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Introduction: Synergistic medication, a crucial therapeutic strategy in cancer
treatment, involves combining multiple drugs to enhance therapeutic
effectiveness and mitigate side effects. Current research predominantly
employs deep learning models for extracting features from cell line and
cancer drug structure data. However, these methods often overlook the
intricate nonlinear relationships within the data, neglecting the distribution
characteristics and weighted probability densities of gene expression data in
multi-dimensional space. It also fails to fully exploit the structural information of
cancer drugs and the potential interactions between drug molecules.

Methods: To overcome these challenges, we introduce an innovative end-to-
end learning model specifically tailored for cancer drugs, named Dual Kernel
Density and Positional Encoding (DKPE) for Graph Synergy Representation
Network (DKPEGraphSYN). This model is engineered to refine the prediction
of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual
Kernel Density Estimation and Positional Encoding techniques to effectively
capture the weighted probability density and spatial distribution information of
gene expression, while exploring the interactions and potential relationships
between cancer drug molecules via a graph neural network.

Results: Experimental results show that our predictionmodel achieves significant
performance enhancements in forecasting drug synergy effects on a
comprehensive cancer drug and cell line synergy dataset, achieving an AUPR
of 0.969 and an AUC of 0.976.

Discussion: These results confirm our model’s superior accuracy in predicting
cancer drug combinations, providing a supportive method for clinical medication
strategy in cancer.

KEYWORDS

drug-drug interaction prediction, drug combination, synergistic effect, cancer
treatment, graph attention network, deep learning

OPEN ACCESS

EDITED BY

Chunlai Feng,
Jiangsu University, China

REVIEWED BY

Jeremy J. Yang,
University of New Mexico, United States
Sajjad Gharaghani,
University of Tehran, Iran

*CORRESPONDENCE

Yunyun Dong,
dongyunyun@tyut.edu.cn

RECEIVED 15 March 2024
ACCEPTED 24 May 2024
PUBLISHED 14 June 2024

CITATION

Dong Y, Bai Y, Liu H, Yang Z, Chang Y, Li J,
Han Q, Feng X, Fan X and Ren X (2024), DKPE-
GraphSYN: a drug synergy prediction model
based on joint dual kernel density estimation
and positional encoding for
graph representation.
Front. Genet. 15:1401544.
doi: 10.3389/fgene.2024.1401544

COPYRIGHT

© 2024 Dong, Bai, Liu, Yang, Chang, Li, Han,
Feng, Fan and Ren. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 14 June 2024
DOI 10.3389/fgene.2024.1401544

https://www.frontiersin.org/articles/10.3389/fgene.2024.1401544/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1401544/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1401544/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1401544/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1401544/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1401544&domain=pdf&date_stamp=2024-06-14
mailto:dongyunyun@tyut.edu.cn
mailto:dongyunyun@tyut.edu.cn
https://doi.org/10.3389/fgene.2024.1401544
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1401544


1 Introduction

Predicting drug combinations is a pivotal task in contemporary
medication strategies, focusing on optimizing therapeutic outcomes by
anticipating the interactions between different drugs and addressing the
limitations of single drugs through predicting interactions between
different drugs (Mokhtari et al., 2017). Research on drug combination
prediction is of great importance for achieving personalized medicine
and enhancing treatment effectiveness (Csermely et al., 2013). With the
rapid development of deep learning technologies, the field of drug
combination prediction is experiencing significant technological
innovations, greatly advancing research in this area (Güvenç Paltun
et al., 2021). In 2018, Preuer et al. (2018) developed the DeepSynergy
model, marking a significant milestone in the application of deep
learning methods for predicting drug combinations. Inspired by
DeepSynergy, researchers developed the DeepSignalingSynergy
model in 2020 (Zhang et al., 2020), based on a sparse network
construction. This model uses neurons in the hidden layer to
simulate signaling pathways in cancer cells, assessing each neuron’s
contribution to the final prediction through hierarchical relevance
propagation (Montavon et al., 2019), thereby enhancing the model’s
interpretability. While the DeepSynergy model introduces a novel
approach to forecasting drug interactions, it faces limitations when
dealing with intricate gene expression profiles and the varied molecular
architectures of drugs. Kuru et al. (2021) proposed the MatchMaker
model, training a subnetwork for each drug-cell combination. The
output latent representations of these subnetworks are concatenated to
serve as inputs for another subnetwork, used for predicting synergy
scores. Building on this, MARSY (El Khili et al., 2023) also trained two
subnetworks representing drug pairs and drug-drug-cell triple
combinations; Additionally, CCSynergy (Hosseini and Zhou, 2023)
and SynPathy (Tang and Gottlieb, 2022) are drug combination synergy
prediction models developed in recent years based on the DeepSynergy
model, integrating more types of drug and cell characteristics.

Despite significant progress with deep learning-based drug
combination prediction models like DeepSynergy, substantial
challenges remain in handling complex gene expression data and
drug structural diversity. Subsequent research, such as DrugCell
(Kuenzi et al., 2020), has employed more complex network
architectures and data processing methods to address these
challenges. These methods include advanced dimensionality
reduction techniques and modeling for specific biological pathways,
aiming to improve the predictive accuracy and biological
interpretability. The development and application of Graph Neural
Networks (GNNs) (Scarselli et al., 2008) have provided new methods
for representing molecular structures and cellular network
characterizations. Recent models such as GraphSynergy (Yang et al.,
2021), PRODeepSyn (Wang et al., 2022), MOOMIN (Rozemberczki
et al., 2022), and KGE-DC (Zhang and Tu, 2022) apply GNNs to drug
combination synergy prediction, offering newmethods to better capture
the intricate interactions and relationships within the data.

While deep learning approaches have achieved some progress in
predicting drug combination synergy, they exhibit limitations,
particularly in adequately addressing the spatial distribution
characteristics of gene expression data. This oversight leads to an
in-complete understanding of the spatial adjacency relationships
among genes. Furthermore, the acquisition of structured regularity

information concerning drugs, as well as potential associative
features between drug molecules, remains insufficient.

