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Background: Disulfidptosis and ferroptosis are forms of programmed cell death
that may be associated with the pathogenesis of periodontitis. Our study
developed periodontitis-associated biomarkers combining disulfidptosis and
ferroptosis, which provides a new perspective on the pathogenesis of
periodontitis.

Methods: Firstly, we obtained the periodontitis dataset from public databases and
found disulfidptosis- and ferroptosis-related differentially expressed transcripts
based on the disulfidptosis and ferroptosis transcript sets. After that, transcripts
that are tissue biomarkers for periodontitis were found using three machine
learning methods. We also generated transcript subclusters from two
periodontitis microarray datasets: GSE16134 and GSE23586. Furthermore,
three transcripts with the best classification efficiency were further screened.
Their expression and classification efficacy were validated using qRT-PCR. Finally,
periodontal clinical indicators of 32 clinical patients were collected, and the
correlation between three transcripts above and periodontal clinical indicators
was analyzed.

Results: We identified six transcripts that are tissue biomarkers for periodontitis,
the top three transcripts with the best classification, and delineated two
expression patterns in periodontitis.

Conclusions:Our study found that disulfidptosis and ferroptosis were associated
with immune responses and may involve periodontitis genesis.
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1 Introduction

Periodontitis is an inflammatory, destructive disease involving periodontal
supporting tissues due to dysbiosis of the oral microbiota, causing interaction with
the host immune defence system (Kinane et al., 2017). According to the analysis of the
Global Burden of Disease Study 1990-2019, periodontitis, the sixth most prevalent
disease in the world, has a prevalence of 50%, with 1.1 billion people suffering from
severe periodontitis (Chen et al., 2021; Kassebaum et al., 2014). Loss of connective and
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bone tissue caused by periodontitis is the leading cause of tooth
loss in adults (Pihlstrom et al., 2005). On the one hand, tooth loss
and chewing dysfunction in patients with periodontitis may
negatively affect their nutritional intake, quality of life, and
even mental health (Reynolds and Duane, 2018). On the other
hand, periodontal tissue inflammation may increase the body’s
overall inflammatory burden, contributing to further
deterioration of diseases such as diabetes and cardiovascular
diseases (Preshaw and Bissett, 2019; Sanz et al., 2020). For this
reason, much research has been done on the mechanisms of
periodontitis over a long period. However, the exact pathogenesis
of this disease remains unclear. It is widely recognized that a
highly inflammatory state, triggered by ecological dysregulation
of oral microorganisms and excessive host immune response to
the microorganisms, is closely related to the pathogenesis of
periodontitis (Kinane et al., 2007; Hajishengallis and Lamont,
2012; Roberts and Darveau, 2015). Notably, multiple forms of cell
death have been found to play an essential role in developing
inflammation and mediating immune responses (Weindel et al.,
2022). Various forms of cell death have also emerged as a new
hotspot for investigating the mechanisms of chronic
inflammatory diseases such as periodontitis. Therefore, the
investigation of the underlying mechanisms of periodontitis,
especially the cell death and immuno-inflammatory regulatory
mechanisms, will provide new insights into the pathogenesis of
periodontitis.

Disulfidptosis is a new form of cell death, usually caused by
abnormal accumulation of disulfides leading to disulfide stress,
which disrupts the cytoskeleton (Liu et al., 2023). In addition, the
reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH) provides the reducing ability to prevent disulfide stress
critical for maintaining cell survival against disulfidptosis (Zheng
et al., 2023). First, we hypothesized that the cell’s redox state is
associated with the onset of disulfidptosis. Numerous studies
have shown that periodontitis is an inflammatory disease caused
by oxidative stress in which the oxidant and antioxidant systems
are imbalanced. For example, excessive reactive oxygen species
(ROS) are produced by overactivated polymorphonuclear
neutrophils in dental plaque, and excessive ROS leads to an
increased oxidant load, which results in oxidative stress in the
tissues and triggers periodontal tissue destruction (Sczepanik
et al., 2020). Second, studies have shown a significant
correlation between the severity of periodontitis and serum
levels of disulfides, which are significantly elevated in patients
with periodontitis compared to the healthy population (Tayman
et al., 2021). Another study also confirmed that thiols with
reducing properties were significantly reduced in gingival
tissues of periodontitis patients (Cerkezi et al., 2024), and that
this reducing compound plays a crucial role in resistance to
oxidative stress. Furthermore, disulfidptosis has been
progressively studied in inflammatory diseases such as
obligatory myelitis and ulcerative colitis (Li et al., 2024; Xiong
et al., 2024). Thus, the state of oxidative stress in periodontitis
and the changes in disulfide levels allow us to reasonably
hypothesize that the development of periodontitis may be
associated with disulfidptosis.

