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Open chromatin regions (OCRs) play a crucial role in transcriptional regulation
and gene expression. In recent years, there has been a growing interest in using
plasma cell-free DNA (cfDNA) sequencing data to detect OCRs. By analyzing the
characteristics of cfDNA fragments and their sequencing coverage, researchers
can differentiate OCRs from non-OCRs. However, the presence of noise and
variability in cfDNA-seq data poses challenges for the training data used in the
noise-tolerance learning-based OCR estimation approach, as it contains
numerous noisy labels that may impact the accuracy of the results. For
current methods of detecting OCRs, they rely on statistical features derived
from typical open and closed chromatin regions to determine whether a region is
OCR or non-OCR. However, there are some atypical regions that exhibit
statistical features that fall between the two categories, making it difficult to
classify them definitively as either open or closed chromatin regions (CCRs).
These regions should be considered as partially open chromatin regions (pOCRs).
In this paper, we present OCRClassifier, a novel framework that combines control
charts and machine learning to address the impact of high-proportion noisy
labels in the training set and classify the chromatin open states into three classes
accurately. Our method comprises two control charts. We first design a robust
Hotelling T2 control chart and create new run rules to accurately identify reliable
OCRs and CCRs within the initial training set. Then, we exclusively utilize the pure
training set consisting of OCRs and CCRs to create and train a sensitized T2

control chart. This sensitized T2 control chart is specifically designed to accurately
differentiate between the three categories of chromatin states: open, partially
open, and closed. Experimental results demonstrate that under this framework,
the model exhibits not only excellent performance in terms of three-class
classification, but also higher accuracy and sensitivity in binary classification
compared to the state-of-the-art models currently available.
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1 Introduction

Open chromatin regions (OCRs) that are accessible to DNA
regulatory elements, play a crucial role in cellular activities and gene
expression (Thurman et al., 2012; Yao et al., 2015; Klemm et al.,
2019). It is reported that OCR patterns are associated with many
complex traits and diseases. For example, several cancers are
observed unique patterns of open chromatin regions, which are
considered valuable in underlying cancer development through
epigenetic mechanisms. It is also suggested as potential
biomarkers in cancer early-diagnosis (Ivanov et al., 2015;
Flavahan et al., 2017). Thus, detecting OCRs and identifying
their patterns is a basic computational problem in epigenetic
research and their clinical applications.

The traditional methods for identifying OCRs (ChIP-Seq
(Johnson et al., 2007), DNase-seq (Crawford et al., 2006),
MNase-seq (Schones et al., 2008), FAIRE-seq (Giresi et al., 2007),
ATAC-seq (Buenrostro et al., 2015)) are all complex experimental
processes. Until recent decade, detecting OCRs from plasma cell-
free DNA sequencing data becomes popular. Plasma cell-free DNA
(cfDNA) molecules are short fragments generated through a non-
random procedure (Ivanov et al., 2015; Gai and Sun, 2019; Van der
Pol and Mouliere et al., 2019; Lo et al., 2021; An et al., 2023). Recent
studies conducted by Snyder (Snyder et al., 2016) and Ulz (Ulz et al.,
2016) have shown a correlation between the characteristics of
cfDNA fragments and gene expression levels, which provide new
insights on detecting OCRs. Snyder first proposed the windowed
protection score (WPS) to established a whole-genome nucleosome
landscape, which was able to transform the cfDNA sequencing data
into waveforms whose peaks corresponded to nucleosomes (Snyder
et al., 2016). Ulz presented EP (Expression Prediction) algorithm
(Ulz et al., 2016), which focused on inferring gene expression levels
by low sequencing coverage in OCRs. Sun found that the
characteristics of cfDNA fragment distribution can be reflected
by the differentially phased cfDNA fragment end signals (Sun
et al., 2019). Based on these pioneering works, Wang proposed
OCRDetector, which among the first approach introduces a
machine learning framework (Wang et al., 2021). However, it
could hardly overcome the limitations of artificially constructed
features and it didn’t consider the noisy labels. Subsequently, Ren
introduced OCRFinder (Ren et al., 2023), which first leverages deep
learning for feature extraction and incorporates ensemble
techniques and semi-supervised strategies to tackle noisy label
learning. This approach has performed impressive results in
various evaluations but the performance of the model also be
affected by the high proportion of noisy labels in the training
sets. Jin proposed utilizing OCF values and SVM classification
model for predicting tissue injury (Jin et al., 2023), but this study
relies on biological experiments to obtain known tissue-specific
open chromatin regions, hence it is not possible to directly
analyze the genome-wide chromatin accessibility using cfDNA-
seq data. Clearly, current methods are limited to distinguishing
between chromatin open and closed regions.