To overcome the limitations of current methodologies, we
introduce a novel predictive model named DKPE-GraphSYN.
The main contributions are as follows:

• DKPE-GraphSYN model: The proposed DKPE-GraphSYN
model employs a Dual Kernel Density Estimation (DKDE)
and Positional Encoding (PE) Channel Cascade Algorithm for
processing gene expression data. The innovative method
encapsulates both locational and weighted probability density
information, thereby effectively capturing the spatial distribution
and weights of genes within cellular responses.

• Graph Representation of Drug Molecules: By representing
drug molecules using a graph structure, our model captures
the potential associations between drug molecules, enhancing
our understanding of their interactions.

• Integration of Convolutional Neural Networks (CNN) and
GNN: The DKPE-GraphSYN model integrates CNN with
GNN to effectively capture associative features between cell
lines and drugs, thus enhancing the accuracy of predicting
drug combination effects.

2 Materials and methods

Our research method commenced with dividing the dataset evenly
into five parts, proceeding through five phases of training and
verification. In each phase, we designated one part as the validation
set and used using the rest for training set. This rotation ensures all data
serve in validation and training sets. We assess the model’s validation
performance in each phase, and the collective findings from all phases
culminate in a comprehensive evaluation of the model’s effectiveness.

2.1 Datesets

Gene expression data for human cancer cell lines were obtained from
the GDSC (Genomics of Drug Sensitivity in Cancer) database (Yang
et al., 2012), a comprehensive repository encompassing cancer genomics
and drug sensitivity. We selected data for approximately 1000 cancer cell
lines from the GDSC. For each cell line, normalized expression levels of
17,737 genes were recorded, from which we selectively identified
496 landmark genes for our analysis. Additionally, the database
converted protein/RNA markers derived from gene expression into
numerical sequences, facilitating their analysis through computational
methods. Subsequently, these gene expression vectors were normalized to
standardize the data range, facilitating further analysis.

Our dataset of drug combinations was gathered from the
DrugComb database (Zagidullin et al., 2019) (https://drugcomb.org/
), derived from 34 diverse studies including O’NEIL (Merck) (O’Neil
et al., 2016), CLOUD and so on. Initially comprising 1,432,351 samples,
we selected triples consisting of drug A, drug B, and a cell line. We
excluded any samples that lacked complete information on drug names,
cell lines, or synergy scores to ensure the dataset contained only
complete information for analysis. Additionally, to avoid data
redundancy, we identified and removed duplicate triples.
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By integrating the GDSC and DrugComb databases at the cellular
line level, we have successfully established a balanced benchmark
dataset consisting of 25,758 unique drug-drug-cell line combinations.

2.2 Drug synergy reference scores

In this study, we define positive (synergistic) and negative
(antagonistic) samples based on four types of synergy scores: Loewe
(Loewe, 1953), Bliss (Bliss, 1939), HSA (Me, 1989), and ZIP (Yadav
et al., 2015). Synergy scores within the DrugComb database are
computed utilizing the SynergyFinder software (Ianevski et al.,
2017). Relying on a single type of synergy score for evaluation can
introduce inaccuracies. Therefore, we utilize a variety of threshold
scores (Loewe, Bliss, HSA, ZIP) for assessment purposes. A sample
is only incorporated into the training set when all four scores
unanimously classify a drug combination as either a positive or a
negative sample. This methodology is designed to provide a more
detailed and accurate assessment of drug synergy effects, thereby
enhancing the precision and stability of the predictive model.

2.3 Architecture

As shown in Figure 1, DKPE-GraphSYN is composed of the DKDE
and PE joint gene expression vector feature extraction module, and a
graph structure characterization module for drug molecular structure
features. In the dual kernel density gene expression vector module, we
introduce a DKDE and PE channel cascade algorithm for the first time
(see Algorithm 1 for details). This algorithm captures the weighted

density and spatial distribution features of gene expression vector data.
By cascadingDKDE and PE channels, we generate aDKPE image of the
gene expression vector, incorporating both DKDE and PE features,
which serves as the input for the CNN.

In the graph structure characterization module for drug molecular
features, atoms and bonds in the chemical structure of drugs are
considered as nodes and edges of the graph (Reiser et al., 2022),
respectively. The regularity features of the drug graph structure are
then extracted using aGNN. Finally, ourmodel integrates the embedding
results from the CNN and GNN, processes them through a feedforward
neural network, and outputs the predicted interaction scores between
drugs to categorize synergistic and antagonistic interactions.

2.3.1 Feature extraction of gene expression vectors
We propose a DKDE and gene PE for channel cascade

integration to comprehensively analyze gene expression vector
data, considering not only the weighted probability density of
genes but also their spatial distribution. DKDE enhances the
understanding of gene pair distributions in gene expression data
by integrating calculations from Gaussian kernel functions with
estimations of probability distributions, thereby uncovering the
weighted probability distribution of gene pairs, and reflecting
their interaction strength and spatial distribution characteristics,
PE assigns spatial coordinates as numerical codes to each grid point
in the DKDE map, to reflect the relative positional relationships
and proximal associations of gene expression data in spatial
distribution. The channel cascade integration method combines
the weighted probability density information of gene expression
obtained from DKDE with spatial PE into an enhanced feature
matrix. This facilitates convolutional neural networks in

FIGURE 1
Feature Extraction and Model Training Process of DKPE-GraphSYN. Part (A) The chemical structure of drugs A and B is extracted based on their
SMILES representation and nine chemical property classification standards. Part (B) The molecular properties and interactions of the drugs are
represented through a graph structure network usingmatrices. Part (C) Features of the gene expression vector of the cell line are extracted using a DKDE
and PE channel cascade algorithm. Part (D) A classification model is constructed by merging the drug and gene expression vector feature vectors,
utilizing a feedforward network and the LogSoftmax function to predict the synergistic effects of drugs.
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concurrently processing and evaluating the spatial distribution
characteristics and probability density of genes.

