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As genomic selection emerges as a promising breeding method for both plants
and animals, numerous methods have been introduced and applied to various
real and simulated data sets. Research suggests that no single method is
universally better than others; rather, performance is highly dependent on the
characteristics of the data and the nature of the prediction task. This implies that
each method has its strengths and weaknesses. In this study, we exploit this
notion and propose a different approach. Rather than comparing multiple
methods to determine the best one for a particular study, we advocate
combining multiple methods to achieve better performance than each
method in isolation. In pursuit of this goal, we introduce and develop a
computational method of the stacked generalization within ensemble
methods. In this method, the meta-model merges predictions from multiple
base models to achieve improved performance. We applied this method to plant
and animal data and compared its performance with currently available methods
using standard performance metrics. We found that the proposed method
yielded a lower or comparable mean squared error in predicting phenotypes
compared to the current methods. In addition, the proposed method showed
greater resistance to overfitting compared to the current methods. Further
analysis included statistical hypothesis testing, which showed that the
proposed method outperformed or matched the current methods. In
summary, the proposed stacked generalization integrates currently available
methods to achieve stable and better performance. In this context, our study
provides general recommendations for effective practices in genomic selection.

KEYWORDS

stacked generalization, ensemble method, base models, meta-model, genomic
selection, non-inferiority testing, overfitting

1 Introduction

Genomic selection (GS), first introduced in Ref. (Meuwissen et al., 2001), is a
methodology for improving selection and breeding processes for plants and animals. It
involves the identification of patterns or associations between genetic markers and observed
trait values. GS uses genome-wide markers, typically single nucleotide polymorphisms
(SNPs), extracted from samples to compute genomic estimated breeding values for a
particular trait of interest. In GS, the data set containing observable genotypic and
phenotypic information is used to train a model (i.e., estimate the model parameters)
and predict the breeding value or related quantities based on the trained model and the
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genotypic information obtained from the markers. By using GS,
breeders can assess the likelihood that samples will transmit
desirable traits to their progeny. As a result, GS is proving to be
a valuable tool for the genetic improvement of plants and animals by
increasing the selection accuracy for specific traits, such as yield and
disease resistance.

Various statistical and machine learning methods are available
for GS (de Los Campos et al., 2013; Crossa et al., 2017). These
methods can be broadly categorized into linear and nonlinear
models (Howard et al., 2014). Nonlinear models, such as support
vector machines, artificial neural networks, and random forests, fall
under the machine learning methods within GS (Jubair and
Domaratzki, 2023). On the other hand, linear models can be
further subdivided into linear mixed models and Bayesian
models. Bayesian models such as BayesA and BayesB (Meuwissen
et al., 2001) are representative examples, while linear mixed models
include rrBLUP (Endelman, 2011) and gBLUP (Clark and van der
Werf, 2013). The linear models differ primarily in their assumptions
about the distribution and variance of the marker effects.

Numerous efforts have been made to evaluate the performance
of different models, especially within the linear model domain,
under different scenarios. Comparative analyses between gBLUP
and Bayesian models have been conducted using both real and
simulated data sets (Haile et al., 2020; Hong et al., 2020; Nsibi et al.,
2020; Zhu et al., 2021). In addition, evaluations of other BLUP
variants, such as cBLUP and sBLUP, have been conducted alongside
Bayesian models on various types of data (Meher et al., 2022). A
study comparing the performance of rrBLUP with BayesB and
Bayesian Lasso (or BayesL) has been conducted on various traits
of wheat, barley, and maize (Heslot et al., 2012). Beyond model
comparisons, the cross-validation method has been proposed to
measure differences in model accuracy (Schrauf et al., 2021).
However, it has been observed that no single model is universally
superior under different circumstances (Pérez and de Los Campos,
2014). Instead, the effectiveness of models depends on the specific
characteristics of the data and the nature of the prediction task at
hand (Azodi et al., 2019). This underscores the challenge of
conclusively determining which model consistently outperforms
others, and points to the need for extensive validation in
different contexts.

Selecting an appropriate method for GS is challenging due to the
wide variety of models available. The selection process is complex
and influenced by many factors, including the characteristics of the
population being studied and the complexity of the traits of interest.
Determining an appropriate method often involves a trial-and-error
approach, as the suitability of a method may vary depending on the
context and data availability. Therefore, making an informed choice
requires a thoughtful and iterative strategy, coupled with a deep
understanding of the problem. This process becomes particularly
critical when there is a lack of theoretical and/or experimental
confidence in the chosen method.

In this study, we propose a computational method that is
conceptually different from conventional methods. Instead of
selecting an appropriate method through a comparative
performance analysis, we advocate an integration strategy. This
involves combining multiple models to exploit the strengths of
each, leading to improved and more robust results. This
approach follows the principles of ensemble methods in machine

learning (Rokach, 2010; Mienye and Sun, 2022). By leveraging the
collective knowledge of multiple models, ensemble methods become
powerful tools for improving performance, especially when
individual models have distinct strengths and weaknesses. As a
result, ensemble methods have the potential to deliver superior
performance compared to individual models, albeit at the cost of
increased computational time.

As our chosen ensemble method, we implemented the stacked
generalization (Wolpert, 1992), commonly known as stacking.
Stacking involves the integration of multiple models, called base
models, along with an additional model, called the meta-model. The
base models generate predictions for the data, and the meta-model is
tasked with learning how to optimally combine these predictions to
produce the final predictions. We selected six base models derived
from the linear mixed and Bayesian models widely used in GS. To
effectively combine the results of the base models, we used a neural
network of a multi-layer perceptron as our meta-model. With this,
we investigated the possibility of stacking as a method for GS.

The proposed stacking was applied to open-access resources of
rice, maize, barley, mice, and millet. Our analysis involved
comparing the performance of the stacking model with that of its
constituent base models. To compare the performance of the
models, we evaluated quantities such as overfitting and mean
squared error (MSE) between observed and predicted phenotype
values, which served as a measure of the robustness and prediction
accuracy of the models. We also performed the hypothesis tests for
prediction accuracy between the proposed model and each base
model. Our results showed that the proposed model generally
outperformed the base models in different scenarios. As another
advantage of the proposed model, we highlighted its effectiveness in
reducing overfitting. From these results, we conclude that the
proposed model emerges as a promising tool for efficient
practices in GS.

2 Materials and methods

2.1 Data acquisition and preparation

We used the open resource of genomic data sets from different
species: rice, barley, maize, mice, and millet. The rice data set, the
44K_SNP (Zhao et al., 2011), consists of SNP genotype and
phenotype information of rice accessions. It consists of
36,901 SNPs in 413 different rice accessions, each phenotyped for
34 traits, and can be downloaded from Ref. (Zhao, 2024). under the
title “44K SNP set”. We used 30 quantitative (or numerical) traits.
We pre-processed the data set by eliminating SNPs and accessions
with missing genotype and/or phenotype values. The pre-processed
data consists of 3,686 SNPs from 198 accessions with 30 quantitative
traits for each accession. A list of the 30 quantitative traits with their
abbreviations is provided in Supplementary Table S1.

