR−1(t))dt

In this formula, TRP is the true positive rate (sensitivity); FPR-
1(t) is the inverse function of the false positive rate (1-specificity),
representing the false positive rate corresponding to the true positive
rate t; the integral range is from 0 to 1, covering the entire range of
the ROC curve.s.

2.5 Relationship between overall survival,
stages and DNA methylation signature
activities

To evaluate the correlation between DMP signatures and clinical
factors, we compared signature activity differences between primary
(stages I and II) and advanced tumors (stages III and IV) using the
Wilcoxon signed rank-sum test. Patients were assigned to high- and
low-signature groups based on the median signature activity as a
cutoff. Differences in overall survival between high- and low-
signature groups were evaluated using the Cox proportional
hazards regression model via the “survival” R package and
visualized with the “ggsurvfit” package.

2.6 Validation of methylation signatures’
predictive power for
immunotherapy response

Programmed death-ligand 1 (PD-L1) regulates T cell exhaustion
by binding programmed death-1 (PD-1) on T cells. Cancer cells with
high amounts of PD-L1 can turn T cells off and inhibit T cells
attacks, against which immunotherapy medicines (immune
checkpoint inhibitors, ICIs) may be effective. PD-L1 is a widely
used predictive biomarker for immunotherapy response (Teng et al.,
2018). Higher expression of PD-L1 typically correlate with greater
therapeutic benefit from ICIs (Jiang et al., 2019). To validate the
immunotherapy predictive power of identified methylation
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signatures, we assessed the relationship between signature activities
and PD-L1 gene expression (Transcript per million, TPM) based on
paired BRCA DNA methylation data and RNA transcriptome
dataset from the TCGA database using cor.test.

2.7 Functional enrichment analysis

Genes containing DMPs in the methylation signatures were
extracted. Gene ontology (GO) and KEGG pathway enrichment
analysis were performed on these genes using Enrichr (Chen
et al., 2013).

2.8 Statistical analysis

Statistical analysis and plotting were performed using R
software. All statistical significances were set as p or
adjusted p-value <0.05.

3 Results

3.1 DMPs in breast cancer

Based on the 450KDNAmethylation chip data fromTCGA-BRCA,
a total of 92 paired tumor samples and 383,561 methylation sites were
selected after quality control. The permutation test method screened
148,494 (38.71%) differential methylation sites (DMPs). According to
the 5% cutoff values of Hyper-DMPs (0.4124, n = 2,587) and Hypo-
DMPs (−0.4125, n = 1,370) (Supplementary Figure S1), we finally
obtained 2,587 Hyper-DMPs and 1,370 Hypo-DMPs. The amount of
Hyper-DMPs is almost twice the number of Hypo-DMPs.

3.2 DNA methylation signatures in
breast cancer

Given the non-negativity of DNA methylation levels, the NMF
method was subsequently used to extract DNA methylation
signatures. Based on the cophenetic coefficient and average
silhouette widths of NMF method (Figure 1A), we obtained three
high methylation signatures (Hyper-S1, Hyper-S2, and Hyper-S3)
and five low methylation signatures (Hypo-S1, Hypo-S2, Hypo-S3,
Hypo-S4, and Hypo-S5) from 447 BRCA patients (Figure 1B).

3.3 Genomic distribution of DNA
methylation signatures associated DMPs in
breast cancer

To analyze the genomic characteristics of methylation
signatures, we analyzed the genomic distribution features of
DMPs associated with each methylation signature. We found that
those DMPs associated with high methylation signatures (Hyper-)
were mostly located in promoter regions, while DMPs associated
with low methylation labels (Hypo-) were mainly located in gene
body regions (Figure 2). In terms of CGI position, the Hyper-DMPs

were mostly located in CpG islands, the Hypo-DMPs were mostly
located in Open Sea areas (Figure 2).

3.4 Relationship between DNA methylation
signatures and breast cancer stages or
overall survival

Since the DNA methylation signatures were tumor-related,
whether they were related to tumor progression remained to be
answered. To clarify this question, we performed correlation
analysis between DNA methylation signature and tumor stage
including primary (stage I-II) and advanced (stage III-IV) stages.
The Wilcoxon’s rank sum text showed that four out of eight (50%)
DNA methylation signatures exhibited markedly differences
between the two stages. Detailly, Hyper-S3 and Hypo-S4 were
extremely higher in advanced stages. However, Hyper-S1 and
Hypo-S3 were significantly upregulated in the primary stages of
tumors. The distinct pattern between these four signatures and
tumor progression indicates that these four signatures might act
vital roles in tumor development (Figure 3A).