Ferroptosis is a type of iron-dependent regulatory cell death. It
affects glutathione peroxidase, leading to decreased cellular

antioxidant capacity, ROS accumulation, and lipid peroxidation,
which results in oxidative cell death and tissue damage (Stockwell
et al., 2017). Iron-dependent oxidative stress and lipid peroxidation
are recognized as critical mechanisms of ferroptosis in periodontitis
(Chen et al., 2022). Regarding the first aspect, iron concentration
fluctuations correlate with the severity of periodontitis (Boyer et al.,
2018). Periodontal pathogenic microorganisms sequester iron from
iron-containing compounds such as ferritin and hemoglobin in
infected periodontal tissues to support their growth and
reproduction (Olczak et al., 2005). Excess free iron creates an
iron overload, which triggers the Fenton reaction, producing
substantial amounts of ROS (Lewis, 2010; Ke et al., 2017).
Beyond ROS generated by iron overload, human immune
defence cells, such as polymorphonuclear leukocytes, consume
NADPH to produce ROS (Hirschfeld et al., 2017). The
overproduction of ROS results in oxidative damage to proteins
and lipid peroxidation in periodontal tissues, closely associated
with the severity of periodontitis (Chiu et al., 2017). From the
second perspective, by-products of lipid peroxidation are
significantly elevated in patients with chronic periodontitis, and
indicators such as glutathione peroxidase (GPX) and the
glutathione/oxidized glutathione ratio are altered (Borges et al.,
2007; Fentoğlu et al., 2015). Hypoxia in periodontal pockets leads
to the high expression of hypoxia-inducible factor-1 (HIF-1),
causing fatty acid deposition in the microenvironment (Ezzeddini
et al., 2021). ROS attacks lipids, such as phospholipids, in
periodontal tissues, resulting in oxidative damage to lipids,
contributing to periodontitis’s progression. In addition, lipid
peroxidation is a chain reaction that leads to biofilm damage and
altered fluidity (Halliwell and Chirico, 1993). In summary, the
correlation between the development of periodontitis and
ferroptosis is well-supported.

Multiple forms of cell death can coexist and interact within
the context of periodontitis. The roles of cell death modalities
such as autophagy, pyroptosis, and necroptosis in periodontitis
have been extensively studied. However, the interplay between
ferroptosis and disulfidptosis in periodontitis remains
underexplored. Our findings suggest that an imbalance in the
redox state not only negatively impacts the reduction state
preventing disulfide stress, thereby linking to disulfidptosis,
but is also closely associated with the mechanism of
ferroptosis. Further exploration is required to learn the
specific mechanisms of disulfidptosis and ferroptosis in
periodontitis. In our study, we developed transcriptional
biomarkers related to periodontitis that integrate disulfidptosis
and ferroptosis. These biomarkers provide new insight into
periodontitis pathogenesis’s molecular mechanisms and help
explore innovative diagnostic methods for periodontitis.

2 Methods

2.1 Data acquisition and differential
expression analysis

We acquired three independent periodontitis microarray
datasets (GSE16134, GSE23586, and GSE10334) from the GEO
database utilizing the “GEOquery” package in R software (version
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4.2.2). Each dataset was based on the microarray platform GPL570.
These raw data were subsequently normalized and preprocessed. To
enhance study reliability, datasets GSE16134 and GSE23586 were
merged to form a training set comprising 244 periodontitis and
72 control samples. Batch effects were removed from the merged
datasets utilizing R software’s “limma” and “sva” packages. Dataset
GSE10334 served as the validation set, containing 183 periodontitis
and 64 healthy samples.

Ferroptosis-related transcripts were sourced from the FerrDb
website (http://www.zhounan.org/ferrdb/) (Zhou and Bao, 2020),
yielding 259 ferroptosis-related transcripts. Disulfidptosis-related
transcripts were acquired from previous literature (Liu et al.,
2023) and the MSigDB website (https://www.gsea-msigdb.org/
gsea/msigdb/), resulting in a total of 23 disulfidptosis-related
transcripts. Pearson correlation coefficients for ferroptosis and
disulfidptosis transcript expression in the training set were
computed using “cor.test ()” in R software, setting thresholds at
“|cor| > 0.3 and p < 0.05” to identify disulfidptosis- and ferroptosis-
related transcripts. This study did not use a direct crossover of the
2 cell death transcript sets to identify DFR transcripts. While direct
crossover is a straightforward method, it can potentially overlook
some biologically essential transcripts. This correlation coefficient
approach has been widely employed in bioinformatics
(Jia et al., 2024).

Differential expression analysis of the previously identified
transcripts utilized the "limma" R package. Transcripts exhibiting
p-values <0.05 and |log2 (fold change)| > 0.5 were identified as
differentially expressed disulfidptosis- and ferroptosis-related
transcripts.

2.2 Identification of molecular mechanisms

To elucidate the biological functions of the differentially
expressed disulfidptosis- and ferroptosis-related transcripts, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis were performed. The study was completed utilizing
the “clusterProfiler” R package. A protein-protein interaction (PPI)
network of the protein products of the differentially expressed
disulfidptosis- and ferroptosis-related transcripts was constructed
using the STRING online platform (https://www.string-db.org),
with a minimum interaction threshold set at 0.4. The interaction
results were visualized utilizing Cytoscape software (version 3.9.1).
The top ten most highly associated hub protein products of
transcripts in the PPI network were identified using the MCC
algorithm in CytoHubba, a plugin within Cytoscape.

2.3 Machine learning

Three machine learning methods were employed to screen
transcriptional biomarkers in differentially expressed
disulfidptosis- and ferroptosis-related transcripts for periodontitis:
the least absolute shrinkage and selection operator (LASSO),
support vector machine (SVM), and random forest (RF). They
were implemented utilizing the “glmnet”, “e1071”, and
“randomForest” R packages, respectively. Transcripts identified
by intersecting the results of these three machine learning

methods were defined as disulfidptosis- and ferroptosis-related
transcripts that are tissue biomarkers for periodontitis.