The barley data set consists of 7,864 SNPs in 310 samples, each
phenotyped for eight traits (Nielsen et al., 2016). The data are
available at Ref. (Nielsen, 2024). We also pre-processed the data
set by eliminating SNPs and accessions with missing genotype and/
or phenotype values. The pre-processed data consists of 5,160 SNPs
from 307 accessions. A list of eight quantitative traits with their
abbreviations is provided in Supplementary Table S2.
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The maize data set consists of 83,153,144 SNPs in 282 samples,
each phenotyped for 11 traits (Peiffer et al., 2014). The data can be
downloaded from https://www.panzea.org/phenotypes under the
title “Maize 282 association panel phenotypes”. We pre-processed
the data set by eliminating SNPs and accessions with missing
genotype and/or phenotype values. The pre-processed data
consists of 45,438 SNPs from 262 accessions. A list of the
11 quantitative traits with their abbreviations is provided in
Supplementary Table S3.

The mouse data set consists of 10,346 SNPs in 1,814 samples,
each phenotyped for 25 traits (Pérez and de Los Campos, 2014). It
can be downloaded at Ref. (Pérez, 2024). We pre-processed the data
set by eliminating samples with missing phenotype values, resulting
in 1,181 samples. We also eliminated five traits that had too many
missing phenotype values and used 20 traits. A list of the
20 quantitative traits with their abbreviations is provided in
Supplementary Table S4.

The millet data set consists of 161,562 SNPs in 827 samples, each
phenotyped for 12 traits (Wang et al., 2022). It can be downloaded at
Ref. (CropGS-Hub, 2024). We pre-processed the data set by
eliminating samples with missing phenotype values, resulting in
13,807 SNPs from 827 samples. A list of the 12 quantitative traits
with their abbreviations is provided in Supplementary Table S5.

2.2 Base models and meta-model

We selected the base models from linear parametric models
representing phenotypes with genetic markers. For a given set of n
samples and p markers, the linear model for the ith phenotype yi is
expressed as:

yi � μ +∑p
j�1

Zijβj + ei, where i � 1, 2, . . . , n and j � 1, 2, . . . , p.

(1)
Here, μ is the overall mean, Zij is a n × p genotype matrix
(e.g., −1, 0, 1 for aa, Aa, AA genotypes, respectively), and βj is
the jth marker effect. In addition, the residual ei is assumed to
follow ei ~ N(0, σ2e).

In GS, a common challenge arises when the number of markers
p (e.g., the number of SNPs) exceeds the sample size n, known as the
“small n, big p” problem. In this n<p scenario, the maximum
likelihood estimator for β � {β1, β2, . . . , βp} in Eq. 1 is neither
unique nor unbiased. Consequently, the maximum likelihood
approach is inappropriate for estimating β. To overcome this, an
alternative method introduces an additional assumption regarding
marker effects. Two common approaches are best linear unbiased
prediction (BLUP) and Bayesian models. Both methods assume
probability distributions for marker effects but differ in the
interpretation of probability and the approach to parameter
inference (Gianola, 2013).

Bayesian models introduce regularization by incorporating
appropriate priors that impose constraints on marker sizes. These
models assume a prior distribution for marker effects, and different
choices of priors lead to different Bayesian models. Once a prior is
chosen, the posterior estimate of the marker effects βj in Eq. 1 can be
computed using the likelihood derived from the data set. For a

comprehensive overview and brief historical context of Bayesian
models, see Refs. (Robinson, 1991; Gianola et al., 2009).

The BLUP model, on the other hand, assumes that the marker
effects are drawn from a distribution with a known variance
component, resulting in the linear mixed model (Henderson,
1977). It can be written as

yi � ∑p
j�i

Xijβj +∑p
j�1

Zijuj + ei. (2)

Here, yi is the phenotype of the ith sample, βj are fixed effects, uj are
random effects, and Zij is the design matrix. The∑p

j�1Xijβj replaces
the overall mean μ in Eq. 1 to include all fixed effects. The linear
mixed model assumes that the random effects are uj ~ N(0, K) and
the residuals are ei ~ N(0, R). Note that the βj for the fixed effects in
Eq. 2 should not be confused with the βj representing the marker
effects in Eq. 1. This potential source of confusion stems from
conventional notations used in the statistical and genomic selection
literature.

To build the stacking model, we selected six base models based
on their prevalence and the diversity they contribute to GS. Our
selections included rrBLUP and gBLUP from the linear mixed
models; BayesA, BayesB, BayesC, and BayesL from the Bayesian
models. These models were chosen to capture the range of
approaches available for GS, with an emphasis on their
application to real-world data sets (Cui et al., 2020; Diaz et al.,
2021; Budhlakoti et al., 2022). gBLUP represents a model that does
not rely on estimating marker effects, while rrBLUP estimates
marker effects using both linear and penalized parameters. The
two models are considered equivalent under certain conditions
(Goddard, 2009). From a Bayesian perspective, Bayesian models
fall into four categories: Gaussian, spike-slab, thick-tail, and mass-
point slab (de Los Campos et al., 2013). We exclude the Gaussian
prior because its posterior mean is equivalent to rrBLUP. We also
omit the spike-slab models because they can be viewed as a
combination of the thick-tail and mass-point slab models.
Among the Bayesian models, BayesA and BayesL fall under the
thick-tail model, while BayesB and BayesC fall under the mass-point
slab model. Table 1 lists the base models and their estimates or priors
used in this study.

Given a specific prior, we derive the posterior distribution of a
marker effect by applying Bayes’ theorem, incorporating the
likelihood from the available data. Since the posterior cannot be
typically expressed in closed form, numerical evaluation becomes
necessary. A widely used method for this purpose is the Gibbs
sampling method (López et al., 2022), a Markov chain Monte Carlo
algorithm designed to generate a sequence of observations that allow
an approximation of the joint distribution. Gibbs sampling
iteratively generates samples from the conditional distributions of
each parameter. After obtaining a sample from the posterior
distribution, parameter estimates are often derived by averaging
these sample values. In our implementation, we used the R package
“Bayesian Generalized Linear Regression” (BGLR) (Pérez and de Los
Campos, 2014) for the Bayesianmodels and the R package “rrBLUP”
(Endelman, 2011) for the linear mixed models.

For the meta-model, we used a neural network of a multilayer
perceptron, which consists of one hidden layer of nodes in addition
to input and output layers. The multilayer perceptron is a feed-
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forward neural network in which all nodes in the previous layer are
connected to each node in the current layer. The input is the
predictions from the base models and the output is the predicted
phenotype. The predictions generated by six base models consist of
six nodes in the input layer, and the final prediction is obtained from
one node in the output layer.

