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Objective: Complex chromosome rearrangements (CCR) are rare structural
abnormalities involving at least three breakpoints, categorized into three types
based on their structure: type A (three-way rearrangements), type B (double two-
way translocations), and type C (exceptional CCR). However, thus far, limited data
exists on preimplantation genetic testing for chromosomal structural
rearrangements (PGT-SR) in CCR carriers. This study aims to evaluate the
clinical outcomes and influencing factors of PGT-SR in couples with CCR.

Methods: Fifteen couples with unique CCR recruited from 793 couples following
PGT-SR between January 2017 and May 2023. In addition, a total of 54 CCR
cases, 39 previously reported as well as 15 newly added, were included in the
analysis of factors associate with normal/balanced embryos.

Results: A total of 100 blastocysts were biopsied and analyzed in 15 CCR couples
after 17 PGT-SR cycles, with 16.0% being euploid, 78.0% aneuploid and 6.0%
mosaic. 11 normal/balanced embryos and one mosaic embryo were transferred,
resulting in eight live births. Furthermore, based on the combined data from
54 CCR carriers, the proportion of normal/balanced embryos was 10.8%, with a
significant decrease observed among female carriers compared to male
heterozygotes (6.5% vs. 15.5%, p = 0.002). Type B exhibited the lowest rate of
euploid embryos at only 6.7%, followed by type A at 11.6% and type C at 14.0%,
although the differences were not significant (p = 0.182). After completing the
multivariate generalized estimating equation (GEE) analysis, type B (p=0.014) and
female carrier (p = 0.002) were identified as independent risk factors for fewer
euploid embryos.

Conclusion: The occurrence of balanced CCR in patients with reproductive
abnormalitiesmay bemore frequent thanwe expected. Despite the proportion of
normal/balanced embryos being significantly low, which can be influenced by
CCR type and carrier’s sex, PGT-SR may improve the reproductive outcomes
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among CCR cases. These findings can optimize the clinical management and
genetic counseling of CCR carriers seeking assisted reproductive technology (ART).
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Introduction

Complex chromosomal rearrangements (CCR) are structural
abnormalities characterized by two or more chromosomes with at
least three breakpoints, resulting in the exchange of genetic material
between non-homologous chromosomes (Pellestor et al., 2011a). CCR
can be classified into three categories according to their structure
(Kausch et al., 1988; Pellestor et al., 2011a): type A (three-way
rearrangements), type B (double two-way translocations) and type C
(exceptional CCR) respectively; the first two types involve only
translocations, while exceptional CCR often combine translocations
with other structural aberrations such as inversions and insertions. CCR
occurring in phenotypically normal persons are extremely rare, either
familial or de novo, with an estimated incidence of 0.003% in newborns
(Giardino et al., 2009). Nevertheless, they are more prevalent in
individuals with reproductive abnormalities such as infertility,
recurrent pregnancy loss and/or offspring abnormality, ranging from
0.1% to 0.2% frequency (Mau- and Holzmann, 2005; Liao et al., 2017).
For carriers of balanced CCR, it is likely that a significant number of
unbalanced gametes will be generated due to abnormal segregation
patterns during meiosis (Loup et al., 2010; Pellestor et al., 2011b; Godo
et al., 2013; Rossi et al., 2023).