2.4 Construction of disulfidptosis- and
ferroptosis-related transcripts classification
model and nomogram model

Logistic regression analysis was utilized to evaluate the capacity
of the machine learning screened transcriptional biomarkers to
differentiate between periodontitis and healthy tissues to develop
a classification model for periodontitis. This model allowed us to
obtain a risk score for each patient using the formula risk score = ∑

(Expi × βi). In this formula, βi represents the risk coefficient of each
transcriptional biomarker, and Expi represents the transcript’s
expression. On this basis, receiver operating characteristic (ROC)
analysis was further performed using the “pROC” R package to
evaluate the prediction model’s classification ability. Three
transcriptional biomarkers with optimal classification ability were
screened based on the area under the curve (AUC). In addition, we
plotted a nomogram based on the transcriptional biomarkers
screened by machine learning. This model aids in understanding
the contribution of each signature to the disease and accurately
predicts disease risk. Calibration curves, decision risk curves (DCA),
and clinical impact curves (CIC) help us evaluate the nomogram’s
effectiveness. Finally, we used an external dataset, GSE10334, as a
validation set.

2.5 Immune infiltration analysis

We employed the CIBERSORT method, as detailed in the
reference (Chen et al., 2018). This method analyzes the
proportion of 22 immune cells infiltrating complex tissues. We
calculated the proportion of each immune cell infiltration in gingival
tissues from periodontitis patients and healthy individuals. We also
showed the difference between each cell in the two groups. More
importantly, we calculated the Spearman correlation coefficients
between transcriptional biomarkers and the 22 types of infiltrating
immune cells. This helps us to understand the role of disulfidptosis
and ferroptosis in periodontitis further.

2.6 Consensus clustering analysis of
disulfidptosis- and ferroptosis-related
transcripts transcript clusters

Utilizing the expression levels of transcriptional biomarkers, the
periodontitis samples in the training set underwent consensus
clustering analysis using the “Consensus Cluster Plus” package in
R software. The k-means clustering method was employed for
50 iterations. Principal component analysis (PCA) validated the
clustering’s reliability. Additionally, immune infiltration analysis
was conducted to investigate the variations in immune cell
infiltration among the subclusters. Gene Set Enrichment Analysis
(GSEA) and Gene Set Variation Analysis (GSVA) were employed to
elucidate the functional disparities between subclusters identified in
the prior cluster analysis.
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2.7 Collection of clinical samples

Clinical samples were collected to validate the study’s reliability.
During crown lengthening surgery, healthy gingival tissues were
collected from 16 individuals without periodontitis. Additionally,
gingival tissues were collected from 16 patients with periodontitis
during gingivectomy. The periodontal conditions of all patients were
assessed by the same periodontist specializing in periodontology,
who recorded clinical indicators such as probing depth (PD),
attachment loss (AL), gingival index (GI), and plaque index (PI).
All gingival samples were sourced from Jilin University
Stomatological Hospital. Samples were promptly transferred to
tissue RNA preservation solution (RNAwait) (Solarbio, SR0020,
Beijing, CHINA) overnight at 4°C, followed by −80°C storage for
future experimental use. All subjects in the disease groups were
diagnosed with periodontitis based on the American Academy of
Periodontology 1999 classification. Inclusion and exclusion criteria
for this study are detailed in Supplementary Material S1, while
periodontal clinical indicators and participant assessment criteria
are outlined in Supplementary Material S2. All subjects have given
informed consent. This study received approval from the Ethics
Committee of Jilin University Stomatological Hospital (approval
number JDKQ202343), adhering to the Declaration of Helsinki of
1964, its subsequent amendments, and ethical standards.

2.8 Quantitative real-time PCR

First, total RNA was extracted from the gingival tissues of the
disease group and the control group using the Trizol method.
Second, the total RNA of the samples was quantified using a
NanoDrop 2000 analyzer. Third, the mRNA was converted into
cDNA using the 1st Strand cDNA Synthesis SuperMix for qPCR
(YEASEN, 11141ES60-100T, Shanghai, China). Fourth, qRT-PCR
was performed on a Bio-Rad analyzer using primers for the top three
transcripts with the best classification (Supplementary Material S3)
and the qPCR SYBR Green Master Mix (YEASEN, 11202ES08,
Shanghai, China). GAPDH was used as the internal reference
transcript in this experiment. Fifth, using the 2−ΔΔCt method, the
results from the analyzer were calculated to determine the relative
mRNA expression levels of the top three transcripts with the best
classification. This experiment was repeated three times to ensure its
reliability. Additionally, we calculated Pearson’s correlation
coefficients between the top three transcripts with the best
classification expression in 16 periodontitis samples. ROC curves
for 32 study cases from Jilin University Stomatological Hospital were
plotted to verify the efficacy of the top three transcripts with the best
classification in distinguishing periodontitis gingival tissues from
healthy ones.

2.9 Association analysis of transcriptional
biomarkers with periodontal clinical
indicators

Is dysregulation of the transcriptional biomarkers with optimal
classification ability contributing to periodontitis also involved in
the progression of periodontitis? We explored this conjecture using

the Spearman correlation analysis. Specifically, we calculated the
correlation coefficients between the expression of the top three
transcripts with the best classification and the measurements or
scores of four periodontal clinical indicators (PD, AL, GI, and PI) in
16 periodontitis samples obtained from Jilin University
Stomatology Hospital.

2.10 Statistical analysis

Before data comparison, normality tests and variance chi-square
tests were performed. Student’s t-test was applied for data meeting
normal distribution and variance chi-square criteria, Welch’s t-test
for data satisfying normal distribution but not variance chi-square,
and the Mann-Whitney test for data not adhering to normal
distribution. In correlation analysis, Pearson correlation analysis
was utilized for datasets adhering to the normal distribution, and
Spearman correlation analysis was used for those that did not. The
above study was completed utilizing SPSS software (version 25.0). In
addition, GraphPad Prism (version 9.5) was used for assistance and
graphing. Significance levels of p < 0.05. Gpower (version 3.1.9.7)
calculated the statistical power of each analysis.