2.3.2 Dual kernel density estimation
In the preprocessing stage of dual kernel probability

estimation, representative gene expression vectors are first
extracted from the gene expression dataset, with each cell line’s
feature vector having a length of 496. Subsequently, each vector is
evenly divided into two parts, which are considered as two
variables i and j in the data matrix X. A probability
distribution matrix is then obtained through the DKDE
algorithm. In this matrix, each point represents a weighted
probability value of gene expression, indicating a certain
probability density, that reflect the interaction strength of
specific gene expression pairs. By calculating all points on an
equidistant grid, we create a DKDE map, which details the
interaction strength of gene expression pairs.

The DKDE algorithm utilizes the Kernel Density Estimation
(KDE) function to compute weighted probability densities. This
KDE function, a non-parametric statistical approach, is applied to
approximate unknown density functions. As illustrated in Figure 2,
the algorithm initially extracts columns corresponding to variables i
and j from the gene data matrix X, forming an n × 2 submatrix
X(·, [ij]). For every observed value pair (x, y) within the submatrix
X(·, [ij]), which denotes gene expression, the value of kernel
function K is determined, with the Gaussian kernel selected as K.
The formula for calculating the kernel function is shown in Eq. 1:

K u, v( ) � 1
2π

( )p exp −0.5* u2 + v2( )( ), (1)

where u � x−xi
h , v � y−yj

h , with xi and yj being the observed values
(i.e., gene samples), and h as the bandwidth. The sum of all kernel
functionK values is then divided by the product of the total count of
observations n and the bandwidth h2, to calculate the value of the
bivariate kernel density estimation fij. The calculation process is
shown in Eq. 2.

fij x, y( ) � 1
nph2

( )p∑K
x − xi

h
,
y − yj

h
( ). (2)

By repeating the above steps and for all points on an equidistant
grid, we obtain the values of the bivariate kernel density estimation
fij(x,y), which form the DKDEmap. This map reveals the interaction
strength of gene expression pairs, where fij ≠ fji indicates the
asymmetry of the estimated values, further emphasizing the
directional characteristics of interaction strength between gene pairs.

2.3.3 Grid position encoding
Grid Position Encoding forms the core component of our DKDE

and PE Channel Cascade Algorithm, designed to precisely capture
and describe the complex distribution and interrelations of gene
expression data in multidimensional space. By assigning a unique
positional encoding to each data point in the DKDEmap, we can not
only quantitatively analyze the interaction strength of gene pairs but
also reveal their spatial relevance in the cellular functional structure.

The procedural steps for applying the PE technique start with
identifying the two-dimensional coordinates (a, b) for each gene
expression data point on the DKDE map, representing its actual
physical location in the kernel density estimation map. To integrate
these spatial coordinates into themodelwith the numerical range of other

FIGURE 2
Receiver Operating Characteristic and Precision Recall Curve Comparison. (A) The left panel displays the ROC curves for different model variants,
with the AUC metric indicating the ability to distinguish between synergistic and non-synergistic drug combinations. (B) The right panel shows the PR,
with the AUPR metric reflecting the precision and recall balance of the models in predicting drug synergies. The ROC and PR curves are essential for
evaluating the performance of the ablation study models, demonstrating the impact of the DKPE and GNN components on predictive accuracy.
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model features, the coordinates are normalized and align them to values
within the [0, 1] range. The formula for normalized PE is as follows:

a, b( ) � a − amin

amax − amin
,

b − bmin

bmax − bmin
( ), (3)

where amin and bmin, respectively represent the minimum values of all
coordinates in the DKDE map, while amax and bmax represent the
maximum values of all coordinates. This normalization process
converts the interaction strength of each gene pair and their relative
position within the cell into normalized feature vectors, thereby
providing comprehensive information for model analysis. This
method is particularly effective for analyzing spatial interactions
between genes, capable of identifying certain genes that may
coparticipate in the same biological processes or signaling pathways
due to their proximal locations within the cell.

Input: Gene expression dataset, with each cell line’s

feature vector length being 496

Output: DKPE image indicating the interaction strength

and PE of gene expression pairs

Step 1: Preprocessing

For each cell line in dataset X

Extract representative gene expression vectors from the

gene expression dataset

Derive characteristic gene expression vectors from the

gene expression dataset

Evenly split each vector into two parts, defined as

variables i and j

Step 2: DKDE

Initialize an empty probability distribution matrix P

For each pair of variables (i,j)
Extract columns corresponding to variables i and j from

data matrix, forming submatrix X(·, [ij])
For each pair of observed values (x,y) in

submatrix X(·, [ij])
Calculate kernel function K(u,v), where u � x−xi

h ,v � y−yj

h

Calculate and sum kernel function values to

obtain fij(x,y)
Store fij(x,y) in the corresponding position of

probability distribution matrix P

Step 3: PE

For each point in probability distribution matrix P

Assign its position coordinates in the DK graph as PE, and

perform normalization: (a,b) � ( a−amin
amax−amin

, b−bmin
bmax−bmin

)
Step 4: Channel Concatenation

For each gene expression pair (i,j)
Create a feature matrix F containing kernel density

estimation values fij(x,y) and PE

Treat kernel density estimation values and PE as

separate data channels.

Concatenate these data channels to form an enhanced

feature matrix F, where each element contains the

kernel density estimation value fij(x,y) and the PE of

the corresponding grid point. Each feature vector

contains both kernel density estimation values and

positional information

Step 5: Generating DKPE image

Use the matplotlib plotting library to transform the

enhanced feature matrix F into a DKPE image

Utilize the results from Steps 2- Step 5 to generate a

DKPE image for each pair of gene expression variables

i and j

These DKPE image reveal the interaction strength and

spatial distribution information of gene

expression pairs

Step 6: Output

Output the DKPE image for all gene expression pairs

End

Algorithm 1. DKDE and PE Channel Concatenation Algorithm.