Preimplantation genetic testing for chromosomal structural
rearrangements (PGT-SR) has been widely applied for carriers of
common chromosomal rearrangements, including reciprocal
translocations, Robertsonian translocations and inversions (Coonen
et al., 2020; Spinella et al., 2023). However, the available data on
preimplantation genetic testing for structural rearrangements (PGT-
SR) in carriers with CCR remains insufficient. To date, only a few case
reports or small series have been published regarding carriers with
balanced CCR undergoing PGT-SR (Escudero et al., 2008; Lim et al.,
2008; Vanneste et al., 2011; Scriven et al., 2014; Frumkin et al., 2017;
Brunet et al., 2018; Hu et al., 2018; Mas et al., 2018; Li et al., 2020; Ou
et al., 2020; Dufton and Bouzayen, 2021; Özer et al., 2022; Ren et al.,
2023). Here, we assessed the clinical outcomes of 15 couples with novel
CCR undergoing PGT-SR using next-generation sequencing (NGS). To
our knowledge, this is the most extensive series of CCR carriers
undergoing PGT-SR ever reported. Moreover, we conducted a
systematic analysis to identify factors influencing the outcomes of
PGT-SR in individuals with CCR by integrating our data with
previously reported cases. These data would provide valuable
insights for the clinical management and genetic counseling of CCR
carriers seeking assisted reproductive technology (ART).

Materials and methods

Study patients

Fifteen couples were retrospectively selected from a large cohort
of 793 couples who underwent PGT-SR at the Reproductive

Medicine Center of Guangdong Women and Children Hospital
between January 2017 and May 2023. One partner in each couple
was a CCR carrier, including five female carriers and ten male
heterozygotes. Among the remaining 778 couples, one partner
carried a common chromosomal rearrangement, such as
reciprocal translocation, Robertsonian translocation or inversion.
Classical pericentric inversion “inv (9)(p11q12)” was excluded. The
present study was reviewed and approved by the Institutional
Review Board (IRB) of Guangdong Women and Children
Hospital, ensuring compliance with ethical guidelines. Written
consent was obtained from all participating patients prior to their
inclusion in the study.

For ease of reference, we assigned numbers to the 15 couples as
cases 1 to 15 (Table 1). More than half of the female participants
(cases 3, 6, 7, 9, 10, 11, 12, 14 and 15) had experienced abnormal
pregnancy outcomes, including spontaneous or induced abortions.
Oligoasthenoteratozoospermia (OAT) was diagnosed in three of the
male carriers (cases 4, 5 and 11), while the rest exhibited normal
sperm parameters. None of these couples had achieved a healthy live
birth before undergoing PGT-SR.

Considering the limited prevalence of CCR carriers, we
expanded our sample size by collecting data from PGT-SR
studies involving individuals with CCR that have been reported
in PubMed up until now, with the aim of exploring factors
influencing euploidy of embryos in CCR carriers undergoing
PGT-SR.

Cytogenetic analysis

Using the standard G-banding technique, cytogenetic analysis
was performed on cultured peripheral blood lymphocytes from
the 15 couples.

Controlled ovarian stimulation and
PGT-SR procedure

The procedures reported previously were followed (Liu et al.,
2021; Dong et al., 2023). Briefly, controlled ovarian stimulation was
induced using a gonadotropin-releasing hormone (GnRH) agonist,
recombinant follicular stimulating hormone (FSH) and human
chorionic gonadotropin (HCG). Standard techniques were
employed in IVF treatment process at the Reproductive Medical
Centre of Guangdong Women and Children Hospital, including
fertilization, embryo culture, blastocyst biopsy, and blastocyst
transfer. Blastocysts on day 5/6 with a grading score ≥3BC were
selected for biopsy.

Trophectoderm (TE) cells obtained from day 5/6 biopsies for
PGT-SR were subjected to whole-genome amplification (WGA)
using the PicoPLEX single-cell WGA kit (Rubicon Genomics,
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TABLE 1 Clinical outcomes of PGT-SR cycles for 15 CCR carriers.