3 Results

3.1 Differentially expressed disulfidptosis-
and ferroptosis-related transcripts for
periodontitis samples and healthy samples

23 disulfidptosis related transcripts were sourced from previous
literature and the MSigDB website. Ferroptosis related transcripts
were sourced from the FerrDb database. After removing duplicate
transcripts from three subgroups (drivers, suppressors, and traits),
259 ferroptosis related transcripts were obtained. Detailed
information on disulfidptosis related transcripts and ferroptosis
related transcripts is provided in Supplementary Material S4.
Through Pearson correlation analysis, a total of
199 disulfidptosis- and ferroptosis-related transcripts were
identified. Ultimately, 27 differentially expressed disulfidptosis-
and ferroptosis-related transcripts were identified: 18 upregulated
and nine downregulated. The visualization results of these
differentially expressed disulfidptosis- and ferroptosis-related
transcripts are displayed in heatmap, box, and volcano plots
(Figures 1A–C).

3.2 Molecular mechanisms of differentially
expressed disulfidptosis- and ferroptosis-
related transcripts

We explored the molecular mechanisms of differentially
expressed disulfidptosis- and ferroptosis-related transcripts. The
significant GO-BP (biological process) terms were predominantly
related to the intrinsic apoptotic signaling pathway, lipoxygenase
pathway, and fatty acid metabolic process. The GO-CC (cellular
component) analysis revealed that differentially expressed
disulfidptosis- and ferroptosis-related transcripts were primarily
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enriched in the RNA polymerase II transcription regulator complex,
organelle outer membrane, and outer membrane. The GO-MF
(molecular function) is associated mainly with oxidoreductase
activity, dioxygenase activity, and 17-beta-hydroxysteroid
dehydrogenase (NAD+) activity. KEGG analysis indicated that
these transcripts were significantly enriched in arachidonic acid
metabolism, lipid and atherosclerosis, and serotonergic synapse. The
bar plot graphically represented the functional enrichment analysis
results, as Figures 2A, B depicts. The differentially expressed
disulfidptosis- and ferroptosis-related transcripts related protein-
protein interaction network is illustrated in Figure 2C. Upon
removal of the isolated nodes, the PPI network comprised
20 nodes and 36 edges. The top ten transcripts at the hub
positions are illustrated in Figure 2D.

3.3 Machine learning to identify
disulfidptosis- and ferroptosis-related
transcriptional biomarkers

We employed three machine learning methods to further refine
the identification of transcriptional biomarkers in periodontitis from
differentially expressed disulfidptosis- and ferroptosis-related

transcripts: LASSO, SVM, and RF. LASSO regression yielded a
total of 18 outputs (Figures 3A, B), SVM identified 19 transcripts
(Figures 3C, D), and RF selected 10 transcripts based on the top
10 importance scores (Figure 3E). The results derived from the three
machine learning methods were intersected and illustrated in a
Venn diagram (Figure 3F), revealing six transcriptional biomarkers
critical for differentiating periodontitis tissues from healthy tissues:
ALOX12B, BNIP3, CEBPG, LURAP1L, RGS4, and TFAP2C.
Among these, LURAP1L and RGS4 demonstrated significant
upregulation in expression levels. ALOX12B, BNIP3, CEBPG,
and TFAP2C were identified as significantly downregulated
transcripts.

3.4 Disulfidptosis- and ferroptosis-related
transcripts classification model and
nomogram model

A logistic regression model was developed to differentiate
periodontitis from healthy samples using the six transcriptional
biomarkers, calculating a final risk score. The final risk score was
computed as follows: (−0.36ALOX12B) + (−1.17BNIP3) +
(−3.24CEBPG) + (1.02LURAP1L) + (0.25RGS4) +

FIGURE 1
Differentially expressed disulfidptosis- and ferroptosis-related transcripts in periodontitis. (A) The heatmap plot showed the expression of
27 transcripts in the periodontitis and control groups. (B) The box plot showed the expression of 27 transcripts in the periodontitis and control groups. (C)
The volcano plot showed that 199 transcripts were differentially expressed between the periodontitis and experimental groups, with 27 transcripts
significantly dysregulated. The top ten most significant transcripts were labeled.
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(−1.61TFAP2C). Based on the expression levels of the six
transcriptional biomarkers in each patient, the final risk score for
developing the disease can be calculated, providing new perspectives
for the early prediction and diagnosis of periodontitis.

To further evaluate the accuracy of the model above, we
calculated the AUC value of the model as well as the AUC value
of each transcriptional biomarker. An AUC value of less than

0.5 represents a poor predictive ability of the model; a value
between 0.5 and 0.7 indicates an average predictive ability; a
value between 0.7 and 0.9 indicates a good predictive ability; and
a value higher than 0.9 indicates that the model has an excellent
predictive ability. The AUC value for the training set of the model is
0.942 (95% CI: 0.904-0.971) (Figure 4A), and the AUC value for the
validation set is 0.923 (95% CI: 0.877-0.960) (Figure 4C). These

FIGURE 2
Molecular mechanisms of 27 differentially expressed disulfidptosis- and ferroptosis-related transcripts. (A) GO function enrichment analysis. (B)
KEGG pathway analysis. GO, Gene Ontology; BP, Biological process; CC, Cellular component; MF, Molecular function; KEGG, Kyoto Encyclopedia of
genes and Genomes. (C) A protein-protein interaction (PPI) network of differentially expressed disulfidptosis- and ferroptosis-related transcripts. (D) The
top ten protein products of transcripts are at the PPI network’s hub positions.
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results demonstrate that the model has excellent predictive ability.
The AUC values of each transcriptional biomarker are shown in
Figure 4B. The top three transcripts with the best classification

ability were CEBPG (AUC = 0.884), TFAP2C (AUC = 0.844), and
BNIP3 (AUC = 0.817). These AUCs were determined using single-
transcript models. Therefore, these three could be correlated.