2.3.4 Channel cascading
Channel cascading constitutes a key component of our DKDE

and PE algorithm, aiming to effectively integrate the DKDE values
and spatial location information of gene expression data. Initially,
the algorithm generates a DKDE map through dual kernel density
estimation, focusing on each gene expression variable pair i and, to
precisely delineate the interaction intensity between gene expression
pairs. During the creation of the DKDE map, each gene expression
point undergoes normalized coordinate encoding, converting the
position information of each point into standardized values. This
normalization process follows Formula 3. In the channel cascading
stage, the kernel density estimation values fij(x, y) for each pair of
gene expressions and the normalized positional encoding are
considered as independent data channels. Subsequently, through
a cascading merging strategy, these two data channels are combined
to create a more enriched data layer. The merging operation is
conducted on the channel dimension, aligning the kernel density
estimation values and PE data side by side, facilitating a
multidimensional integration of data.

The final enhanced feature matrix integrates the KDE values
from the DKDE map with the normalized PE of each grid point.
This improved feature matrix serves as the input to the CNN,
aiming to intricately map out the complex spatial distribution
characteristics of gene expression data. This innovative
approach, enhances the data representation capability and
provided richer information for predictive analysis, thereby
significantly improving the model’s performance in gene
expression data analysis.

2.3.5 DKPE image feature expression network
The gene expression DKPE maps generated based on the a

forementioned algorithm will serve as inputs for the DKPE Image
Feature Expression Network. This architecture, based on a CNN
framework, is specifically designed for processing and analyzing
DKPE Images that integrate DKDE and the corresponding spatial
positional encoding. The DKPE Image Feature Expression Network
utilizes a ResNet-54 architecture (He et al., 2016), comprising a
backbone network and five stage wise ResNet modules, each stage
consisting of 3, 4, 6, 3, and 3 residual units respectively, and each
stage is equipped with multiple fully connected layers to enhance the
recognition and learning capabilities for complex gene expression
patterns.Within the ResNet-54 architecture, the first ResNet module
of each stage is responsible for feature map down-sampling in terms
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of spatial dimensions, gradually enhancing the network’s feature
extraction and recognition capabilities.

To enhance computational efficiency and optimize
performance, 1 × 1 convolution kernels were implemented at
both the input and output phases of each feature extraction layer
within the CNN, facilitating channel down-sampling and up-
sampling. This approach significantly lowers computational
demands while maintaining the spatial resolution of the feature
maps. Additionally, to mitigate the problem of neuron inactivity that
can arise from using the conventional ReLU activation function, the
Parametric Rectified Linear Unit (PReLU) was adopted as the
activation function. The introduction of this function allows the
model to adaptively learn the parameters of the negative slope,
thereby enhancing both themodel’s adaptability and robustness (Xie
et al., 2017).

2.3.6 Feature extraction of drug chemical structure
To capture the graph structural features of drug molecules and

embed node representations, we designed a module for extracting
graphical representations of drug molecules. This module utilizes
GNN to extract embedded vectors that include information about
the nodes and their neighborhoods, thereby learning the structural
features of drug molecules and revealing the interrelationships
between drugs. In processing the chemical structures of drugs
from the DrugComb database, we adopted the SMILES notation
and used the RDKit (Landrum, 2013) cheminformatics software

package to extract features of each atom, as depicted in Figure 3.
These features include encompasses atomic number, chirality, atom
degree (counting hydrogen atoms), formal charge, total hydrogen
atom count, number of free electrons, hybridization state,
aromaticity, and whether the atom is part of a ring. Considering
these nine types of atomic structural features, for the R atoms
contained in each drug’s chemical structure, we constructed a
feature matrix of dimensions R × 9, where R is the number of
atoms (nodes) in the chemical structure graph. Moreover, for each
drug, a binary adjacency matrix A with dimensions R × R was
developed to represent the chemical compounds’ structural
details. In this matrix, if a chemical bond exists between two
atoms, the respective element in the matrix is assigned a value of
1; if there is no bond, it is set to 0. For drugs with a chemical structure
containing R atoms, a feature matrix M of dimensions R × 9 was
constructed as shown in Eq. 4:

M � mij[ ]
R×9( ), (4)

where mij is the j − th feature value of the i − th atom.
A binary adjacency matrix A of dimensions R × R was

constructed:

A � aij[ ]
R×R( ), (5)

where aij � 1 indicates that a bond is formed between the i − th and
j − th atoms, otherwise aij � 0.

FIGURE 3
Nine Classification Standards for Drug Atom Characterization. This figure presents the nine key attributes used to classify the atoms within a drug’s
chemical structure.
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2.3.7 Graph neural network model
Considering the chemical composition of drugs, we establish a

drug graph G � (V, E) where the drug atoms depicted as nodes
V � 1, . . . , A{ }, and the connections between these atoms illustrated
as edges E ⊆ V × V. Similar to feedforward networks, GNN consists
of multiple layers, where L denotes the “depth” of the network.
Particularly, every layer l ∈ 1, . . . , L{ } signifies the l − hop
neighborhood of a node (atom), representing the subgraph
comprising all atoms accessible within l steps.

Node Representation: Each node (atom) i ∈ V is initially
represented by a vector h(0)i ∈ R9. The neighbors of node i are
defined as Ni � j ∈ V | (j, i) ∈ E{ }, which includes all nodes j that
are connected to node i.The representation of node i at layer (l + 1),
denoted as h(l+1)i , is obtained by aggregating the representations of
its neighboring nodes. Therefore, each node’s representation is
updated based on its neighbors’ representations at each layer.
The update process is shown in Eq. 6.

h l+1( )
i � ϕ ξ h l( )

j | j ∈ Ni{ }( )( ), (6)

where ϕ and ξ are differentiable functions, and ξ is permutation
invariant (i.e., typically invariant to order).