2.3 Model selection

Because the number of markers exceeds the number of samples,
most GS models have penalized parameters that control the degree
of model fit to the data. In the rrBLUP and gBLUP, the penalized
parameters of the variance components can be estimated by
minimizing the restricted maximum likelihood criterion. In the
Bayesian models, however, the penalized parameters that control
the nature and extent of the regularization are essentially unknown.
Each prior used in this study is specified by one or more penalized
parameters, some of which are given as probability distributions of
unknown parameters. Thus, in the Bayesian models, the penalized
parameters are hyper-parameters that affect their performance in
fitting real data. For example, in BayesA and BayesB models, the
hyper-parameters are the degrees of freedom and the scale
parameter of a scaled t distribution. The hyper-parameters
control the type and degree of shrinkage (BayesA and BayesL) or
variable selection (BayesB and BayesC). The hyper-parameters of
the Bayesian model are listed in Table 1.

We followed the rules built into the R package BGLR for the
penalized hyper-parameters setting. The default rule splits the
variance of the phenotype into components attributable to the
model residuals and the marker effects. The package allows for
control of the proportion R2 of the phenotypic variance that is
expected to be explained by the marker effects. To find an optimal
R2, we ran a 5-fold CV with a grid of values for R2 to examine the
change in the performance. For hyper-parameters other than the
penalized parameters, we used the default values given in BGLR. For
example, the proportion of non-null effects is set to π � 0.5 in
a-prior; the shape parameter of the gamma density for BayesL is set
to λ2 � 1.1.

Our model selection process for the meta-model is significantly
simpler than current deep learning architectures because we use a

simple perceptron with one hidden layer in addition to input and
output layers. Through experimentation, we found that using the
sigmoid activation function for the hidden layer yielded slightly
better results compared to alternatives such as ReLU. In addition, we
explored several optimizers, including stochastic gradient descent,
Adagrad, RMSprop, and Adam (Choi et al., 2020). While the
variance in performance among the optimizers was negligible, we
observed that Adam performed optimally with a learning rate set to
0.001. In addition, our experiments showed that the choice of mini-
batch size, approximately 50, and epochs, more than 400, had
minimal impact on the results. Furthermore, we found that the
number of nodes in the hidden layer was relatively insensitive,
provided it exceeded the size of the input nodes. Given our task of
predicting a continuous phenotype, we used the mean squared error
as our preferred loss function.

2.4 Stacked generalization

Ensemble methods in machine learning use multiple learning
models to improve predictive capabilities beyond what any single
model can achieve in isolation. Due to their ability to mitigate
overfitting and capture different facets of the data, these methods
are widely used and have demonstrated success in various
problem domains (Rokach, 2010). Common categories of
ensemble methods include bootstrap aggregation (or bagging),
boosting, and stacked generation (or stacking) (Nguyen et al.,
2021). Broadly speaking, ensemble methods can be classified as
parallel or sequential approaches. Parallel methods, such as
bagging and stacking, involve the independent training of
multiple models, while sequential methods, such as boosting,
iteratively train a single model. Parallel methods are further
divided into homogeneous and heterogeneous types based on
the similarity of the multiple models. In our study, we chose
stacking, a heterogeneous parallel method, to take advantage of
the diversity inherent in different base models. Stacking differs
from other ensemble methods in that it introduces a meta-model
in addition to the base models, as shown schematically in
Figure 1A. The meta-model is trained using predictions from
the base models to generate the final predictions. Stacking usually
outperforms the use of a single model (Wolpert, 1992) and

TABLE 1 A list of selected base models and their estimate (or prior) of the marker effects, together with the corresponding hyper-parameters. In the hyper-
parameters column, ν, π, and Sβ are the degree of freedom, the proportion of non-null effects, and the scaled parameter, respectively. The k in gBLUP is a
quantity related to the allele frequency.

Model Estimate (or prior) of marker effects Hyper-parameters

rrBLUP û � (ZTZ + σ2eσ
−2
u I)−1Z(y − Xβ̂)

gBLUP m̂ � (1 + σ2eσ
−2
u G−1)−1(y −Xβ̂), where m � Zu and G � kZZT

BayesA βj|], Sβ ~ t(], Sβ) ], Sβ , Sβ ~ Γ(r, s)

BayesB
βj|], Sβ ~ t(], Sβ), with probability π

0, with probability 1 − π
{ π ~ Beta(α, β), ], Sβ ~ Γ(r, s)

BayesC
βj|σ2β ~ N(0, σ2β), with probability π

0, with probability 1 − π
{ π ~ Beta(α, β), σ2β ~ χ−2(], Sβ)

BayesL βj|σ2β ~ L(λ2) λ2 ~ Γ(r, s)
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applies to both supervised learning (Breiman, 1996b; Ozay and
Vural, 2012) and unsupervised learning (Smyth and Wolpert,
1999) tasks.

In stacking, predictions for the data are generated by the base
models, and these predictions are then fed into the meta-model,
which combines them to produce the final predictions. The stacking
process, illustrated in Figure 1B and pictorially exemplified in
Figure 2, involves three distinct steps. The first step involves
initialization, which includes preparing the training and test data,

selecting the base models, and configuring the k-fold cross-
validation (CV) (Stone, 1974). As shown in Figures 1B, 2, the
training and test sets are represented as n × (p + 1) and
m × (p + 1) matrices, respectively, where n and m denote the
number of training and test data, respectively. Additionally,
(p + 1) represents the dimensionality (p is the number of SNP
markers in our case) of each data point, with a phenotype as output.
As a resampling technique, k-fold CV randomly divides the training
data into k subsets (or folds) of equal size. A model is trained on

FIGURE 1
(A) A schematic representation of the stacked generalization. (B) The decomposed process of the stacked generalization into three steps.

FIGURE 2
A pictorial demonstration of the stacking procedure. Using the notations in Figure 1B, the number of training and test data is n � 6 and m � 3,
respectively, the number of dimensions is p � 3, the number of basemodels is s � 4 with 3-fold cross-validation. Note that the circled numbers represent
the steps of the stacking procedure shown in Figure 1B and the same data are colored the same.
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(k − 1) folds, using the remaining single fold as validation data. This
CV process is repeated k times until all k subsets have been used
once as validation data, ensuring that all data is used for both
training and validation.

In the second step, the base models are trained on (k − 1) folds
of the training data while predicting the validation fold. This process
results in each base model generating predictions k times, resulting
in a total of n predictions, equal to the size of the training samples.
These predictions serve as the training data for the meta-model,
combined with the phenotype information from the original
training data. The test data for the meta-model consists of
predictions on the original test data generated by the base
models trained on the original training data. Figure 3 illustrates
how each base model constructs the input to the meta-model using
both training and test data. In this figure, a 3-fold cross-validation
was applied to the training data consisting of six instances. Under 3-
fold CV, each base model predicts two instances in each iteration,
resulting in six predictions, which is equal to the size of the training
samples (Figure 3A). Similarly, each base model learns from the
original training data and predicts the test data, resulting in three
predictions (Figure 3B).