DNA methylation alterations can influence tumor
development and patient outcomes. To assess the impact of
the methylation signatures on BRCA patient’s survival, we
compared overall survival times between groups stratified by
high and low signature activity levels. Our results showed that
patients with low activities of Hyper-S2 signature exhibited
significantly longer survival times than those with high Hyper-
S2 activities (Figure 3B), indicating its prognostic value. Unlike
the tumor stage, only a small proportion (1/8) of signatures
affected overall survival. This implies DNA methylation may
have a greater impact on tumor progression than direct effects on
the survival of BRCA. We therefore focused subsequent analyses
on the signatures associated with tumor stage, as these are likely
to provide further mechanistic insights into BRCA pathogenesis.

3.5 The DMPs from signature Hypo-S4 DNA
exhibit significantly lower methylation levels
in the blood of BRCA patients than
the healthy

To clarify whether the probes of methylation signatures in
tumor tissues are consistent with the methylation level in
circulating cell-free DNA of BRCA patients, we further mined
the four methylation signatures (Hyper-S1 = 890, Hyper-S3 =
842; Hypo-S3 = 316, Hypo-S4 = 188) related to tumor stage in
the methylation data of peripheral blood from five healthy
individuals and eight breast cancer patients. We analyzed the
probes with abnormal methylation in BRCR peripheral blood
within these four methylation labels, and found that 510 probes
were associated with tumor blood abnormal methylation (p < 0.05),
including 137 sites in Hyper-S1, 307 in Hyper-S3, 42 in Hypo-S3,
and 24 in Hypo-S4. Notably, we found that the 24 significantly
different probes in Hypo-S4 all showed significantly lower
methylation in BRCA patients than in healthy individuals
(Figure 4), suggesting that these probes could serve as molecular
markers for early breast cancer diagnosis.
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FIGURE 2
The genomic location of DMPs associated with DNA methylation signatures in gene and CpG island (CGI).

FIGURE 1
The (A) cophenetic, silhouette coefficients and (B) activity of DNA methylation signatures based on the (non-negative matrix factorization)
NMF method.
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3.6 Relationship between probes with
abnormal methylation in DNA methylation
signatures and responses to immune
therapy, and potential molecular functions

To further validate the relationship between these 510 probes with
abnormal methylation and immune therapy efficacy, we performed
AUC analysis. Our results showed that 23 probes were associated with
patients’ immune therapy response, including 11 probes in Hyper-S1,
7 in Hyper-S3, 2 in Hypo-S3, and 3 in Hypo-S4 (Figure 5A). Their
highest predictive power for immune therapy response was 86% (AUC,
Table 1). Among them, cg00870269 had a sensitivity of 93%, precision of
86%, accuracy of 74%, and specificity of 66%. cg10017626 had a
sensitivity of 75%, precision of 86%, accuracy of 86%, and specificity
up to 92%. KEGG pathway enrichment analysis revealed that genes
associated with these 23 probes are mainly involved in glycan
degradation, Type I diabetes mellitus, cholesterol metabolism, notch
signaling pathway, and glycerolipid metabolism pathways (Figure 5B,
p < 0.05). GO biological process enrichment showed that the
immunotherapy-related methylated genes are primarily enriched in
processes including regulation of Type B pancreatic cell proliferation,
transmembrane receptor protein tyrosine phosphatase signaling
pathway, cleavage furrow formation, insulin secretion involved in

cellular response to glucose stimulus, protein deglycosylation, and
very-low-density lipoprotein particle remodeling (top five, Figure 5C).

The PD-L1 is a biomarker used to assess the effectiveness of ICIs.
Therefore, to validate the predictive utility of these signatures and their
23 probes for immunotherapy efficacy, we evaluated the correlation
between PD-L1 gene expression andmethylation levels from the TCGA-
BRCA dataset. Notably, results showed that the activity of the Hypo-S4
signature was positively correlated with PD-L1 expression (Figure 6A).
Consistently, three probes in Hypo-S4 associated with immunotherapy
response were markedly and positively correlated with PD-L1 gene
expression (Figure 6B). While activities of the other three stage-related
signatures showed no significant relationship with PD-L1 expression
overall (Figure 6A), several individual probes from their corresponding
signatures did demonstrate marked correlations, including
cg07517893 and cg18419175 from the Hyper-S1 and cg10881128 and
cg18530645 from the Hyper-S3 (Figure 6B).