We utilize the Graph Attention Network version 2 (GATv2)
operator (Brody et al., 2021) to update each hi (see Eq. 7). Compared
to the traditional Graph Attention Network (GAT) (Velickovic et al.,
2017), GATv2 exhibits two major advantages:

• The aggregation ξ of neighbor j ∈ Ni is based on a weighted
average of learned weights using an attention mechanism,
rather than treating all neighbors as equally important.

• Each node can dynamically focus on any other node,
implementing a flexible attention mechanism, in contrast to
the static attention mechanism of the original GAT.

h l+1( )
i � ϕ αi,iΘh l( )

i + ∑
j∈N i

αi,jΘh l( )
j

⎛⎝ ⎞⎠. (7)

The attention coefficient αi,j is determined through a distinct
process designed to gauge the relationship between two feature
vectors. Within the attention framework, this coefficient is
derived from the input feature vectors to identify the focal
point. Various techniques can be employed to compute the
attention coefficient, with the dot product or inner product
frequently used to assess the similarity between two feature
vectors. By computing and subsequently normalizing the dot
product or inner product of feature vectors, a normalized
attention weight is achieved.

By calculating the attention coefficients, we can determine which
feature vectors or information are more important in the given
input, thereby determining the allocation of attention or resources
for the model’s subsequent processing steps. The attention
coefficient αi,j is obtained through a specific calculation method
aimed at quantifying the correlation between two feature vectors.
This process involves examining the input feature vectors to identify
the focal point of attention. A frequently utilized technique for
computing attention coefficients employs dot products or inner
products for evaluating the resemblance among feature vectors. By
normalizing these dot or inner products, we produce a uniform

weight that signifies the significance of each feature vector.
Therefore, the calculation of attention coefficients allows us to
pinpoint key feature vectors or information in the input, and
accordingly allocate attention and resources appropriately in
further processing of the model. The attention coefficient αi,j is
calculated as shown in Eq. 8:

αi,j �
exp auLeakyReLU Θ h l( )

i ‖ h l( )
j[ ]( )( )

∑k∈N i∪ i{ } exp auLeakyReLU Θ h l( )
i ‖ h l( )

k[ ]( )( ), (8)

a and Θ represent trainable parameters, while ϕ is the ELU
(Exponential Linear Unit) activation function. Unlike the
Rectified Linear Unit (ReLU), the ELU activation function
addresses the limitation of ReLU producing zero for negative
inputs. ELU is defined as shown in Eq. 9:

ϕ x( ) � ap exp x( ) − 1( ), x< 0
x, x≥ 0

{ (9)

where a is a constant, typically positive. The ELU function
exhibits nonlinear characteristics when x< 0 and allows for
negative outputs, thereby showing higher robustness compared
to ReLU. In neural networks, the learned parameters a and ϕ are
optimized through training data, with the aim of enhancing the
network’s adaptability to training samples. The ELU activation
function can be applied in both hidden and output layers,
providing the network with greater representational power
and activation range.

Graph representation method: This involves aggregating node
representations to generate graph representations at a specific level.
Specifically, by aggregating the updated node representations h(l)i

(using global average pooling), a graph representation g(l) at level l
is generated:

g l( ) � 1
A
∑A
n�1

h l( )
i . (10)

The GNN model utilizes learnable parameters of the global
context vector c to calculate the attention weights for each pair of
graph representations. The weighted average z of the graph
representations g(0), . . . , g(L){ } is ultimately calculated. This
approach enables the model to consider global information while
calculating graph representations, thereby generating more
comprehensive and information rich graph representations.

ψl � exp score c, gl( )( )∑L
j�1 exp score c, gj( )( ), (11)

score c, gl( ) � cugl��
d′

√ , (12)

z � ∑L
l�1

ψlgl. (13)

Among them, g(l): the graph representation at layer l, which is
the global average of all updated node representations h(l)i ; A: the
number of nodes in the graph; h(l)i : the representation of the i − th
node in the l − th layer; “L”: the total number of layers in
the graph neural network, which is a hyperparameter; ψl :the
attention weights for the graph representation at layer l; c: the
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global context vector, with learnable parameters; score(c, gl): the
similarity score between the global context vector c and the graph
representation g(l) at layer l; d′: the embedding dimension of the
graph representation g(l); z: the final weighted average graph
representation, obtained through the calculation of graph
representations and corresponding attention weights across
all layers.

Eq. 10 utilizes the global average pooling method to integrate all
node representations at layer l, generating the graph representation
g(l) for that layer. Eq. 11 calculates the attention weights ψl for each
layer’s graph representation using the softmax function, ensuring
the sum of attention weights across all layers equal. Eq. 12 defines a
scoring function to compute the similarity between the global
context vector and each layer’s graph representation, using a
normalized dot product method. Finally, Eq. 13 determines the
final graph representation z by calculating the weighted sum of all
layers’ graph representations and their corresponding attention
weights. Within the input sample pairs, independent
representation vectors for drugs, denoted as za and zb, are
determined for drug A and drug B, respectively.

2.3.8 Classifier model
In our classification prediction module, the gene feature

vector ze obtained from the dual kernel density gene
expression module is first integrated with the feature vectors
za and zb of drugs A and B, respectively, processed by the graph
structure representation module. The combined feature vector is
then input into a feedforward neural network (FFNN) with two
hidden layers. The FFNN employs the ReLU activation function
and the dropout method for regularization. The output layer
generates a two element vectors, which, after being processed by
the LogSoftmax function, is used to output the predicted drug
interaction score for the classification of synergistic and
antagonistic effects.

3 Results

3.1 Experiment

In our study, we employed a stringent 5-fold cross validation
approach to assess our model’s robustness. The entire dataset is
initially divided into five equal segments or folds. Each fold is
reserved as the test set and the remaining four folds are
combined to form the training set.