FIGURE 3
Machine learning to identify disulfidptosis- and ferroptosis-related transcriptional biomarkers. (A–E)Construction of disulfidptosis- and ferroptosis-
related transcriptional biomarkers using LASSO regression, SVM, and RF algorithm. (F) The Venn diagram showed the intersection of results from three
machine learning methods. LASSO, least absolute shrinkage, and selection operator; SVM, support vector machine; RF, random forest.

FIGURE 4
six disulfidptosis- and ferroptosis-related transcriptional biomarkers classification model. (A) ROC analysis of classification models for the training
set. (B) ROC analysis of six transcriptional biomarkers. (C) ROC analysis of classification models for the validation set. ROC, receiver operating
characteristic.
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A nomogram model (Figure 5A) was also constructed based
on the six transcriptional biomarkers, providing an intuitive
representation of the impact of each transcriptional biomarker
on the disease. In Figure 5A, we can calculate the disease risk in a
patient from the expression of six transcripts in that patient. This
has profound implications in the early diagnosis of periodontitis.
Calibration curves (Figure 5B), DCA (Figure 5C), and CIC

(Figure 5D) were evaluated to assess the performance of the
nomogram model. Calibration curves are scatter plots about
actual and predicted incidence, in which we can see that the
predicted values are closer to the exact values. In DCA, the red
line represented by the model is on the “All” and “None” lines
above. In CIC, the red curve described by the model prediction
matches well with the blue curve represented by the actual

FIGURE 5
(A) The nomogrammodel based on the six disulfidptosis- and ferroptosis-related transcriptional biomarkers. (B–D) The calibration, DCA, and CIC of
the nomogram model for the training set. (E–G) The calibration curves, DCA, and CIC of the nomogram model are used for the validation set.
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occurrence. All the above results indicate that the model
predictions are good. Additionally, the model was validated
using a separate validation set, with the results displayed in
Figures 5E–G.

3.5 Immune infiltration analysis

An analysis of infiltrating immune cells was conducted to
investigate the differential characteristics of the immune
microenvironment between diseased and healthy groups (Figures
6A, B). In periodontitis samples, compared to healthy ones, the
infiltration levels of naive B cells, plasma cells, native CD4+ T cells,
activated memory CD4+ T cells, γδT cells, and neutrophils were
significantly elevated. In contrast, those of T follicular helper cells
(Tfh) and regulatory T cells (Tregs) were notably reduced.

Furthermore, to elucidate the biological relationship between
DFR transcripts and the immune microenvironment, a study was
conducted on the association between the six transcriptional
biomarkers and infiltrating immune cells (Figure 6C). The results
showed that the six transcriptional biomarkers were closely
associated with multiple immune cells in periodontitis samples,
particularly TFAP2C, CEBPG, and BNIP3. Interestingly, these
three transcripts were transcriptional biomarkers with the highest
classification efficacy in the ROC analysis.

3.6 Two disulfidptosis- and ferroptosis-
related subclusters for periodontitis

An unsupervised consistency clustering analysis of the
validation set of periodontitis samples identified two

FIGURE 6
(A) Proportion of 22 immune cell infiltrations between periodontitis and control groups. (B) Differences in immune cell infiltration between
periodontitis and control groups. (C) Correlation between six characteristic disulfidptosis- and ferroptosis-related transcriptional biomarkers and
infiltrating immune cells.
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disulfidptosis- and ferroptosis-related subclusters, utilizing the
expression profiles of six disulfidptosis- and ferroptosis-related
transcriptional biomarkers. Significant variations in the
expression of the six transcriptional biomarkers were observed
across the subclusters (Figure 7). Figures 8A, B illustrated the
variations in immune cell infiltration between the C1 and
C2 subclusters. Compared to the C2, the C1 exhibited higher
activity of memory B cells, CD8+ T cells, resting dendritic cells,
and resting mast cells. In contrast, the C2 demonstrated
increased activity of naive B cells and activated CD4+ memory
T cells. GSEA (Figure 8C) yielded similar findings. GSVA
(Figures 8D, E) revealed that the chemokine signaling
pathway, cytokine-cytokine receptor interaction, hematopoietic
cell lineage, natural killer cell mediated cytotoxicity, and Toll-like
receptor signaling pathway were active in the C2 isoform and
inactive in the C1 isoform.