However, cfDNA data represents a mixed sample from multiple
tissues, the chromatin states cannot be simplified as solely fully open
or fully closed. Actually, in real sequencing data, we often observe
the regions that seem partially open. We may call them partially
open chromatin regions (pOCRs). For those pOCRs, none of the

existing approach, whatever the machine learning-based ones or
deep learning-based ones can achieve accurate detection. There are
several reasons for this: the training data for the existing learning
models only consists of two labels, where the genomic regions with
active gene expression are categorized as open chromatin regions,
while the regions with silent gene expression are categorized as non-
open chromatin regions. It is a computational challenge to correctly
mark the partially open chromatin regions, because those pOCRs are
randomly assigned as either OCRs or non-OCRs. In addition, the
threshold differentiate OCRs and pOCRs varies across samples,
which may be influenced by sequencing coverage, local distribution
of read depths, etc. Thus, a self-adaptive method is needed to
identify three-class regions using training datasets that only
contain two-class labels.

The patterns of cfDNA fragments is a random variable that
varies along the genomic locus. If we map the reference genome to a
X-axis, map the WPS scores to a Y-axis, then the patterns become a
function on pseudo-time series. Statistical process control (SPC) is a
family of methods that capture the statistical characteristics on time-
series data which is a potential way of identifying the thresholds and
differentiating the pOCRs from OCRs and non-OCRs. The three
states of chromatin correspond to three distinct data distributions of
cfDNA fragment features. Thus, let non-OCRs define as the normal
state in the statistical process, then both the OCRs and pOCRs can
be defined as abnormal states with different abnormal patterns,
aligning precisely with the in-control and out-of-control states of a
control chart. The computational problem switches to design a
control chart that is able to efficiently report the out-of-control
states. CUSUM is a control chart that has been widely used in a
range of healthcare settings, from describing the learning curves of
surgical or procedural skills (Waller and Connor, 2009; Je et al.,
2015; Kim et al., 2015), to clinical audits (Cockings et al., 2006;
Calsina et al., 2011), and quality-assurance studies (Novick et al.,
2006; Hasegawa et al., 2017). Hotelling’s T2 is another control chart
that has been widely used for measuring and monitoring biological
and biomedical investigations (Lv et al., 2014; Ercan et al., 2015). To
better use the control charts to detect open chromatin regions, we
need to re-design it a little bit. For example, the T2 chart, assume that
the in-control (IC) group is the sole population used for establishing
a decision boundary. Nevertheless, this assumption has limited the
advancement of more efficient control chart techniques that can
leverage the available out-of-control (OC) information. A sensitized
T2 chart (Park and Kim, 2019) is proposed later, wherein OC
observations extracted from historical records were classified as
“predefined OC,” while those arising from novel fault types not
encountered previously were identified as “undefined OC.” Based on
this, let OCR being the predefined OC and pOCR as undefined OC.

However, the classification of control charts is still subject to
certain errors based on control limits. Therefore, to improve the
recognition of multiple states of chromatin openness, this study then
uses a CNN-based model under the framework of confident learning
(Curtis et al., 2021). Nowadays, an increasing number of CNN-based
models are being used in various fields. If an efficient encoding
method is available, deep learning models have the capability to
automatically extract the distinctive fragmentation patterns of
cfDNA molecules at OCRs without requiring manual intervention.
Consequently, employing a CNN-based model for OCR estimation is
a viable and practical approach.
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In this article, we proposed a novel computational approach,
OCRClassfier, to accurately detect open chromatin regions
together with the partially open chromatin regions from
cfDNA sequencing data. A novel sensitized T2 control chart
is designed to identify the candidate OCRs. This control chart
integrates a MEWMA control chart with the OCRFinder noise-
tolerance model. The control chart we designed considers two
types of probabilities the first of which is derived from a
MEWMA control chart, enabling the detection of mean
shifts in any direction within the process. This aspect
ensures robust monitoring capabilities. The second
probability is based on a noise-tolerance machine learning
method OCRFinder, effectively distinguishing between OC
and IC data. Combining these probabilities enhances the
accuracy and reliability of the control chart in accurately
identifying the deviations in the process. This new control
chart aims to effectively monitor chromatin states. By
training the sensitized T2 control chart using data from
OCRs and non-OCRs, we obtained a control chart capable of
identifying OCRs, non-OCRs, and pOCRs. Thus, we
transformed the original training dataset with only two labels
into three categories. In order to obtain an improved control
chart, we have also devised a robust Hotelling T2 control chart
specifically designed to identify OCRs and non-OCRs. This
helps in filtering out noisy labels from the training set and
then can reduce the impact caused by such noisy labels.
Additionally, it is worth mentioning that the obtained three-
class training set still contains a small amount of noisy labels.
Therefore, we conducted further training by using a neural
network model under the confident learning strategy to
minimize the impact of noisy labels.