In the third step, the meta-model uses the predictions from the
base models as its training data and learns to combine them
effectively, generating the final prediction using the test data. The
training and test data are constructed in the second step. The meta-
model is flexible and can take the form of any type of machine
learning model. The prediction produced by the meta-model is
evaluated against the output (or phenotype) of the original test data.
In the third step shown in Figure 2, the meta-model learns on

training data derived from a (4 + 1) × 6 matrix and is then tested on
test data derived from a 4 × 3 matrix generated by four base models
to predict three values.

2.5 Performance measures

The performance of the proposed stacking model is evaluated
against that of each base model through independent learning and
prediction of phenotypes. Each model independently learns and
predicts phenotypic values based on genetic markers. Both the
proposed model and the base models learn from the provided
training data and then predict phenotypes using the test data.
We then evaluate the performance of the models by comparing
the predicted phenotypic values using the proposed model and the
base models. We run 20 independent trials to obtain statistical
measures for predicted values. Each trial randomly divides the data
set into 80% for training and 20% for testing.

We measure model performance using the mean squared error
(MSE), which quantifies the average squared difference between
observed and predicted values. For the stacking model and each base
model, the absolute difference (or error) is calculated on the test data
(i � 1, 2, . . . , m) as

ei,stack ≡ ytest
i − ŷi,stack

∣∣∣∣ ∣∣∣∣ and ei,base ≡ ytest
i − ŷi,base

∣∣∣∣ ∣∣∣∣. (3)

Here, ytest
i represents the observed value in the test data, ŷi,stack and

ŷi,base denote the predicted values using the proposed model and
each base model, respectively. The MSE is then defined as

FIGURE 3
A pictorial demonstration of constructing the input of (A) the training set and (B) the test set for the meta-model using a 3-fold CV. The sizes of the
training and test data are 6 × (3 + 1) and 3 × (3 + 1), respectively. Note that the same data are colored the same and the notations in Figure 1B are used.
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MSEtest
stack �

1
m

∑m
i�1

e2i,stack and MSEtest
base �

1
m

∑m
i�1

e2i,base, (4)

where m represents the number of samples in the test data.
In addition to the MSE, overfitting is another critical aspect of

performance evaluation. Overfitting, a common problem in machine
learning, occurs when the model becomes overly tuned to the training
data, hindering its ability to generalize to new data, such as test data.
Therefore, one way to measure the extent of overfitting is to compare
the prediction errors derived from test and training data. The prediction
error from the test data is represented by Eq. 3, while the prediction
error from the training data is expressed as

MSEtrain
stack �

1
n
∑n
j�1

ytrain
j − ŷj,stack

∣∣∣∣∣ ∣∣∣∣∣2 and

MSEtrain
base � 1

n
∑n
j�1

ytrain
j − ŷj,base

∣∣∣∣∣ ∣∣∣∣∣2, (5)

where n is the number of samples in the training data and ytrain
j is the

jth sample in the training data. Note that Eq. 5 is used in quantifying
overfitting and expresses the mean squared error from the models that
are learned and predicted using the same training data. Furthermore,
ŷj,stack and ŷj,base denote the predicted values for the jth training
sample predicted by the stacking model and each base model,
respectively. It needs to clarify that these predictions are derived
from training data, not from test data. In essence, they represent the
results when the model is trained and evaluated on the same data sets.

With these settings, the degree of overfitting can be quantified
using Eqs 4, 5 as

Ostack ≡ MSEtest
stack −MSEtrain

stack

∣∣∣∣ ∣∣∣∣ and Obase ≡ MSEtest
base −MSEtrain

base

∣∣∣∣ ∣∣∣∣.
(6)

Ostack (or Obase) serves as a metric to measure the fit of the proposed
model (or each base model) to the training data. The more the model

fits overly to the train data, the smaller MSEtrain
stack (or MSEtrain

base ).
Thus, for similar values of MSEtest

stack and MSEtest
base, a larger

discrepancy in the mean squared errors, denoted by Ostack (or
Obase), implies a higher probability of overfitting.

2.6 Power of a test and hypothesis test of the
non-inferiority

We use a statistical hypothesis test on prediction error to
evaluate the performance of the proposed model relative to the
base models. Before running any hypothesis test, it is important
to confirm that the data meet certain requirements for quantities
such as sample size and test power. In our case, the sample sizes of
the data from the five species are predetermined. As a result, the
sample size becomes a fixed parameter, prompting an initial
inquiry as to whether the specified sample size provides adequate
test power.

For this purpose, we express the sample size N in terms of
sample prediction errors between the set of observed and
predicted phenotypes. The relationship is given by (Das
et al., 2016).

N � 2 Zα/2 + Z1−β( )2S2p
�ebase − �estack( )2 , where S2p � S2base + S2stack

2
. (7)

Here, Zα/2 and Z1−β are the critical values for level α/2 and 1 − β,
respectively; α and β are type I and type II errors. In addition, �estack
and S2stack are the mean and sample variance of ei,stack given in
Eq. 3, and similarly for �ebase and S2base . From Eq. 7, we can
evaluate the test power for a given sample size. The test power is
formally defined as the probability of correctly rejecting the
null hypothesis when it is false. According to Eq. 7, the power,
1 − β, expressed in terms of the critical value Z1−β is formulated
as follows:

Z1−β �












N

S2base + S2stack

√
�ebase − �estack| | − Zα/2. (8)

FIGURE 4
Pictorial demonstration of possible three distinct outcomes of a non-inferiority test using the confidence interval.
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If power is lower than expected for a given sample size, it is
prudent not to use the conventional significance (or superiority) test,
but to consider an alternative. This precaution is warranted because

reduced power for a given sample size reduces the likelihood of
detecting significance if it exists. Moreover, if a new method, such as
stacking in our case, offers advantages over existingmethods, such as

FIGURE 5
TheMSE estimated from the proposed and the basemodels to compare performance. (A) phenotype BRW in the rice data, (B) SSW in barley, (C) EP in
maize, (D) BTC in mice, and (E) MSPD in millet. Error bars represent standard errors estimated from 20 independent experiments.
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robustness to overfitting, its non-inferiority may still be attractive. In
such cases, the non-inferiority test (Schumi and Wittes, 2011;
Walker, 2019) provides insight into efficacy, even if it does not
establish superiority in terms of efficacy.

Non-inferiority testing is commonly used in medical research,
particularly when evaluating new treatments that are expected to
outperform existing treatments. In cases where the new treatment
offers advantages such as cost-effectiveness and fewer side effects,

FIGURE 6
Plots of the overfitting quantified by Eq. 6. (A) phenotype BRW in the rice data, (B) SSW in barley, (C) EP in maize, (D) BTC in mice, and (E) MSPD
in millet.

Frontiers in Genetics frontiersin.org09

Kim et al. 10.3389/fgene.2024.1401470

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1401470


special statistical tests are used to determine whether the new
treatment is no less clinically effective than current standards.
These tests, known as non-inferiority trials, determine whether
the effect of the new treatment is not significantly worse than
existing treatments, taking into account a predefined range
known as the non-inferiority margin. This margin represents the
maximum difference that is considered clinically acceptable between
the effects of the new treatment and existing treatments. Establishing
the non-inferiority margin thus becomes a crucial and complicated
facet of trial design.