Oocytes Embryos

Case Karyotype of CCR
case

Type
of

CCR

Female
age

(years)

PGT-
SR

cycle

Collected MII 2PN Day3 Biopsied Euploid Aneuploid Mosaic Transferred Pregnancy
outcome

1 46, XX, t (2; 9;22) (p25.2; q32;
q11.1)

A 35 1 14 12 12 12 3 1 2 0 1 Negative

2 46,XY,t (5; 14; 11) (q23;
q24.3; q21)

A 27 1 38 35 23 20 16 4 11 1 2 1 live birth

3 46,XY,t (1; 14) (q32.3; q24.3),t
(2; 9) (p11.2; p24.2)

B 33 1 25 19 15 15 2 0 2 0 0

4 46,XY,t (3; 4) (q21; p15.2)t (4;
22) (p16.1; q12.2)

B 25 1 32 29 23 21 9 0 9 0 0

5 45,XY,t (3; 13) (q26.2;
q21.3),der (13; 14) (q10; q10)

B 29 1 33 30 22 22 12 2 9 1 1 1 live birth

6 46,XX,t (1; 7) (p13.1; q11.23),t
(5; 6) (q15; q23)

B 27 1 17 17 16 16 6 0 5 1 0

7 46,XY,t (4; 5) (q27; q31),t (6;
15) (q27; q25)

B 27 1 40 35 27 26 11 2 9 0 1 1 live birth

8 46,XY,t (7; 22) (q36; q13.1)inv
(22) (q12.2q13.1)

C 30 1 15 15 12 12 7 1 6 0 1 Negative

9 46,XX,t (7; 8) (p13; q11.23)inv
(7) (p13q21.2)

C 37 1 12 9 7 7 3 1 2 0 1 Negative

2 14 13 11 11 6 1 5 0 1 1 live birth

10 46,XX,t (2; 18) (p10; p10),inv
(9) (q21.2q22.3)

C 24 1 11 11 7 7 5 0 5 0 0

2 10 8 6 6 3 0 2 1 1a 1 live birth

11 46,XX,der (4)ins (4; 14) (q33;
q22q24.2)t (4; 21) (q34;
q22.1),der (14)ins (14; 21)
(q11.2; q11.2q21)ins (21; 14)
(q22.1; q11.2q21)ins (4; 14),der
(21)ins (14; 21)ins (21; 14)t
(4; 21)

C 30 1 13 11 10 10 4 0 4 0 0

12 46,XY,der (4)inv (4) (q32q35)t
(4; 11) (q32; q25),der (11)t
(4; 11)

C 26 1 22 19 15 15 5 1 4 0 1 1 live birth

13 46,XY,der (2)t (2; 10) (q35;
q24.3),der (10)inv (10)
(q22.1q24.3)t (2; 10)

C 25 1 12 12 10 10 8 3 4 1 2 2 live births

(Continued on following page)
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Ann Arbor, United States). Subsequently, sequencing libraries were
prepared using the WGA products of the embryos and then
analyzed for the detection of copy number variation (CNV) in all
24 chromosomes using next-generation sequencing (NGS)
following standard protocols. Euploid or mosaic embryos (Leigh
et al., 2022), accompanied by genetic counseling, could be
transferred into the uterine cavity.

Statistical methods

The demographic characteristics and clinical outcomes were
typically presented as mean values with standard deviations (SD) for
continuous variables, and as frequency with proportion for
categorical variables. The differences between groups were
assessed using the ANOVA test for continuous variables and the
Pearson’s chi-square test for categorical variables.

As multiple embryos from the same woman were included in
the cohort, a multivariate generalized estimating equation (GEE)
with an exchangeable working correlation matrix was utilized to
examine the associations between patient demographics and
embryonic euploidy. The following potential influencing
factors were considered for inclusion in the GEE: female age
(<35 years or ≥35 years), time of biopsy (day 3 or day 5/6), type of
CCR (type A, B or C) and carrier’s sex (female or male). All
statistical analyses were performed using R Version 4.3.1. All p
values were two-sided, and less than 0.05 was considered
statistically significant.

Results

Karyotyping

Fifteen couples, in which one partner was identified as a CCR
carrier through G-banding analysis of peripheral blood
(Supplementary Figure S1), were categorized into three groups:
two couples belonged to type A, five to type B, and eight to type
C (Table 1).

Clinical characteristics and PGT-SR
outcomes of CCR carriers

No statistically significant differences were observed among the
three groups in terms of baseline information (Table 2).