3.7 Clinical experiment validation

Validation of the top three transcripts with the best
classification ability expression was conducted using
quantitative real-time PCR. The results (Figures 9A–C)
demonstrated general concordance with the microarray data
analysis. The TFAP2C and BNIP3 transcripts exhibited
downregulated expression in the periodontitis group and
showed significantly lower expression levels than the control
subject. However, no significant difference was observed in the
expression levels of CEBPG between the periodontitis and
healthy groups. Correlation analysis (Figures 9D–F) indicated
that the top three transcripts with the best classification ability
were positively correlated, suggesting a positive interaction. ROC
curve analysis (Figures 9G–I) revealed that CEBPG, TFAP2C,
and BNIP3 demonstrated promising efficacy in distinguishing

FIGURE 7
(A) Disulfidptosis- and ferroptosis-related subclusters for periodontitis. (B,C) Boxplot and heatmap showed differential expression of disulfidptosis-
and ferroptosis-related transcripts between subclusters. (D) PCA diagram showed the distribution of different subclusters. PCA, principal
component analysis.
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between periodontal inflammatory tissue and healthy tissue,
consistent with the findings from the public database analysis.

3.8 Correlation analysis between the top
three transcripts with the best classification
expression and periodontal clinical
indicators

The severity of periodontitis was quantified using four
periodontal clinical indicators. We calculated Spearman
correlation coefficients between the expression levels of the
top three transcripts with the best classification and
periodontal clinical indicators in 16 patients with periodontitis
collected from Jilin University Stomatology Hospital. The

analysis results (Table 1) indicated no significant association
between the two (p > 0.05).

4 Discussion

Periodontitis, an inflammatory disease, is predominantly caused
by plaque microorganisms and results in irreversible damage to
periodontal tissues. Multiple regulatory cell deaths, such as
cuproptosis, autophagy, pyroptosis, and necroptosis, have been
extensively studied in periodontitis (Song et al., 2017b). Yet, the
roles of disulfidptosis and ferroptosis in this disease remain to be
clarified. Both ferroptosis and disulfidptosis seem to be closely
linked to the redox state. Therefore, our study utilized public
databases and clinical samples to associate disulfidptosis- and

FIGURE 8
(A,B) The variations in immune cell infiltration between the C1 and C2 subclusters. (C) GSEA elucidated the functional disparities between
disulfidptosis- and ferroptosis-related subclusters. (D,E) GSVA elucidated the functional disparities between disulfidptosis- and ferroptosis-related
subclusters. GSVA, Gene Set Variation Analysis; GSEA, Gene Set Enrichment Analysis.
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ferroptosis-related transcripts with the pathogenesis of periodontitis
through bioinformatics analysis and experimental validation. This
approach aimed to identify potential critical transcripts for
disulfidptosis- and ferroptosis-related transcripts in periodontal
tissues, offering new insights into the pathological role of DFR in
periodontitis and its interplay with the immune microenvironment.
In this research, we identified 27 disulfidptosis- and ferroptosis-

related transcripts with dysregulated expression in periodontitis, six
transcripts that are tissue biomarkers for periodontitis, the top three
transcripts with the best classification, established correlations
between these transcriptional biomarkers and the immune
microenvironment, developed a classification model based on the
six transcriptional biomarkers, and delineated two disulfidptosis-
and ferroptosis-related expression patterns in periodontitis.

FIGURE 9
(A–C) qRT-PCR validation of the top three transcripts with the best classification (CEBPG, TFAP2C, and BNIP3). (*p < 0.05; **p < 0.01; ***p < 0.001)
(D–F) The correlation among the top three transcripts with the best classification in 16 periodontitis samples. (G–I) ROC curves for 32 study cases of the
top three transcripts with the best classification from Jilin University Stomatological Hospital. ROC, receiver operating characteristic.
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Initially, this study identified 27 differentially expressed
disulfidptosis- and ferroptosis-related transcripts. GO and KEGG
analyses revealed that these transcripts are functionally related to the
intrinsic apoptotic signaling pathway, fatty acid metabolic process,
and oxidoreductase activity. Enrichment was observed in the
NADPH oxidase complex, mitochondria, and other cellular
components. NADPH plays an essential part in both
disulfidptosis and ferroptosis. The reduced state of NADPH
counteracts disulfide stress and prevents cellular disulfidptosis
(Zheng et al., 2023). Furthermore, the increased oxidation of
NADPH, disruption of cellular redox homeostasis, and altered
lipid metabolism constitute important biochemical and metabolic
characteristics of ferroptosis (Yang and Stockwell, 2016; Lin et al.
2016). Additionally, morphological characteristics of ferroptosis
encompass mitochondrial contraction, enhanced mitochondrial
membrane density, and the rupture of cellular and mitochondrial
membranes (Xie et al., 2016). This observation aligns with our
study’s findings, providing additional evidence that disulfidptosis
and ferroptosis could play a role in the development of periodontitis.

Secondly, our study identified six transcripts that are tissue
biomarkers for periodontitis (ALOX12B, BNIP3, CEBPG,
LURAP1L, RGS4, and TFAP2C) potentially significant for
periodontitis using three machine learning methods: LASSO,
SVM, and RF. LURAP1L and RGS4 showed significant
overexpression, whereas ALOX12B, BNIP3, CEBPG, and
TFAP2C were notably underexpressed in periodontitis. CEBPG,
also known as C/EBPγ, belongs to the C/EBP family. Since CEBPG is
challenging in forming stable homodimers, it usually forms
heterodimers with other family members and represses its
transcriptional activity. C/EBPγ forms a heterodimer with
ATF4 to alleviate various stress responses such as oxidative
stress, etc., and acts as a new antioxidant modulator to regulate
redox homeostasis (Huggins et al., 2015). TFAP2C is part of the
TFAP2 family (transcription factor activating protein 2). The study
showed that TFAP2C is a master regulator of periodontitis (Sawle
et al., 2016). BNIP3 protein belongs to the Bcl-2 protein superfamily
and promotes mitochondrial autophagy (Zhang and Ney, 2009).
Mitochondrial autophagy is critical in osteogenesis (Pei et al., 2018).
Exposure to inflammatory cytokines inhibits mitochondrial
autophagy, suppressing osteogenesis in periodontal ligament stem
cells (PDLSCs) (Lin et al., 2023). Specifically, exposure to
inflammatory cytokines inhibits mitochondrial autophagy,
suppressing osteogenesis in periodontal ligament stem cells
(PDLSCs) (Lin et al., 2023). ALOX12B, from the lipoxygenase
(LOX) family, catalyzes the formation of hydroperoxides from
polyunsaturated fatty acids (Mashima and Okuyama, 2015).