To validate the efficacy of the proposed DKPE-GraphSYN
approach, we conducted comparisons with various benchmark
models, including the well-known models DeepSynergy and
GNN-GAT. The outcomes are displayed in Figure 4, with a focus
on these typical benchmarks. Our model demonstrated the highest
performance on both metrics, achieving an Area Under the
Precision Recall Curve (AUPR) of 0.969 and an Area Under the
Curve (AUC) of 0.976, representing an 11.5% improvement in
AUPR over the benchmark model DeepSynergy while GNN-GAT
also showed higher performance in AUC, it was lower than our
model in AUPR. Among traditional machine learning algorithms,
Gradient Boosting (Friedman, 2001) and K Nearest Neighbors

(KNN) (Guo et al., 2003) performed similarly in AUC but were
both lower than the DKPE-GraphSYN model. Based on these
results, we can conclude that DKPE-GraphSYN performs better
in predicting drug synergy effects compared to other algorithms.
This conclusion is derived from aggregating the analyses of five
separate experiments, affirming the dependability and uniformity
of the findings. The comparison outcomes, not only validate
the DKPE-GraphSYN model’s effectiveness in foreseeing drug
synergistic effects but also highlight the noteworthy enhancement
in performance due to the DKDE and position encoding channel
cascading technique’s capability in managing intricate
biological datasets.

The foundation of our prediction model lies in applying a
network for regression analysis on the synergy scores of various
drug combinations, leading to the calculation of an average
synergy score. This calculated score is compared to a set
threshold to ascertain if the drug interaction exhibits synergy
or antagonism, thereby classifying the outcome. Essentially,
our methodology transitions from regression to classification.
Therefore, we utilize a combination of classification indicators,
AUC and accuracy (ACC), along with the regression indicator
Pearson Correlation Coefficient (PCC), to conduct a thorough
mixed method evaluation. This approach ensures a more
comprehensive understanding of our model’s efficacy. The
following table presents the comparison results of our model
against other Deep Learning (DL) techniques and four Machine
Learning (ML) strategies on regression and classification tasks.
As shown in Table 1, our model outperformed others under the
AUC metric, followed by AudnnSynergy (Zhang et al., 2021) and
DeepSynergy. Under the ACC metric, the accuracy of most
methods was very close, around 0.92 or 0.93, showing similar
in accuracy between DL and ML methods. Under the PCC
metric, DKPE-GraphSYN achieved a value of 0.84, meaning
that the predicted values of our model are highly consistent
with the actual drug synergy scores, demonstrating a high degree
of linear correlation. Based on these results, we infer that DL
methods may be superior to ML methods in drug synergy
prediction tasks, with DKPE-GraphSYN, particularly excelling
in both AUC and PCC metrics. This superiority could be
attributed to the DL methods’ capacity to manage complex
and high dimensional data, along with the unique structural
and algorithmic design of our model.

3.2 Experimental parameter settings

To maximize the performance of our model, extensive
parameter tuning was conducted. Table 2 details main
hyperparameter configurations and their impact on model
performance. We set the batch size (batch_size) to 300 to
balance computational efficiency and memory usage; We chose
100 epochs (num_epochs) to ensure comprehensive training
and set the embedding layer dimension (emb_dim) at 100 to
effectively capture features representations. Our model employs
GATv2 as the graph neural network (gnn_type) and uses a
3 layer network (num_layer) to enhance the model’s
learning capacity.
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3.3 Ablation study

The foundation of our prediction model lies in applying a
network for regression analysis on the synergy scores of various
drug combinations, leading to the calculation of an average synergy
score. This calculated score is then compared to a set threshold to
determine if the drug interaction exhibits synergy or antagonism,
thereby classifying the outcome. Essentially, our methodology
transitions from regression to classification. Therefore, we utilize

a blend of classification indicators, AUC, ACC and AUPR, alongside
the regression indicator Root Mean Square Error (RMSE), PCC.
This comprehensive approach ensures a more comprehensive
understanding of our model’s efficacy.

In our study, we evaluated the roles of DKPE and GNN in
drug combination synergy prediction models through a series of
ablation experiments. Specifically, we examined four model
variants: the complete model (both DKPE and GNN enabled),
DKPE only, GNN only, and neither enabled. We assessed

FIGURE 4
Performance evaluation of algorithms for predicting drug synergy. The bar chart compares the AUC and AUPR metrics across various algorithms
used for predicting drug synergy. Each algorithm’s performance is illustrated by a pair of bars, one for AUC and the other for AUPR, highlighting their
effectiveness in synergy prediction.

TABLE 1 Results of method comparison on the regression task and classification task.

Type Method AUC ACC PCC RMSE

DL Ours 0.97 ± 0.01 0.92 ± 0.04 0.83 ± 0.01 15.03 ± 1.21

DL DeepSynergy 0.90 ± 0.03 0.92 ± 0.03 0.73 ± 0.04 15.91 ± 1.56

DL AudnnSynergy 0.91 ± 0.02 0.93 ± 0.01 0.74 ± 0.03 15.46 ± 1.44

ML Elastic Net (Zou and Hastie, 2005) 0.78 ± 0.04 0.92 ± 0.01 0.45 ± 0.02 20.41 ± 1.30

ML SVM (Cortes and Vapnik, 1995) 0.88 ± 0.02 0.93 ± 0.01 0.63 ± 0.02 19.92 ± 1.28

ML Random Forest (Li et al., 2017; Li et al., 2018) 0.87 ± 0.02 0.93 ± 0.01 0.64 ± 0.03 17.65 ± 1.13

ML XGBoost (Celebi et al., 2019) 0.87 ± 0.02 0.93 ± 0.01 0.66 ± 0.02 17.16 ± 1.31

TABLE 2 Summary of training hyperparameters.

Hyperparameter name Value Description

batch_size 300 Number of graphs per training batch

num_epochs 100 Number of training epochs

emb_dim 100 Dimension of the embedding layer

gnn_type GATv2 Type of Graph Neural Network

num_layer 3 Number of layers in the GNN
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algorithm performance using the following metrics: AUPR, AUC,
RMSE, PCC, and ACC. The results of the ablation study are
shown in Table 3.