As presented in Tables 1, 2, 17 PGT-SR cycles were
performed in 15 cases, resulting in the retrieval of
337 oocytes, with 300 (89.0%) available for fertilization.
Subsequently, 230 (76.7%) oocytes developed into two-
pronuclear embryos (2PN), and out of these, 224 (97.4%)
embryos reached day 3 of development. Finally, a total of 100
(44.6%) blastocysts were eligible for biopsy and detection on day
5/6. The rates of 2PN in types A, B and C were found to be 74.5%
(35/47), 79.2% (103/130) and 74.8% (92/123), respectively;
however, no significant differences were observed among the
three types (χ2 = 0.85, p = 0.655) (Table 2). Similarly, there were
no significant differences in the rates of blastocyst formation onT
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day 5/6 for biopsy between the three groups: 59.4% (19/32, type
A), 40.0% (40/100, type B), and 44.6% (41/92, type C)
respectively (χ2 = 3.68, p = 0.159) (Table 2). However, two
patients (case 14 and 15) had no eligible blastocysts for
biopsy within one PGT-SR cycle.

The NGS-based PGT-SR results are presented in
Supplementary Table S1. All of the 100 biopsied blastocysts
were diagnosed successfully, with 16.0% (16/100) embryos
identified as balanced or normal, 79.0% (79/100) as aneuploid,
and 5.0% (5/100) as mosaic (Table 1). In addition, 26 out of
100 embryos involved de novo abnormal chromosomes that were
not present in the carriers. The rate of euploid blastocysts was
found to be the highest in type A CCR at 26.3% (5/19), followed
by type C with a rate of 17.1% (7/41). In contrast, type B CCR had
the lowest rate at 10.0% (4/40). However, no statistically
significant differences were observed among the three types
(χ2 = 2.61, p = 0.271) (Table 2).

In the 17 PGT cycles, there were eight cycles (8/17, 47.1%) in
which no euploid embryo could be transplanted. A total of
11 normal/balanced embryos (46, XN) (XN means XX or XY)
and one mosaic embryo [46, XN, + (mosaic)(16)(q22.2-
q24.3)(17.51 Mb)(40%)] (case 10, Supplementary Table S1) were
transplanted with frozen-thawed embryo transfer, resulting in eight
live births for 7 couples (cases 2, 5, 7, 9, 10, 12 and 13) (Table 1).

Factors influencing the proportion of
normal/balanced embryos

To date, an extensive literature review has identified a total of
39 individuals with balanced CCR who have undergone PGT-SR
(Table 3). A total of 352 embryos were successfully tested on
either day 3 or day 5/6. Consequently, 54 CCR carriers
(24 females and 30 males), comprising 25 type A, 11 type B,
and 18 type C cases, were included in the analysis. In summary, as
presented in Figure 1A, the overall proportion of normal/
balanced embryos among CCR carriers was 10.8% (49/452).
The rates of euploid embryos for female
aged <35 and ≥35 were 10.7% (39/363) and 14.3% (9/63),
respectively (χ2 = 0.67, p = 0.412). Similarly, the euploid

embryos rates for day 3 and day 5/6 biopsies were found to be
11.4% (18/158) and 10.5% (31/294), respectively (χ2 = 0.08, p =
0.782). Additionally, type B CCR exhibited the lowest euploid
embryos rate at 6.7% (8/120), whereas type A and C displayed the
rates of 11.6% (26/225) and 14.0% (15/107), respectively;
however, the observed differences did not reach statistical
significance (χ2 = 3.40, p = 0.183). Notably, the proportion of
normal/balanced embryos was significantly lower in female
carriers (6.5%, 15/232) compared to male heterozygotes
(15.5%, 34/220) (χ2 = 9.44, p = 0.002).