There are several methods for determining the non-inferiority
margin, including the synthesis method and the confidence
interval method (Althunian et al., 2017). It typically involves
weighing several factors, such as clinical relevance, statistical
feasibility, expert consensus, and ethical considerations. In the
statistical analysis of medical or clinical trials, the required sample
size is often calculated based on the Type I error rate and the test
power. In our case, however, the sample size is fixed rather than
variable, which simplifies the estimation of the non-
inferiority margin.

In the non-inferiority test, the relationship between sample size
and other parameters, as shown in Eq. 7, is modified including the
non-inferiority margin Δ. It is given as (Walker, 2019).

N � 2 Zα/2 + Z1−β( )2S2p
�ebase − �estack( ) − Δ{ }2. (9)

When α and 1 − β are chosen, usually α � 0.05 and 1 − β � 0.8, we
can evaluate the margin Δ from the fixed sample sizeN given in Eq.
9. That is, the non-inferiority margin is given by, under the
restriction of Δ> 0,

Δ � �ebase − �estack( ) +











S2base + S2stack

N

√
Zα/2 + Z1−β( ). (10)

For a predetermined sample size N, once α and 1 − β are given, we
can evaluate the non-inferiority margin.

For comparative performance analysis, we subject the
differences in the mean prediction errors between the stacking
model and each base model to a statistical hypothesis test. When
comparing the means of prediction errors from two different
models, the hypothesis of the non-inferiority test is stated as

H0: μbase − μstack ≤Δ and H1: μbase − μstack >Δ, (11)
where μbase and μstack are the population means of prediction error
for each base model and the stacking model, respectively. Note that
the sample prediction error is given in Eq. 3.

The results of non-inferiority tests can be categorized into
three distinct outcomes: superiority, non-inferiority (or
equivalence), and inferiority (Schumi and Wittes, 2011).
Failure to reject the null hypothesis indicates an inferior
outcome, whereas rejection may indicate either superiority or
equivalence. Superiority is confirmed if the lower bound (LB) of
the confidence interval of the mean difference exceeds zero, while
equivalence is established if the lower bound exceeds the negative
of the predefined margin and the upper bound (UB) exceeds zero
(i.e., LB> − Δ and UB> 0). Inferiority is established if the test
result is neither superior nor equivalent. Figure 4 demonstrates

the three distinct outcomes of a non-inferiority test. It is worth
noting that a superior result is consistent with the conventional
notion of statistical significance.

We use the Wilcoxon signed-rank test (Conover, 1999) instead of
the t test. This test serves as the nonparametric counterpart to the
paired t test. Unlike the t test, which assumes normality, theWilcoxon
test is nonparametric and thus does not require the normality
assumption. With the sign function sign(x) � 1 if x> 0 and
sign(x) � −1 if x< 0, the test statistics is the signed-rank sum:

T � ∑m
i�1

sign Xi( )Ri, (12)

where m is the number of data, Xi ≡ ei,base − ei,stack from Eq. 3, and
Ri is the rank of |Xi| in the ascending order. For each base model,
this test is performed under the null hypothesis specified in Eq. 11.
Running these tests has been facilitated by “wilcox.test” function
within the R package “STAT” (Bolar, 2024) using the location shift
parameter “mu” set to the margin Δ.

3 Results and discussion

We performed the performance comparison for all quantitative
traits in the five data sets: rice, barley, maize, mice, and millet. For
each species, we ran 20 independent experiments for each
phenotype to obtain statistics, such as mean and standard error,
of the quantities of interest. In each experiment, we randomly split
the data set of each species into 80% training data to learn themodels
and 20% test data to predict the phenotype. How to split the data set
is a hyper-parameter in the sense that the data set does not estimate
the split ratio. There is a rule of thumb for how to split a data set into
training and test sets. Most studies use an 80/20 or 75/25 split. We
used the 80/20 split according to Ref. (Géron, 2023).

3.1 Prediction accuracy, overfitting, and
test power

Figure 5 shows the typical MSE given in Eq. 4 as the prediction
accuracy for the phenotypes evaluated using the proposed model
and the base models. From Figure 5, we can see that the MSE
evaluated by the proposed model is on average smaller than that of
the base models. This means that the proposed model achieves
higher, although not significantly higher, prediction accuracy than
the base models. This demonstrates the advantage of the proposed
model, which integrates the base models to exploit their predictive
capabilities. Similar results were found for the other phenotypes in
the data set of the five species. The result of the mean squared error
for all phenotypes from five species is presented in
Supplementary Data S1.

In addition to the MSE, we measure the degree of overfitting as
defined in Eq. 6. Overfitting is a common pitfall in model learning
where a model becomes overly tuned to the training data and
consequently fails to generalize well to unseen data, such as test
data. This phenomenon compromises the intended functionality of
the model. As shown in Figure 6, the proposed model exhibits
significantly lower levels of overfitting than the base models, while
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the base models themselves exhibit similar levels of overfitting to
each other. This result suggests that the proposed model has an
advantage over the base models due to its improved resistance to
overfitting. Thus, even in a case where the proposed model performs
comparably to the base models, its inherent robustness to overfitting
provides a distinct advantage. As Supplementary Data S1 shows, the
finding that the proposed model has a higher mean squared error on
the training data (not on the test data) than the base models implies
that the proposed model fits less accurately than the base models.
However, this does not mean that the proposed model is inferior in
its performance. The proposed model produced its mean squared
error on the test data (not on the training data) lower than that of the
base models, as shown in Figure 5. That is, the proposed model
predicts the phenotype value more accurately than the base models.
The result of the overfitting for all phenotypes from five species is
presented in Supplementary Data S2.

Before performing a statistical hypothesis test, we evaluated the
power of a test using the data sets of the five species to determine
whether the conventional significance test is applicable. If the
estimated power (1 − β) is sufficiently high (e.g., 1 − β≥ 0.8), we
can confidently use the conventional significance test. Using Eq. 8,
we calculated the power (1 − β) for the specified sample sizes in this
study, with α � 0.05. The results are detailed in Table 2, in which we
find that the power ranges from approximately 0.04–0.07. This
indicates that there is a 4%–7% probability that the null hypothesis
(H0) is correctly rejected when the alternative hypothesis (H1) is
true. This result implies that it will be highly unlikely to detect
significant test results when there is a notable difference in the
performance. Since the sample size is a predetermined quantity, we
cannot achieve acceptable power by controlling the sample size. If

the power is too low for a given sample size, the test will be unlikely
to show significance (or superiority) (Schumi and Wittes, 2011). In
such a case, the non-inferiority test can be an alternative to increase
the chance of successfully rejecting the null hypothesis when the
alternative hypothesis is true. Given these low power values and the
advantage of the proposed model over the base models in reducing
overfitting, we choose to use the non-inferiority test rather than the
conventional significance test.