As depicted in Figure 5, the complete model demonstrated
excellent predictive performance, achieving with an AUC of
0.976, an AUPR of 0.969, a PCC of 0.843, and an ACC of 0.923.
These findings demonstrate that the effective integration of DKPE
and GNN significantly enhance performance in synergy prediction.
These results indicate that when the DKPE and GNN components
are combined, the model is able to predict the synergistic effects of
drug combinations with high accuracy.

When the GNN component was removed and only DKPE was
used, we observed a decline across all performance metrics. The
AUC decreased to 0.912, AUPR to 0.893, PCC fell to 0.653, and ACC
dropped to 0.830. These results highlight the importance of GNN in
capturing the complex interactions between drug combinations.

Conversely, retaining GNN while removing DKPE resulted in a
decrease in AUC and AUPR to 0.880 and 0.847, respectively, a
reduction in PCC to 0.609, with ACC at 0.809. This indicates that the
DKPE component also plays a crucial role in enhancing the model’s
predictive accuracy.

In the baseline model, where both KDE and GNN were not
enabled, all performance metrics further decreased: AUC to 0.860,
AUPR to 0.821, PCC dropped to 0.540, and ACC to 0.770. This
reinforces the substantial impact of both KDE and GNN elements in
enhancing the model’s overall predictive accuracy.

DKDE and PE are the key components of our algorithm,
collectively referred to as DKPE. DKDE utilizes a Gaussian
kernel function for weighted probability density calculation,
smoothing gene expression data and reducing the impact of
noise. Through DKDE, we vividly depict the interaction
patterns and probability strength between genes. PE encodes
the spatial distribution of gene expression features, aiding in
understanding the relative positions of genes within a vector.

This is crucial for interpreting gene interactions as gene effects are
often influenced by their context and relative positions within the
genome. PE enriches the data representation, providing a more
nuanced analytical perspective. In summary, DKPE provides
comprehensive and accurate analysis of gene expression,
captures subtle features in gene expression data, and promotes
a deep understanding of complex biological and chemical
interactions.

Furthermore, we plotted Receiver Operating Characteristic
(ROC) curves and Precision Recall (PR) curves to visually
demonstrate the results of the ablation experiment.

3.4 Case study

This section explores the impact of key network
hyperparameters on the performance of our proposed DKPE-
GraphSYN model. Figure 6 illustrates the variations in the AUC,
AUPR, and ACC performance metrics under various parameter
settings. Figure 6A shows changes in performance as the model’s
number of layers increases from 2 to 5. The results indicate that
performance improves with additional layers up to a threshold,
beyond which performance gains diminish and may even decrease
due to overfitting or unnecessary noise; Figure 6B depicts how
varying the embedding dimension impacts performance.
Increased dimensions initially enhance feature learning and
model performance, but beyond a certain point, they may reduce
performance due to overfitting to noise in the training data.
Figure 6C highlights performance changes across different
training epochs. Optimal results were observed at 100 epochs
(AUC: 0.97, AUPR: 0.96, ACC: 0.92), with performance declining
at 120 epochs. Therefore, 100 epochs were established as the ideal
training duration. Figure 6D explores how different batch sizes
affect the three key metrics. A batch size of 300 was optimal,
balancing computational efficiency and training robustness while
minimizing the risk of overfitting and promoting rapid model
convergence.

Additionally, we also studied the impact of different GNN
architectures on model performance, focusing on the selection
process between GATv2, GAT and GCN. GCN is a commonly
used graph neural network model that propagates information by
aggregating the features of neighbor nodes on each node.
Compared with GCN, GATv2, an improved version of GCN,
introduces dynamic attention coefficients, allowing the model to

TABLE 3 Ablation study results for DKPE-GraphSYN.

DKPE GNN AUC AUPR PCC ACC

√ √ 0.976 0.969 0.843 0.923

√ × 0.912 0.893 0.653 0.830

× √ 0.880 0.847 0.609 0.809

× × 0.860 0.821 0.540 0.770

FIGURE 5
Illustration of the DKDE and PE Channel Concatenation Algorithm. This figure depicts the workflow from cell DNA to the creation of a DKPE image.
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flexibly adjust the edge weights based on the current input
features. As shown in Figure 7, it can be observed from our
experimental results that GATv2 exhibits better performance and
stability compared to GAT and GCN in processing drug graph
data. By dynamically calculating attention coefficients,
GATv2 can better capture the dependencies between drug
molecules and adjust the weight of edges based on current
input features, thereby adapting more effectively to various
data scenarios during the learning process. Our experimental
results show that GATv2 can provide higher accuracy and more
stable performance when processing drug graph data, in contrast
to GCN, which may be limited by fixed edge weights in the graph
structure in some cases. Overall, the performance advantage of
GATv2 in processing drug graph data is mainly reflected in its
ability to dynamically adjust the weight of edges to better capture
the relationship between drug molecules and maintain stable
performance under different input features.

Figure 8 illustrates the outcomes of employing t-SNE
(t-distributed Stochastic Neighbor Embedding) for visualizing
various cancer cell datasets. t-SNE is a in machine learning
technique that reduces the dimensionality of high dimensional
data for easier visualization. In the depicted figures, each dot

represents a sample, with the color indicating the sample’s
classification. The figure on the left shows the t-SNE visualization
for the “Liver Dataset,” while the figure on the right demonstrates it
for the “Breast Dataset.” In both visualizations, malignant samples
are marked in red, and benign samples are shown in blue.

We can clearly see that blue and red form two distinct clusters,
indicating that our model can significantly differentiate between
benign andmalignant samples in a two-dimensional space. Despite
the complexity of sample characteristics, our model captures the
key features distinguishing the two types of samples, which is
beneficial for subsequent calculation and prediction of
synergy scores.