These potential factors were further analyzed using multivariate
GEE to determine their impact on the proportion of balanced
embryos following PGT-SR. The result indicated that type B
CCR (OR = 2.17, 95% CI 1.17−4.02, p = 0.014) and female
carrier (OR = 2.54, 95% CI 1.43−4.53, p = 0.002) were
independent risk factors associated with a decrease in the
proportion of euploid embryos, while female age (OR = 0.79,
95% CI 0.42−1.48, p = 0.455) and time of biopsy (OR = 0.75,
95% CI 0.45−1.25, p = 0.272) had no significant effect (Figure 1B).

Discussion

Although CCR are uncommon events in humans, the
frequency of CCR carriers in the PGT-SR population is
described here for the first time. In our reproductive center,
1.9% (15/793) of couples undergoing PGT-SR cycles were
identified as CCR carriers, who have normal physical health
but may be at risk for spontaneous abortion or
chromosomally abnormal offspring. The proportion of carriers
with balanced CCR in the PGT-SR population has not been
reported previously, and this proportion may exceed
expectations.

We assessed the PGT-SR outcomes in 15 couples carrying three
different types of CCR. Our data showed that the fertilization rates
(76.7%), the embryo formation rates on day 3 (97.4%), and the
blastocyst formation rates for biopsy (44.6%) were within the
normal range, with no significant differences observed among the
three groups (Table 2). Two studies have suggested some CCR may
lead to poor early embryonic development (Hu et al., 2018; Li et al.,

TABLE 2 Demographic and embryologic characteristics of 15 CCR carriers.

Type A Type B Type C p-value

Demographic characteristic

Female age (years) 31.00 ± 5.66 28.20 ± 3.03 29.63 ± 5.04 0.741

Male age (years) 31.00 ± 5.66 28.40 ± 2.30 32.25 ± 6.52 0.480

BMI (kg/m2) 21.90 ± 5.66 20.66 ± 1.24 22.37 ± 3.67 0.673

AMH (ng/mL) 8.05 ± 5.53 5.38 ± 0.69 5.59 ± 3.06 0.518

Embryologic characteristic

2PN rate 74.5% (35/47) 79.2% (103/130) 74.8% (92/123) 0.655

Biopsied blastocyst rate 59.4% (19/32) 40.0% (40/100) 44.6% (41/92) 0.159

Euploid blastocyst rate 26.3% (5/19) 10% (4/40) 17.1% (7/41) 0.271

AMH, anti-Müllerian hormone; BMI, body mass index.
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TABLE 3 Summary of PGT-SR in previously reported patients carrying CCR.

References Karyotype of CCR case Female age
(years)

CCR
type

Biopsy
time

Diagnosd
embryos

Euploid
embryos

Ren et al. (2023) 45, XY, t (3; 11) (q28; p15.4), der (14; 15) (q10; q10) NA B Day 5/6 1 0

Özer et al. (2022) 46, XX, t (2; 6;12) (p21; p25; p13) NA A Day 3 7 1

Day 5/6 18 0

Dufton and Bouzayen
(2021)

46, XX, t (5; 17) (p15.1; q25.1), ins (6; 17) (p23;
q23q24)

35 C Day 5/6 2 0

Ou et al. (2020) 46, XX, der (1)t (1; 4) (p22; q31.1), der (4)ins (5; 4)
(q22; q25q28)t (1; 4),der (5)ins (5; 4)