4 Discussion

The occurrence and progression of tumors is accompanied by a
series of reconstruction processes of the genome and epigenome,
and the randomness and complexity of these changes are also the

FIGURE 3
Correlation between DNA methylation signatures and (A) tumor stages including primary (stage I-II) and advanced (stage III-IV) stages, and (B)
survival times.
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main reasons for the high heterogeneity of tumor cell phenotypes
(Ting et al., 2006; Grady and Carethers, 2008). Precision oncology
precisely targets specific driving factors in the aforementioned
reconstruction processes. Like other tumors, methods for early
BRCA diagnosis and screening currently on the market are still
limited, especially non-invasive liquid biopsy methods which are
extremely scarce.

DNA methylation modification is one of the tumor epigenetic
modifications, which is more complex than gene mutations (Kanwal
and Gupta, 2012). A prominent feature of tumor genomes is the high
methylation of CpG islands in promoters and overall genomic
hypomethylation, leading to genome instability and changes in
the gene expression profile (Kaneda et al., 2004). In tumor, CpG
island methylator phenotype (CIMP) exhibited a specifically high
level of methylation. However, due to the heterogeneous and non-
normal distribution of epigenetic markers across different tumor
types, existing statistical methods and mathematical models have
limitations in analyzing DNA methylation patterns. The aberrant
and varied methylation profiles between cancer types challenge
conventional approaches. Therefore, there is a need for new
computational techniques to better capture the distinct
methylation signatures and their clinical implications in
personalized oncology. In this study, we used permutation tests
to screen for differentially methylated loci, and NMF to simplify
BRCA’s methylation labels (Qin et al., 2024), which provides
prognostic DNA methylation signatures for BRCA. One to be
noted, presently, there is no standard identification method for
methylation signatures, conclusions deduced from comparisons of

different methylation signatures should consider the effects of
distinct sizes of differential DMPs.

In total, 148,494 (38.71%) differential methylation sites (DMPs)
between BRCA and normal controls were screened. The much
higher number of hyper-methylated DMPs than the
hypomethylated DPMs is consistent with previous studies (Sun
et al., 2021; Campagna et al., 2022; Janssens et al., 2023). Based
on these sites, eight methylation signatures were identified. DMPs
from high methylation signatures were mostly located in promoter
regions or CpG islands, and low methylation DMPs were mainly
located in gene body regions or Open Sea areas. These proofs suggest
that these signatures are biologically meaningful and can represent
differences in methylation patterns between tumor and
normal samples.

Furthermore, among the eight DNA methylation signatures,
Hyper-S3 and Hypo-S4 were associated with more advanced tumor
stages, while Hyper-S1 and Hypo-S3 were upregulated at earlier
tumor stages in tissue. This indicates their potential regulatory roles
in cancer development. In contrast, only one signature showed an
impact on overall survival. The greater number of stage-correlated
DNA methylation suggested that they may have a greater impact on
tumor progression than direct effects on the survival of BRCA.
Subsequent analysis focused mainly on four signatures associated
with tumor stages. The 137 sites in Hyper-S1, 307 in Hyper-S3, 42 in
Hypo-S3, and 24 in Hypo-S4 exhibited abnormal methylation in
blood, suggesting their potential clinical predictive value. Notably,
the 24 probes in Hypo-S4 were significantly and commonly
hypomethylated in both tumor tissues and blood of BRCA

FIGURE 4
Both of 24 significantly different probes in Hypo-S4 signature showing significantly lower methylation level in BRCA patients than in healthy
individuals.
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patients, its demonstrating its potential as an molecular marker for
early breast cancer diagnosis.

Studies have validated that genome methylation signatures
are significantly associated with cancer immunotherapy
response (Xu et al., 2021; Qin et al., 2024; Ressler et al.,

2024). Consistently, we found that 23 abnormally methylated
probes in BRCA blood and tissues were associated with patients’
immune therapy response. ICIs efficacy varies greatly between
tumor types and across individual patients due to heterogeneity
(Teng et al., 2018). PD-L1 expression is a widely used predictive

FIGURE 5
The (A) AUC curves of 23 probes associated with patients’ immune therapy response from four tumor stage related DNAmethylation signatures, and
(B) KEGG pathways and (C) Gene Ontology enrichments of 23 probes associated genes.
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biomarker of response to cancer ICIs immunotherapy (Davis
and Patel, 2019; Doroshow et al., 2021). Significantly positive
correlations between PD-L1 gene expression and Hypo-S4 and
their three probes (cg01094891, cg06749213, and cg16198468)
further validated their predictive values of ICI benefits. Besides
the hypomethylated levels of Hypo-S4 in both tissue and blood
levels, these proofs suggested the Hypo-S4 signature and its
three methylation probes can serve as biomarkers for diagnosis
BRCA and its efficacy of immune therapy, providing a
theoretical basis for precision treatment.