ALOX12B is expressed in dermal epithelial cells, and its
metabolites are essential for skin barrier protection (Mashima
and Okuyama, 2015). RGS4, or Regulator of G-protein Signaling
4, is recognized as a biomarker of ferroptosis (Dixon et al., 2014).
Most studies on these transcripts are bioinformatics-based (Xu et al.,
2023), and further investigation is needed to elucidate their role in
periodontitis. Identifying these periodontitis biomarkers offers new
avenues for early monitoring, risk assessment, and disease
progression treatment.

Moreover, a classification model was constructed based on the
six transcriptional biomarkers, demonstrating higher AUC values
than each transcript. This suggests the combined analysis of these six
transcriptional biomarkers is more effective in distinguishing
periodontitis gingival tissues from healthy ones. Additionally, our
study constructed a nomogram model to visualize the contribution
of the degree of transcript expression to the disease risk, providing
new insights into the prediction of periodontitis risk from a
molecular perspective. An external dataset (GSE10334) validated
the efficacy of the classification model and nomogram models’
efficacy. We screened the top three transcripts (CEBPG,
TFAP2C, BNIP3) with optimal classification ability among these
six transcriptional biomarkers and verified their expression,
classification efficacy, and correlations through clinical
experiments. We collected 32 gingival samples (16 gingival
samples from periodontitis patients and 16 gingival samples from
healthy patients) at Jilin University Stomatological Hospital. We
recorded the information of these subjects, including gender, age,
PD, AL GI, and PI. First, qRT-PCR using these gingival tissues
helped us to verify the expression levels of the top three transcripts
(CEBPG, TFAP2C, BNIP3) with optimal classification ability. The
expression levels of BNIP3 and TFAP2C aligned with the analytical
outcomes, exhibiting a notably reduced expression compared to the
control group. However, the expression of CEBPG showed no
significant deviation from the controls. This lack of significant
difference may be ascribed to the limited size of the sample
group. Second, These AUCs were determined using single-
transcript models. Therefore, these three could be correlated. We
performed a correlation analysis of these three transcripts using the
expression levels of the transcripts obtained by qRT-PCR. The
results confirmed our hypothesis that these three could be
correlated. Further, the expression of these three transcripts was
dysregulated in periodontitis patients compared to gingival tissues
from healthy populations. So, is there a correlation between their
expression and the severity of periodontitis? Correlating patient
clinical information with transcript expression is one of the
highlights of this study. Our results showed no significant

TABLE 1 Spearman correlation coefficients between the expression levels of the top three transcripts with the best classification and periodontal clinical
indicators.

Periodontal clinical indicators Spearman correlation coefficients (r)

CEBPG TFAP2C BNIP3

PD −0.01 0.10 −0.09

AL 0.07 0.23 0.21

GI −0.05 0.34 0.21

PI 0.04 0.32 −0.11
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correlation between these three transcripts’ expression levels and
clinical indicators of periodontitis. After excluding the interference
of age and gender (Supplementary Material S5), we initially
hypothesized that these three transcripts expression levels may be
involved only in the onset of periodontitis and may not be
significantly involved in the development and progression of
periodontitis. However, our speculation still lacks sufficient
evidence, and further studies are needed to elucidate this point.

Thirdly, Immune cells, integral to the immune system, are closely
linked to the development of periodontitis (Kinane et al., 2007; Kinane
and George, 2009). Our study investigated the differences in immune
cell infiltration between healthy individuals and periodontitis patients
and the correlation between six transcriptional biomarkers and immune
cells. Significant alterations in immune cell ratios were observed
between healthy individuals and periodontitis patients, with
increased levels of naive B cells, plasma cells, native CD4+ T cells,
activated memory CD4+ T cells, γδT cells, and neutrophils in
periodontitis tissues. Conversely, the infiltration levels of Tfh and
Tregs were significantly reduced. This is consistent with existing
studies (Li et al., 2020). Furthermore, Spearman correlation analysis
revealed correlations between six transcriptional biomarkers and
immune cells. Among the six transcriptional biomarkers, the top
three transcripts with the best classification (BNIP3, CEBPG, and
TFAP2C) exhibited a closer association with immune cells.
Specifically, dendritic cells, M1 macrophages, and resting mast cells
showed positive correlations with these transcripts, while plasma cells
demonstrated negative correlations. This suggests that the top three
transcripts with the best classification possess strong classification
efficacy and may have an essential role in influencing the
pathogenesis of periodontitis through immune functions. In the
array of cells infiltrated by periodontitis, B cells, and plasma cells
predominantly occupy the inflammatory tissue (Zouali, 2017).
B cells have a dual role in PD, promoting bacterial clearance and
the destructive effects of inflammation, bone resorption, and matrix
lysis (Berglundh, Donati, and Zitzmann, 2007). Plasma cells, which
develop from B cells, are characterized by their high number and
density, marking a critical distinction between advanced periodontitis
and long-term gingivitis without attachment or bone loss (Thorbert-
Mros et al., 2015). Naive CD4+ T cells become activated and
differentiate into various subtypes upon interaction with antigenic
complexes (Luckheeram et al., 2012). Among the subtypes, CD4+