3.2 Non-inferiority hypothesis test

Drawing an analogy to establishing the effectiveness of a newly
developed treatment inmedical or clinical trials (Schumi andWittes,
2011; Walker, 2019), we used the non-inferiority test to statistically
determine whether the proposed stacking model outperforms the
current base models. This choice of test is motivated by the
observation that there is insufficient power for the conventional
significance test and that the proposed model is more resistant to
overfitting than the base models. The underlying principle suggests
that if the proposed stacking model and the base models
demonstrate statistical equivalence in their performance, the
stacking method becomes preferable for GS due to its resistance
to overfitting in contrast to the base models.

To perform the non-inferiority test, it is necessary to evaluate the
test margin Δ given in Eq. 10. Our analysis revealed no significant
variance in the margin across the five species, as indicated in Table 3.
We examined a hypothesis test regarding the differences in the
population means of the prediction errors between the proposed
model and each base model, as outlined in Eq. 11. Before running the

TABLE 2 List of averaged test powers over all phenotypes from five species. The powers were calculated for each basemodel using Eq. 8. Standard errors are
given in parentheses.

Base model Rice Barley Maize Mice Millet

rrBLUP 0.037 (0.001) 0.039 (0.002) 0.042 (0.001) 0.074 (0.006) 0.067 (0.011)

gBLUP 0.036 (0.001) 0.039 (0.002) 0.043 (0.002) 0.073 (0.006) 0.055 (0.008)

BA 0.036 (0.001) 0.041 (0.002) 0.043 (0.001) 0.047 (0.002) 0.093 (0.014)

BB 0.036 (0.001) 0.042 (0.002) 0.043 (0.002) 0.039 (0.001) 0.090 (0.013)

BC 0.036 (0.001) 0.039 (0.002) 0.043 (0.001) 0.044 (0.002) 0.089 (0.014)

BL 0.038 (0.001) 0.040 (0.003) 0.053 (0.003) 0.068 (0.005) 0.066 (0.010)

TABLE 3 List of averaged margins over all phenotypes from five species. The margins were calculated for each base model using Eq. 10. Standard errors are
given in parentheses.

Base model Rice Barley Maize Mice Millet

rrBULUP 0.290 (0.003) 0.240 (0.003) 0.250 (0.005) 0.153 (0.001) 0.178 (0.005)

gBLUP 0.289 (0.003) 0.240 (0.003) 0.258 (0.004) 0.153 (0.001) 0.181 (0.005)

BA 0.287 (0.003) 0.234 (0.003) 0.258 (0.004) 0.147 (0.001) 0.212 (0.007)

BB 0.287 (0.003) 0.230 (0.003) 0.258 (0.004) 0.143 (0.001) 0.223 (0.010)

BC 0.288 (0.003) 0.240 (0.003) 0.258 (0.004) 0.145 (0.001) 0.219 (0.010)

BL 0.293 (0.003) 0.243 (0.003) 0.271 (0.004) 0.151 (0.001) 0.184 (0.005)
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Wilcoxon signed-rank test, we justified the usage of the Wilcoxon
test by testing the normality condition. To this end, we used the
Kolmogorov-Smirnov test (Dodge, 2008) under the null hypothesis
that mean squared errors follow a normal distribution. If the p value
is less than the significance level, the frequency distribution of mean

squared errors significantly differs from the normal distribution. We
set the significance level at 0.05. We found that a non-negligible
fraction of the mean squared errors does not satisfy the normality
condition, with the fraction varying between 6% and 66% across
the species. Since it is not recommended to use the t test when a

FIGURE 7
The ratio of three distinct test results averaged over all phenotypes in each of five species: (A) rice, (B) barley, (C) maize, (D) mice, and (E) millet.
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test statistic does not follow a normal distribution, we used the
Wilcoxon signed-rank test for consistency. Using the Wilcoxon
signed-rank test statistic described in Eq. 12, we compared the
MSE of the proposed model with that of each base model. Each

test involved evaluating the test statistic based on the MSE
derived from 20 independent experiments. We present the test
results from two perspectives: aggregation across phenotypes and
base models.

FIGURE 8
The ratio of three different test results averaged over six base models in five species: (A) rice, (B) barley, (C)maize, (D)mice, and (E)millet. For visual
purposes, the results of five phenotypes are selected for each species.
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Figure 7 shows the proportion of three different categories
(superiority, equivalence, and inferiority) of test results averaged
over all phenotypes in each of the five species. As shown in Figure 7,

the inferiority result is not observed, indicating that the proposed
model is either superior or at least equivalent to all base models.
Specifically, we obtained about a 10%–30% superiority result for

FIGURE 9
A plot of the correlation coefficients from the proposed model and the base models. (A) phenotype BRW in the rice data, (B) SSW in barley, (C) EP in
maize, (D) BTC in mice, and (E)MSPD in millet. The list of phenotypes is the same as used in Figure 5. Error bars represent standard errors estimated from
20 independent experiments.
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mice and millet, while about a 5%–10% superiority result for the
other species. The performance of the proposed model is further
highlighted from an alternative perspective.

Figure 8 shows the proportion of the three categories of test
results within each selected phenotype, averaged across all base
models. Once again, we find that the proposed model
outperforms the base models, as there are no inferior results
except for a negligible proportion in the phenotype “BEn” of the
mice shown in Figure 8D. Note that the proportion of superior
results for mice and millet is much higher than for the other
species. This is consistent with the higher proportion of superior
results for mice and millet than for the other species shown in
Figure 7. We further investigate this feature in Section 3.4. Since
the proposed model effectively mitigates overfitting, it has an
advantage over the base models. The result of the non-inferiority
test for all phenotypes from five species is presented in
Supplementary Data S3.

In breeding, the MSE may not be the most appropriate
metric because it can be affected by constant or scaling
factors in the models, potentially inflating the MSE without
changing the predictive ranking. As a result, breeders often
choose to evaluate predictive accuracy using correlation
analysis. This evaluation involves measuring the correlation
between the predicted and observed values of individuals in
the test data set. A higher correlation indicates better predictive
performance. In our research, we use Pearson’s correlation
coefficient, a widely used metric in the field of GS, to
quantify this accuracy. Figure 9 shows the correlation
coefficients estimated from the proposed model and the base
models. As we can see from the figure, the proposed model shows
a higher or comparable correlation between the predicted and
observed phenotypes than the base model. The result of the
correlation coefficients for all phenotypes from five species is
presented in Supplementary Data S4.