3.5 Evaluation on independent test set

To evaluate the generalization capabilities of our model, we
conducted tests on a distinct, independent dataset: the NCI
ALMANAC. Developed by the National Cancer Institute, this
extensive screening resource is designed to identify anticancer
drug combinations with enhanced therapeutic activity. Our
independent testing involved 4,842 drug combinations derived

FIGURE 6
Variations in DKPE-GraphSYN Performance by Different Hyperparameters. (A) Scores by number layer; (B) Scores by embedding dimension; (C)
Scores by number epochs; (D) Scores by batch size.
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from 100 drugs and 46 cell lines, amounting to a total of
215,946 entries.

Our model demonstrated exceptional performance in the
independent tests, as evidenced by several key performance
indicators. The AUC and the AUPR reached 0.962 and 0.957,
respectively, indicating the model’s high accuracy in
distinguishing drug synergistic effects. Additionally, the
model achieved remarkable scores in ACC, F1 score, and
recall, with values of 0.907, 0.909, and 0.925, respectively,
further affirming its superior ability to accurately identify
drug synergy.

In summary, these evaluation results highlight our model’s
outstanding performance on new datasets and validate its robust

generalization and interpretative power. This indicated that the
model is not only effective on familiar data but also adapts well
to and accurately recognizes entirely new and unseen data,
demonstrating its potential for broad applicability in real world
applications.

4 Discussion

The development and validation of the DKPE-GraphSYN
model represent a significant advancement in the field of drug
synergy effect prediction. This model’s innovative approach,
which integrates DKDE and PE with graph neural networks,
offers a nuanced method for capturing the complex interactions
and structural features of drug molecules. The methodology
distinguishes itself from existing models by providing a more
detailed representation of gene expression data and drug
molecular structures, addressing limitations highlighted in
previous studies. The experimental results, demonstrate
superior performance metrics with an AUPR of 0.969 and
AUC of 0.976, compared to benchmark models. These
findings validate the effectiveness of DKPE-GraphSYN in
predicting drug combination synergy effects. These results
highlight not only a testament to the model’s accuracy but
also its reliability, marking a notable improvement over
traditional and contemporary models like DeepSynergy and
GNN-GAT. Such advancements underscore the potential of
integrating sophisticated computational approaches with
biological datasets to enhance predictive capabilities in drug
discovery. The model’s success in accurately predicting drug
synergy effects aligns with the growing recognition of the
importance of computational models in personalized medicine
and treatment efficacy enhancement. By leveraging the spatial

FIGURE 7
Comparative performance of different GNN models.

FIGURE 8
t-SNE Visualization of Cancer Cell Datasets. (A) The left panel presents a t-SNE visualization of the “Liver Dataset,” where each dot represents a
sample, with malignant samples colored in red and benign samples in blue, forming two distinct clusters that demonstrate the model’s ability to
differentiate between the two sample types in a two-dimensional space. (B) The right panel displays the t-SNE visualization for the “Breast Dataset,”
similarly using red to denote malignant samples and blue for benign ones, clearly separating the two into discernible clusters. This visualization
method highlights the model’s capability to identify and capture key features that distinguish between benign andmalignant samples, which is critical for
the subsequent calculation and prediction of synergy scores.
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distribution characteristics and weighted probability densities of
gene expression alongside the structural regularity information
of drugs, DKPE-GraphSYN provides a holistic view of the
potential interactions between drug molecules. This
comprehensive analysis is crucial for unraveling the
complexities of drug interactions, offering a promising
auxiliary method for clinical medication administration and
new drug development.

Looking ahead, the implications of the DKPE-GraphSYN
model extend beyond the current study. The model opens up
new avenues for exploring combination therapies, particularly in
cancer treatment, where the synergy between drugs can
significantly impact therapeutic outcomes. The ability to
accurately predict drug combinations that will exhibit
synergistic effects can greatly aid in designing of more
effective treatment regimens, potentially reducing side effects
and improving patient quality of life. Furthermore, the insights
gained from the DKPE-GraphSYN model can inform future
research directions, such as the identifying of novel drug
targets and the exploring uncharted pathways in drug
interactions. Applying the model to a broader array of
datasets and clinical scenarios could further validate its
efficacy and adaptability, paving the way for its integration
into clinical decision support systems. In conclusion, the
DKPE-GraphSYN model not only exemplifies the power of
advanced computational techniques in drug synergy prediction
but also highlights the critical role of such models in the future of
drug discovery and development. As we continue to refine and
expand upon this model, its contribution to accelerating the
discovery of drug combination therapies and enhancing
patient treatment outcomes cannot be overstated. The
continued exploration and development of such models are
essential for advancing our understanding of drug interactions
and their implications for personalized medicine.

5 Conclusion

The DKPE-GraphSYN model introduced in this study offers a
pioneering approach to predicting the synergy effects of anticancer
drugs. It analyzes the spatial distribution characteristics and
weighted probability densities of gene expression vector data,
while also exploring into the structured regularity and potential
relationships among drug molecules specific to cancer therapy. By
leveraging DKDE and PE, the DKPE-GraphSYN model effectively
integrates of information at the channel level. The employment
of graph neural networks for depicting drug molecules
further enhances its capability to discern structural attributes of
anticancer drugs. Experimental results show that our model
substantially surpasses existing methods in forecasting the
synergy effects of drug combinations, achieving an AUPR of
0.969 and an AUC of 0.976 on an extensive dataset of drug and
cell line combinations for cancer treatment. This marks a substantial
leap in the accuracy and reliability of cancer drug synergy prediction.

The DKPE-GraphSYNmodel not only enhances the precision in
predicting anticancer drug synergy effects but also provides critical
insights for clinical decision making and novel anticancer drug
development. Moving forward, the continued refinement and

application of the DKPE-GraphSYN model are expected to
expedite the discovery of effective anticancer drug combinations,
significantly improving treatment options for patients.
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