27 C Day 5/6 11 1

Li et al. (2020) 46, XY, t (1; 16; 4) (p22; q22; q23) 33 A Day 5/6 2 1

46, XY, t (8; 10; 13) (q21; p12; q33) 25 A Day 5/6 7 2

46, XX, t (1; 15; 9) (q21; q11.2; q12) 28 A Day 5/6 4 0

46, XY, t (8; 18; 9) (q24.2; q21.2; p22) 26 A Day 5/6 15 0

46, XY, t (2; 4) (q21; q31), t (2; 5) (p23; q35) 37 B Day 3 5 1

45, XX, t (6; 13) (p21.1; q34),der (15; 21) (q10; q10) 23 B Day 5/6 13 0

46, XX, t (1; 11) (q44; q23), t (2; 8) (q31; p23) 22 B Day 5/6 8 0

46, XX, t (2; 11) (q22; q24), inv (13) (q12q32) 37 C Day 5/6 7 1

46,XY, t (1; 11) (p10; p10), inv (11) (q13q14) 37 C Day 5/6 6 0

46, XY, t (1; 8) (p22; p23), ins (1; 11) (p22; q23q25) 24 C Day 5/6 4 0

45, XY, inv (1) (p11q12), der (15; 22) (q10; q10) 26 C Day 5/6 1 0

45, XY, inv (5) (p13q23),der (14; 15) (q10; q10) 32 C Day 5/6 5 2

Mas et al. (2018) 46, XY, t (2; 4;14) (q21.1; p15.2; q22) 30 A Day 5/6 10 0

Hu et al. (2018) 46, XX, t (2; 3;4) (p13; q13.2; q21) <35 A Day 5/6 2 0

46, XX, t (1; 6;3) (p22; q21; p24) <35 A Day 5/6 2 0

46, XX, t (2; 12; 4) (p13; p11; q33) <35 A Day 5/6 6 1

46, XX, t (1; 12; 21) (q25; q15; q11) <35 A Day 5/6 8 1

46, XY, t (2; 13; 9) (p23; q14; p11) <35 A Day 5/6 8 0

46, XY, t (9; 16; 12) (p22; q22; q15) <35 A Day 5/6 8 1

46, XX, t (6; 8) (q15; q24), t (1; 9;15) (q42; p11;
q11q26)

<35 C Day 5/6 12 0

Brunet et al. (2018) 46, XY, t (1; 4;11) (p31; p16; p22) 27 A Day 5/6 3 1

46, XY, t (3; 13; 5) (p14; q21; p14) 27 A Day 5/6 9 0

46, XX, t (6; 11; 21) (q21; q21; q13) 25 A Day 5/6 6 2

46, XX, t (2; 7) (q21; q36),t (2; 4) (p10; q10), t (2; 4)
(q15; q10)

27 C Day 5/6 2 0

Frumkin et al. (2017) 46, XY, t (3; 7;9) (q23; q22; q22) 29 A Day 5/6 14 2

Scriven et al. (2014) 46, XY, t (6; 11; 16) (q16.2; p14.2; q13) 38 A Day 3 5 0

46, XY, t (1; 4;14) (p32.3; q23; q13) 30 A Day 3 9 3

46, XY, t (1; 9;18) (p13.3; p22; q23) 38 A Day 3 15 3

46, XX, t (1; 3;4) (q42.1; q26.2; p15.2) 33 A Day 3 8 0

Vanneste et al. (2011) 46, XY, ins (3; 2) (p23; q23q14.2), t (6; 14)
(p12.2; q13)

27 C Day 3 16 4

Lim et al. (2008) 46, XX, t (6; 10; 8) (q25.1; q21.1; q21.1) 33 A Day 3 11 0

(Continued on following page)
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TABLE 3 (Continued) Summary of PGT-SR in previously reported patients carrying CCR.

References Karyotype of CCR case Female age
(years)

CCR
type

Biopsy
time

Diagnosd
embryos

Euploid
embryos

46, XY, t (5; 13; 8) (q21.2; q14.3; q24.3) 33 A Day 3 7 1

Escudero et al. (2008) 45, XX, t (8; 12) (q24.1; q22), der (13; 14) (q10; q10) 33 B Day 3 42 2