FIGURE 10
Plots of various performance measures from a phenotype in each species using RKHS (■) and stacking (□). (A) mean squared error, (B) overfitting,
(C) test results, and (D) correlation coefficient. The list of phenotypes is the same as used in Figure 5. Error bars represent standard errors estimated from
20 independent experiments.
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3.3 Performance comparison with RKHS and
bagging regressor

We introduce a recent genomic selection technique known as
reproducing kernel Hilbert space (RKHS) (Montesinos-López et al.,
2021) to support the advantages of the proposed model. The core
concept of RKHS involves mapping the independent variables (in
our context, genotype values) into a theoretically infinite-
dimensional Hilbert space using a kernel function. This
transformation allows the application of traditional machine
learning methods to improve the results. RKHS has gained
attraction for its effectiveness in uncovering nonlinear patterns in
data sets. We applied RKHS to the same species as before and
compared its performance with our proposed model. Evaluation
metrics remained consistent and included mean squared error
(MSE), degree of overfitting, and Pearson’s correlation coefficient.

We conducted a non-inferiority test to determine whether the
prediction errors of our proposed model compared favorably
with RKHS. Formally, we hypothesized:

H0: μrkhs − μstack ≤Δ and H1: μrkhs − μstack >Δ, (13)
where μrkhs and μstack are the population means of the prediction
error for RKHS and the stacking model, respectively. The results
from a phenotype in each species are shown in Figure 10. We found
that the proposed model outperformed RKHS in all evaluation
metrics. The results using all phenotypes are given in
Supplementary Data S5.

As another ensemble method for comparison with the proposed
stacking, we consider a bagging regressor (Breiman, 1996a).
Ensemble techniques are commonly divided into three categories:
bootstrap aggregation (or bagging), boosting, and stacking. Boosting
involves training a single model iteratively, while bagging and

FIGURE 11
Plots of various performancemeasures from a phenotype in each species using bagging regressor (■) and stacking (□). (A) themean squared errors,
(B) the degree of overfitting, (C) the hypothesis testing results for the phenotypes, and (D) the correlation coefficients. The list of phenotypes is the same
as used in Figure 5. Error bars represent standard errors estimated from 20 independent experiments.
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stacking involve running multiple models simultaneously. A
bagging regressor serves as an ensemble estimator by training
multiple models on the original data set and then combining
their predictions by averaging to obtain a final prediction. This
method often reduces variance by introducing randomness during
construction and using ensemble techniques. The primary
difference between the proposed stacking and the bagging
regressor lies in their approach to using model predictions.
Stacking introduces a meta-model and trains a meta-model using
predictions from the multiple models (or base models), while the
bagging regressor aggregates predictions from the multiple models.
For a fair comparison, we used the same multiple models for the
bagging regressor as the proposed method.

We applied a bagging regressor to the same species as before and
compared its performance with the proposed model. Evaluation
metrics remained consistent and included mean squared error
(MSE), degree of overfitting, and Pearson’s correlation coefficient.
We also conducted a non-inferiority hypothesis test to determine
whether the prediction errors of our proposed model compared
favorably with the bagging regressor. Formally, we hypothesized:

H0: μbagg − μstack ≤Δ and H1: μbagg − μstack >Δ, (14)

where μbagg and μstack are the population means of the prediction
error for the bagging regressor and the stacking, respectively. We ran
the bagging regressor and compared its performance with the
stacking. The results using a phenotype in each species and the
hypothesis tests of Eqs 13, 14 are shown in Figure 11. We found that
the proposed model outperformed the bagging regressor in all
evaluation metrics. The results using all phenotypes are given in
Supplementary Data S6.

3.4 Computation time analysis and effect of
allele frequencies on the models

As an ensemble method, the proposed model typically
requires more computational resources than individual models.
Consequently, the trade-off for achieving improved performance
can be articulated in terms of the time complexity of the
computation. Time complexity quantifies the computation time

required for a method to execute based on the given input. The
primary factor contributing to computation time is the training of
the models. In stacking, the meta-model is trained using
predictions from the base models. These base models, in turn,
undergo training and prediction using the cross-validation (CV)
technique. As a resampling method, k-fold CV randomly divides
the training data into k subsets (or folds) of equal size. Each base
model is trained on (k − 1) folds, with one fold reserved for
validation data during prediction. This CV process is iterated k
times until all subsets have been used once for validation, ensuring
comprehensive use of data for both training and prediction.
Consequently, in a k-fold CV, each base model is trained k
times. This implies that for s base models, the additional
computation time scales proportionally with the product of
k × s. For example, in our case, using 6 base models with 5-
fold cross-validation requires about 30 times more computation
time for the proposed model compared to each base model
individually.

To measure the computation time for each model, we used an R
function, “Sys.time,” which provides an absolute time value. The
specification of the computational resource we used is as follows:

• CPU: Intel Xeon E5-2695 v4 @ 2.10 GHz (36Core x2)
• RAM: 264 GB
• OS: CentOS 7 × 64

Table 4 presents the computation time (in seconds) for both the
proposed model and the base model, averaged over all phenotypes
within each species. Note that the computation time for the base
model is averaged quantity over six base models. The results from
the table show that the proposed method generally requires about
30 times more computation time compared to the base model.
Consequently, the proposed model requires more computational
resources compared to the base models. Note that given the
prevailing capabilities of computing systems, the incremental
computational time required is a minimal obstacle in practical
applications.

In GS, three different genotypes are typically represented
numerically as −1, 0, 1 (or 0, 1, 2) for recessive homozygous
(aa), heterozygous (Aa), and dominant homozygous (AA)
genotypes, respectively. In cases where the allele frequencies of
three different genotypes do not exhibit linear proportionality
with their corresponding phenotype values, there is a possibility
that the base model, whether it is a linear mixed model or a Bayesian
model, will not perform optimally. The reason is that the base model
is essentially a multiple linear regression model that assumes
linearity between phenotype and genotype values. Consequently,
if the linearity assumption is violated, the base models are unlikely to
produce accurate results.

TABLE 4 Computation times in seconds, averaged over all phenotypes in
each species, with standard errors in parentheses for the proposed and the
base models. Note that the computation time for the base model is
averaged over all base models.

Rice Barley Maize Mice Millet

Base model 7 (3) 10 (4) 85 (38) 58 (24) 57 (23)

Stacking 245 (12) 342 (7) 2,599 (62) 1,651 (23) 1,673 (28)

TABLE 5 The averaged ratio of each genotype value over all SNPs and phenotypes from five species. Standard errors are given in parentheses.

Genotype Rice Barley Maize Mice Millet

−1 0.811 (0.002) 0.866 (0.002) 0.779 (0.001) 0.445 (0.003) 0.966 (0.001)

0 0.001 (0.001) 0.013 (0.001) 0.204 (0.001) 0.363 (0.001) 0.016 (0.001)

1 0.188 (0.002) 0.121 (0.002) 0.018 (0.001) 0.193 (0.002) 0.018 (0.001)
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To investigate whether the data used in this study
exhibit the linearity, we evaluated the proportions of each
genotype present in the data. Table 5 shows the results,
revealing three different types of genotype frequencies. In
rice and barley, the allele frequencies are predominantly
composed of two homozygous genotypes, with the
heterozygous genotype being insignificantly represented. In
maize, on the other hand, recessive homozygous and
heterozygous genotypes predominate, while the dominant
homozygous genotype is minimal. In both cases, with
effectively two predominant genotype values, the assumption
of linearity is inherently satisfied regardless of the phenotype
values. In the case of mice, however, all three genotypes
have non-negligible allele frequencies. Therefore, it is
necessary to examine the extent to which the three
genotypes in the mouse data are linearly related to their
corresponding phenotypic values.