2 Materials and methods

In the WPS waveform, peaks represent nucleosome
positions, whereas peaks disappear in OCRs. In terms of
sequencing coverage, there was a significant decrease in
coverage of OCRs. In the end signals, the head and tail peaks
represent both sides of the nucleosomes, and the end signals are
also lost in OCRs.

Here, we present a three-stage multiclass classification
algorithm that introduces the idea of multivariate control
charts and machine learning. The three stages are data pre-
processing, control charts designing and model co-teaching.
The second step consists of two control charts: robust Hotelling
T2 control chart and sensitized T2 control chart. The data pre-
processing converts cfDNA-seq data into vectors and matrixes
suitable for control charts and two-dimensional images suitable
for neural networks, respectively. The second stage first uses
robust Hotelling T2 control chart with minimum regularized
covariance determinant (MRCD) to reduce the scale of noisy
labels on the training set and then designs sensitized T2 control
chart that combines multivariate exponentially weighted
moving average (MEWMA) and OCRFinder classification
algorithm to give the model an initial recognition ability. In
the last stage, we use confident learning strategy to avoid the
impact of noisy labels and classify the three open states of

chromatin in whole genome regions. The framework of
OCRClassifier model is shown in Figure 1.

2.1 Data processing pipeline

The cfDNA-seq data in fastq format is processed by BWA and
Samtools. The input data of the control charts is not the same as the
input data of the deep learning model.

The human genome is divided into multiple intervals (Wang
et al., 2021), each containing 20 kilobase pairs (kbp). Subsequently,
for each of these intervals, the WPS waveform, sequencing
coverage, Uend signal, and Dend signal are computed. As
mentioned above, the size of a single nucleosome is about
167 base pairs (bp), while the linked DNA connecting the
nucleosome is about 20 bp in size (Struhl and Segal, 2013).
Features showed strong periodic patterns, with one nucleosome
per period of approximately 190 bp in length (Snyder et al., 2016).
Thus, a sliding window of 200 bp size was defined in each 20 kbp
interval, and the averages of the four features within the window
were calculated to obtain a 100 × 4 input matrix as the input data of
Hotelling T2 control chart.

In order to apply the sensitized T2 control chart, the standard
deviation of the windowed average values of the WPS and
sequencing coverage features is calculated for each sample, the
calculation process is shown in Figure 2. By doing so, the
cfDNA-reads data is transformed into a vector representation.
This enables us to assess the variability within the respective
windows and gain insights into the fluctuation characteristics and
dispersion patterns exhibited by these two specific attributes.

For deep learning model, the input data type is the same as
OCRFinder. We convert cfDNA-reads data into two-dimensional
matrixes T, the rows correspond to genomic coordinates, while the
columns represent the lengths of cfDNA-reads. Moreover,
sequencing coverage, WPS score, and the density of the head and
tail of cfDNA fragments are encoded in a similar manner. This
encoding process results in the generation of two-dimensional
matrices, which serve as additional inputs to deep learning model.

2.2 Control charts designing

2.2.1 Design robust Hotelling T2 control chart
Let X1, X2, . . . , Xn be a dataset in which Xi �

[Xi1, Xi2, . . . , Xip]′ denotes the i-th observation (i � 1, 2, . . . , n;
where n is the total number of samples to be monitored), p is
the number of variables. Traditional Hotelling T2 control charts are
monitored according to the Hotelling T2 statistic, which is calculated
using Formula 1 (Hotelling, 1947):

T2 i( ) � Xi − �X( )′S−1 Xi − �X( ) (1)

Where �X and S are the mean and covariance matrix of the
distribution, respectively. It can be seen from the formula that
the key to calculating the statistics lies in the mean vector �X and
the covariance matrix S. However, the mean vector and
covariance matrix are likely to be affected by outliers in the
samples, which make the traditional Hotelling T2 control chart
not robust and then obtain biased results.
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In the problem of detecting OCRs in training sets, the
number of outliers in the observed values may be large,
which may have a great impact on the mean vector and

covariance matrix, resulting in biased results. Thus, we use
the MRCD estimation to construct a robust Hotelling T2

statistic (Formula 2).

FIGURE 1
The flow chart of OCRclassifier.
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T2
MRCD i( ) � Xi − �XMRCD( )′S−1MRCD Xi − �XMRCD( ) (2)

Here, �XMRCD and SMRCD are the robust mean vector and the
robust covariance matrix obtained according to the MRCD
estimation method (Boudt et al., 2020).

We assume that the distribution of T2
MRCD statistics is F

distribution, then the mean and variance of T2
MRCD are defined

as Formula 3 and 4

E T2
MRCD( ) � d

q

q − 2
(3)

Var T2
MRCD( ) � d2 2q2 p + q − 2( )

p q − 4( ) q − 2( )2
(4)

Thus d and q are calculated, from which the control limitUCL is

found, shown in Formula 5. d̂, q̂ is the numerical solution of the

mean and variance of T2
MRCD calculated by Monte Carlo simulation.