45, XX, t (3; 9) (q10; p10), der (14; 15) (q10; q10) 35 B Day 3 11 1

46, XX, t (5; 13; 16) (q35.1; q32.1; q11.1) 33 A Day 3 22 2

FIGURE 1
Analysis of the potential factors influencing PGT-SR outcomes among 54 CCR carriers. (A) Univariate analysis of the potential factors affecting
normal/balanced embryo proportions. (B) Themultivariable generalized estimating equations analysis tomodel predictors for normal/balanced embryos.
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2020), which is consistent with our observed cases 3, 14 and 15.
However, the phenomenon should be further investigated with
larger samples to derive a more precise conclusion. Among the
100 blastocysts biopsied from 15 CCR couples after 17 PGT-SR
cycles, only 16.0% were diagnosed as normal/balanced. The live
birth rate after transfer of euploid embryos was 63.6% (7/11), and it
was 100% (1/1) for mosaic embryo. Therefore, considering the
relatively low incidence of normal/balanced embryos for CCR
patients after PGT-SR cycles, transferring an embryo with a
trophectoderm mosaic-range result could be considered as a
viable clinical strategy (ASRM, 2023).

Several studies attribute a portion of the de novo aneuploidies to the
inter chromosomal effect (ICE) (Lejeune, 1963; Wang et al., 2019), but
the existence of ICE in CCR carriers remains controversial (Pellestor
et al., 2011b; Wang et al., 2015; Ogur et al., 2023). In the present study,
26 out of 100 embryos involved unrelated chromosomal imbalances,
providing limited evidence for the occurrence of ICE in CCR carriers.
Comprehensive analysis (such as NGS) of all chromosomes in parallel
with rearrangement-related chromosome testing is nonetheless essential.

In addition, for the first time, we conducted a systematic
analysis using a relatively large sample size from our research
and the published literature (Table 3). The results revealed that the
odds of obtaining a euploid embryo was 10.8%, which was
significantly lower compared to the genetically transferable
embryos (26.8%, 3991/14883) in individuals with common
chromosomal rearrangements (Coonen et al., 2020). After the
GEE analysis of 452 embryos from 52 CCR individuals
undergoing PGT-SR, we found that CCR type (OR = 2.17, 95%
CI 1.17−4.02, p = 0.014) and carrier’s sex (OR = 2.54, 95% CI
1.43−4.53, p = 0.002) were independent risk factors that may be
associated with the proportion of normal/balanced embryos
(Figure 1B). Type B (double two-way translocations) CCR
reduced the percentage of normal/balanced embryos, whereas a
previous small-sample study demonstrated that different types of
CCR had little effect on the embryonic molecular karyotype (Li
et al., 2020). Also, the likelihood of obtaining at least one embryo
for transfer following PGT-SR may be substantially less for female
carriers, suggesting the different mechanisms and checkpoints
involved in male and female meiosis (Zhang et al., 2019; Lin
et al., 2021). Interestingly, the majority of familial CCR are
transmitted through female carriers (70% maternal versus 30%
paternal) (Pellestor et al., 2011a). This observation is mainly due to
spermatogenesis failure in half of males, frequently linked with
CCR and leading to sterility or subfertility (Liang et al., 2022).
Additionally, some studies demonstrated that female age (Dang
et al., 2023) and biopsy time (Beyer and Willats, 2017) might
impact the proportion of genetically normal/balanced embryos for
translocation carriers. Nevertheless, no significant influence of
female age or biopsy time was observed on the normal/balanced
embryos in our study. The possible reasons for this discrepancy
could be the small sample size or the heterogeneity of CCR.
However, larger cohort studies will be required to accurately
assess the clinical outcomes, influencing factors, and efficacy of
PGT-SR in carriers with CCR.

In conclusion, we evaluated the clinical outcomes of NGS-based
PGT-SR in 15 carriers with three different types of CCR. This is the
most extensive series of CCR carriers undergoing PGT-SR ever
reported. PGT-SR may improve the reproductive outcomes in

individuals with CCR, even though the proportion of normal/
balanced embryos is relatively low. Moreover, type B CCR and
female carrier are independent risk factors that may reduce the
proportion of normal/balanced embryos. These findings may help
optimize the genetic counseling and clinical management of these
complex cases.
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