To accomplish this task, we selected two phenotypes, ODS and
BHD, as examples from the mouse data. We then randomly selected
one SNP and divided the corresponding genotype and phenotype pairs
of themouse samples into three groups of different genotype values.We
also calculated the average phenotype values within each genotype
group. In this way, we had an average phenotype for each of the three
different genotypes. This process was repeated for five randomly
selected SNPs. This allowed us to generate plots showing the
averaged phenotypes corresponding to each genotype value, as
shown in Figure 12. To ensure a fair comparison in the linear
regression, we normalized the phenotype values within each phenotype.

We applied a linear regression model to the pre-processed data
and visualized the result in Figure 12. Visual inspection of Figure 12
shows that the fit of the linear regression model varies significantly
between the two phenotypes. To quantify the degree of fit, we
measured the residual sum of squares (RSS), a metric that
quantifies the variance in the residuals of a linear regression

FIGURE 12
Plots of genotype values versus phenotype value for (A) phenotypeODS and (B) phenotype BHD. The phenotype values for each trait are normalized
to compare them in the same range. The lines are the linear fit to the corresponding data.

TABLE 6 The list of RSS and the proportions of the three test results of all phenotypes. The result is sorted by RSS in descending order.

Pheno. RSS Superior Equiv Inferior Pheno. RSS Superior Equiv Inferior

OEn 2.31 0.70 0.27 0.03 OBo 0.26 0.06 0.94 0.00

BEn 2.31 0.68 0.31 0.02 BGl 0.20 0.00 1.00 0.00

BHD 1.84 0.42 0.58 0.00 BAL 0.20 0.13 0.87 0.00

BTC 1.40 0.44 0.56 0.00 OSS 0.19 0.58 0.43 0.00

OBM 1.23 0.22 0.78 0.00 ODS 0.19 0.55 0.45 0.00

BSo 0.40 0.18 0.82 0.00 BAS 0.14 0.08 0.92 0.00

BTP 0.38 0.15 0.85 0.00 BLT 0.13 0.15 0.85 0.00

BLD 0.37 0.02 0.98 0.00 BCa 0.12 0.23 0.77 0.00

BAl 0.36 0.08 0.93 0.00 BAg 0.08 0.32 0.68 0.00

BChl 0.30 0.20 0.80 0.00 BUr 0.06 0.03 0.98 0.00
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model. RSS serves as an indicator of the dissimilarity between the
data and an estimated model, with smaller values indicating a better
fit. Notably, we observed that the phenotype ODS has a significantly
lower RSS of 0.19 compared to the phenotype BHD, whose RSS of
1.84 is approximately ten times that of the phenotype ODS. This
result suggests that the higher the RSS, the worse the phenotype
prediction of the base models would be.

When the phenotypes of the mouse data lack their linearity (or
high RSS), the base models are less accurate in their predictions than
in the case of other species. The proposed stacking model, which
uses predictions from these base models, is robust to overfitting and
exploits the strength of each prediction by leveraging the collective
knowledge of multiple models. These features of the proposedmodel
mitigate the imprecision of the base models. To support this claim,
we performed the same linear regression fit with all phenotypes and
presented the result in Table 6. From Table 6, we can see that as RSS
increases, there is a strong tendency for a corresponding increase in
the prevalence of superior results. That is, the greater the deviation
from linearity, the less accurate the base model. This explains why
there is a notable preponderance of superior test results in the mouse
data compared to data from other species, as shown in Figures 7, 8.

4 Conclusion

In this study, we proposed a stacking model as a computational
method for genome prediction. The proposed model belongs to the
ensemble methods in machine learning and takes a different approach
from conventional methods. It integrates base models to explore the
collective knowledge from them and uses the meta-model to achieve
better performance. Using the data sets with different phenotypes of
various species, we demonstrated the advantage of the proposed
method by comparing the performance of the proposed model with
that of individual base models. We achieved better performance than
base models can produce with the proposed method.

In addition to better prediction accuracy compared to base models,
the proposed model has other advantages that can make it effective in
improving performance. By combining multiple base models, the
proposed model learns from diverse predictions, resulting in a
reduction of overfitting. This results in more accurate predictions
compared to base models and makes it suitable for real-world
applications. The proposed model was also less sensitive to the
choice of hyper-parameters of the base models, meaning that the
default hyper-parameter setting works in many cases. As an
ensemble method, the proposed model is robust because it is less
affected by the variety of data and prediction tasks than the basemodels.

It should be noted that the proposed model, as an ensemble
method, typically requires more computation and is more complex
to implement and tune than base models. However, since the
computational complexity of the proposed model generally increases
in proportion to the number of base models, the additional
computational time required is hardly an obstacle in practice. While
the linear basemodels used in this study can estimate themarker effects,
the proposed method does not provide the marker effects. This is
because the meta-model predicts the phenotype value, not the marker
effects, from the output (i.e., predicted phenotypes) of the base models.
However, themarker effects can be estimated indirectly, for example, by
taking the weighted average of the estimates from each base model.

In addition to the methodological advantage in prediction, the
proposed stacking method has other potential advantages in breeding.
Stacking allows breeders to combine desirable traits frommultiple parents
into a single offspring. This results in offspring that inherit a variety of
beneficial traits, such as disease resistance, high yield potential, and
improved quality. Stacking also allows breeders to achieve desired
traits more quickly by combining the strengths of multiple parents in
each generation. This accelerates the breeding process, resulting in faster
development of new varieties or breeds with improved traits. By creating
plants or animals with improved traits such as disease resistance and
environmental adaptability, stacking contributes to the sustainability and
resilience of agricultural systems. Overall, stacking allows breeders to
speed up the breeding process by efficiently combining desirable traits
from different genetic sources, resulting in offspring with improved
performance, adaptability, and market value.

In this study, we compared the proposed model with the linear
mixed and Bayesianmodels and did not consider the nonlinear models,
such as support vector machines and deep learning. Although the
nonlinear models have difficulties in interpreting the results, such as the
genetic effects of single markers, these models may outperform linear
models, especially when dealing with highly complex, nonlinear
relationships between genotypes and phenotypes. We also limited
this study to single-trait genomic selection. However, multi-trait
genomic selection is useful in various situations where we need to
simultaneously improve the performance of more than one trait in a
breeding program. Therefore, it would be necessary and important to
investigate how the proposed model works for the nonlinear base
models and multi-trait GS. The performance of the proposed model
may depend on the choice of base models. How the number and type of
base models affect the performance of the proposedmodel also needs to
be investigated. These should be understood in future work.
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