T cells are the primary source of IL-17, a cytokine closely associated
with periapical bone loss (Luckheeram et al., 2012). An imbalance
between Th17 cells and Tregs plays a critical role in periodontitis, with
Th17 cells related to inflammation and destruction of periodontal
tissues (Monasterio et al., 2018), and Tregs implicated in reducing
bone resorption in periodontitis (Cafferata et al., 2021). γδT cells are
more prevalent in inflamed gingiva than in healthy individuals,
consistent with our study (Lundqvist et al., 1994; Kawahara et al.,
1995). Previous evidence suggests a potential role for γδT cells in
periodontitis. Neutrophils have increasingly been recognized for their
irreplaceable role in periodontitis (Herrero-Cervera et al., 2022). Besides
releasing inflammatory mediators with both pro-inflammatory and
anti-inflammatory effects, neutrophils also release toxic substances like
ROS and collagenase, which contribute to connective tissue damage and
the initiation of bone resorption (Lee et al., 1995; Chapple and
Matthews, 2007). The correlation of disulfidptosis- and ferroptosis-
related transcriptional biomarkers, especially the top three transcripts

with the best classification, with various immune cells, disulfidptosis
and ferroptosis were associated with immune responses. Still, the exact
mechanism needs to be further investigated.

Fourthly, using unsupervised consistent clustering analysis, two
periodontitis subclusters (C1 and C2) were identified based on
differing expression patterns of the six characterized DFRs. In
the C1 subcluster, ALOX12B, BNIP3, CEBPG, and TFAP2C
showed higher expression, while LURAP1L and RGS4 were more
expressed in the C2 subcluster. Additionally, these subclusters
exhibited distinct immune infiltration profiles and functional
pathways. Immune cells that were more infiltrated in
periodontitis were more infiltrated in the C2 than in the C1. In
addition, the results of GSEA and GSVA showed that C2 was more
enriched in immune-related signaling pathways. Cytokines, critical
peptide mediators for cell signaling and communication, perform
various functions, including modulating immune and inflammatory
responses (Ramadan et al., 2020). Chemokines coordinate leukocyte
recruitment and activation, thus attracting macrophages,
neutrophils, and lymphocytes to inflammation sites (Ramadan
et al., 2020). The inflammatory process involves a complex
network of cytokines and chemokines, crucial in mediating
inflammation in periodontal tissue (Ramadan et al., 2020).
Hematopoietic cell lineage encompasses various blood cells
differentiating from hematopoietic stem cells, serving as the
foundational source of immune cells. Toll-like receptors (TLRs)
recognize pathogens and play a pivotal part in activating the host’s
innate immune response and adaptive immunity against periodontal
disease bacteria (Song et al., 2017a). In summary, the C2 subcluster
demonstrates greater immune relevance than the C1 subcluster. This
clustering approach, widely utilized in oncology research, has
significantly contributed to the clinical management of tumors
and clinical decision-making. Identifying various disulfidptosis-
and ferroptosis-related subtypes enhances understanding of the
role of disulfidptosis and ferroptosis in periodontitis and offers
new insights into prognostic assessment and personalized
treatment. Owing to limited clinical data in the public database,
further investigation of this molecular-level typing about clinical
symptoms and prognosis of periodontitis patients is necessary,
potentially paving the way for its future application in clinical
decision-making and treatment.

This study represents the first instance of linking disulfidptosis
to ferroptosis and exploring their pathophysiological roles in
periodontitis and their interactions with the immune
microenvironment. This work has led to several novel discoveries
that may inform future research on the relationship between cell
death mechanisms and periodontitis. However, the current study
does have some limitations. Although the expression of
disulfidptosis- and ferroptosis-related transcripts with the best
classification efficiency was validated in a clinical trial, further
validation with a larger sample size is needed. Additionally, the
absence of comprehensive clinical data, including symptoms and
prognostic information in public databases, limited our ability to
probe further the association between disulfidptosis- and
ferroptosis-related transcripts -based periodontitis subtypes and
clinical features. It is essential to elucidate the precise molecular
pathways involved in disulfidptosis and ferroptosis within the
context of periodontitis in the future to advance understanding
in this field.
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5 Conclusion

Our work integrates disulfidptosis and ferroptosis for the first
time, utilizing bioinformatics approaches to investigate their role in
periodontitis. We constructed a classification model incorporating
six disulfidptosis- and ferroptosis-related transcriptional
biomarkers, and consistency clustering analysis yielded two
disulfidptosis- and ferroptosis-related subtypes enhances
understanding of the role of disulfidptosis and ferroptosis in
periodontitis and offers new insights into prognostic assessment
and personalized treatment modification patterns. Our study
demonstrated that six transcripts that are tissue biomarkers for
periodontitis, particularly the top three transcripts with the best
classification, exhibit correlations with multiple infiltrating immune
cells. This information indicates that disulfidptosis and ferroptosis
could affect periodontitis by eliciting immune responses.
Additionally, the top three transcripts with the best classification
we discovered may be involved only in the onset of periodontitis and
may not be significantly involved in the development and
progression of periodontitis. This will offer new insights into the
mechanisms of disulfidptosis and ferroptosis in both the onset and
development of periodontitis.
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