Cellular glycosylation is a highly organized process involving
the addition and modification of glycan residues on proteins and
lipids, regulated by glycosyltransferases and glycosidases
(Paulson, et al., 1989). Changes in glycosylation pathway
expression or activity have been implicated in critical aspects
of tumor development and metastasis (Demetriou et al., 1995;
Couldrey and Green, 2000). For example, glycan-related
alterations can occur early in the carcinogenesis and correlate
with BRCA prognosis (Potapenko et al., 2015). The glycosylation
-related gene MGAT3 expression is epigenetically regulated by
DNA hypomethylation, leading to synthesis of the unique type

N-glycans on ovarian cancer cell membrane proteins
(Anugraham et al., 2014). In this study, the functional
enriched “glycan degradation” KEGG pathway and “protein
deglycosylation” GO term commonly revealed
immunotherapy response-related probes may impact tumor
stages or immunotherapy efficacy by regulating glycan-related
pathways. However, further validation in independent patient
cohorts of larger size is needed to fully validate the clinical utility
of these findings. Additionally, experimental investigation of the
underlying molecular mechanisms, using in vitro and in vivo
models, will help elucidate how these differentially methylated
positions functionally regulate tumor biology and
immunotherapy response. Addressing these limitations in
future studies could strengthen the clinical applicability and
biological insight provided by this work. And like other
epigenetic biomarkers, methylation biomarkers are of great
significance for prognosis and diagnosis of cancer (Hao et al.,
2017), including BRCA. This study identified DNA methylation
signatures and immune therapy-associated DNA methylation
sites provide potential diagnostic and therapeutic targets for
BLCA treatment.

TABLE 1 The 23 probe sites associated with patient immune therapy response and their classification performance in immune therapy response.

DNA methylation signature Probe site AUC value Specificity Sensitivity Accuracy Precision

Hyper-S1 cg00870269 0.83 0.67 0.94 0.74 0.86

Hyper-S1 cg02748089 0.73 0.52 0.88 0.74 0.75

Hyper-S1 cg07517893 0.85 0.74 0.88 0.65 0.88

Hyper-S1 cg10017626 0.86 0.93 0.75 0.86 0.86

Hyper-S1 cg10746447 0.68 0.78 0.69 0.74 0.81

Hyper-S1 cg14684434 0.77 0.59 0.88 0.70 0.79

Hyper-S1 cg14950169 0.65 0.85 0.56 0.70 0.77

Hyper-S1 cg18229178 0.71 0.59 0.81 0.67 0.84

Hyper-S1 cg18419175 0.81 0.59 0.94 0.70 0.94

Hyper-S1 cg19830983 0.75 0.59 0.88 0.70 0.82

Hyper-S1 cg21095673 0.82 0.56 1.00 0.77 0.81

Hyper-S3 cg03970036 0.84 0.89 0.75 0.70 0.94

Hyper-S3 cg06947913 0.69 0.67 0.75 0.70 0.82

Hyper-S3 cg10881128 0.65 0.56 0.81 0.65 0.83

Hyper-S3 cg13519035 0.61 0.48 0.88 0.60 0.86

Hyper-S3 cg17231999 0.67 0.85 0.56 0.26 0.31

Hyper-S3 cg18530645 0.67 0.74 0.69 0.67 0.81

Hyper-S3 cg26465391 0.72 0.70 0.81 0.30 0.43

Hypo-S3 cg06354543 0.70 0.74 0.69 0.28 0.39

Hypo-S3 cg10471825 0.72 0.78 0.75 0.23 0.33

Hypo-S4 cg01094891 0.75 0.70 0.81 0.30 0.44

Hypo-S4 cg06749213 0.67 0.56 0.88 0.30 0.42

Hypo-S4 cg16198468 0.71 0.81 0.69 0.77 0.81
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5 Conclusion

Four DNA methylation signatures (Hyper-S3, Hypo-S4, Hyper-
S1 and Hypo-S3) of BRCA were identified and found to be
associated with tumor progression. A total of 23 abnormally

methylated probes identified from these four signatures were
associated with patients’ response to immune therapy and may
serve as diagnostic markers for predicting the efficacy of immune
therapy treatments. Notably, the signature Hypo-S4 and its three
hypomethylated sites (cg01094891, cg06749213, and cg16198468)

FIGURE 6
The correlation between PD-L1 gene expression and (A) four stage-associated signatures’ activities or (B)methylation levels of 23 immunotherapy-
response related probes based on the TCGA-BRCA dataset.
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demonstrated potential as good molecular markers for BRCA
diagnosis and response to immunotherapy. This study provides
new insights into potential molecular markers and targets, offering
novel methods and theoretical basis for advancing precision
medicine approaches for BRCA.
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