α is the significance level, α � 0.05.

UCL � d̂Fα p, q̂( ) (5)

At this stage, we have derived robust Hotelling T2 statistics and
established control limits based on the observations. When the
statistic surpasses the control limit, an alarm signal is triggered.
Conversely, if all the statistics fall within the control limit, the
observations are considered to be in a normal state. Based on
this, we can estimate the reliable OCRs and non-OCRs in the
training set to reduce noise.

Because of the unique biological characteristics of biological
data, OCRs cannot be assumed to occur once the robust Hotelling T2

control chart generates an alarm signal. Therefore, in order to
effectively detect OCRs to obtain reliable training sets, we
proposed three run rules for the detection of OCRs combined
with Western Electric Rules (Cheng and Chou, 2008), which
represent three possible cases of OCRs.

(1) Three or more consecutive observation points exceeded the
control limit. After analyzing the length of the OCRs via
ATAC-seq and DNase-seq, it was discovered that
approximately 50% of the regions exceeded 300 bp in size,
while over 25% exceeded 600 bp (Wang et al., 2021). For this
study, a window size of 200 bp was selected, with each

observation point representing that size. Specifically, two
consecutive observations (400 bp in total) above the
control limit were deemed to indicate an OCR. However,
to account for noise interference in the original data, the error
tolerance interval was set to one nucleosome size
(approximately 167 bp). Consequently, OCR was defined as
an area where three or more consecutive observations
surpassed the control limits such as Figure 3A, based on
the above considerations.

(2) The first or last point is outside the control limit. During data
preprocessing, we truncated the reference genome into
multiple segments. To detect OCRs that span across two
segments, we established the criterion that if the first or last
observation point in any monitored group exceeded the
control limit, we would consider the region between the
two observation points before and after that point (a total
of 600 bp) as OCRs (Figure 3B).

(3) The number of points between two consecutive observations
exceeding the control limit is less than three. The paper
(Khoo, 2003) proposes two criteria for identifying out-of-
control states: 1) If two out of the three most recent samples
fall above the UCL or below the LCL on the control chart, the
process is considered to be in an OC state. 2) If three out of the
four most recent samples fall above the UCL or below the LCL
on the control chart, the process is deemed to be in an OC
state. Based on these criteria, we extended the analysis to
include intervals with less than three points between adjacent
points exceeding the control limits as indicative of an out-of-
control state (Figure 3C).

2.2.2 Design sensitized T2 control chart
By adhering to the aforementioned run rules, the robust

Hotelling T2 control chart can effectively identify chromatin open
regions and closed regions across the entire genome, thereby
achieving the objective of filtering out noise labels from the
training datasets. However, it is important to note that the robust
Hotelling T2 control chart can only identify two states, namely OCRs
and non-OCRs, and is unable to distinguish pOCRs. In order to
accurately classify samples that contain a mixture of partially open
states, we propose to use a sensitized T2 control chart specifically
tailored to this scenario.

FIGURE 2
Illustration of input data processing for MEWMA control charts.
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The monitoring statistic of the sensitized T2 control chart
combines the probabilities from a multivariate control chart and
a noise-tolerance classification model respectively and can be
calculated as Formula 6:

ST2
i � ηδ Xi( ) · pT2 Xi( ) + 1 − ηδ Xi( )( ) · pC Xi( ) (6)

where Xi is the i th incoming query observation, and pT2(Xi) and
pC(Xi) are the probabilities that the observation Xi belongs to the
OCR class estimated from the MEWMA chart and OCRFinder
model, respectively. Furthermore, η is the parameter that controls
the amount of weight that we impose on the MEWMA chart. In this
paper, the value of η is 0.3.

The first part of the monitoring statistic (i.e., pT2(Xi)) can be
calculated using the following sigmoid function that returns values
between zero and one, shown in Formula 7.

pT2 Xi( ) � 1

1 + e− fD Xi( )( ) (7)

where fD(xi) can be computed as Formula 8:

fD Xi( ) � T2 − BDT2 α, B( ) (8)

Here, T2 is the typical monitoring statistic of MEWMA control
chart, shown in Formula 9:

T2 � Z′
iS

−1
Z Zi (9)

where Zi � λXi + (1 − λ)Zi−1 and SZi � λ
2−λ S. In addition, 0 < λ≤ 1

and Z0 � 0. BDT2(α, B) are the 100(1 − α) th percentile values from
the non-OCRs T2 statistics based on bootstrapping in which α is the
user-definedType I error rate and B is the number of bootstrap samples.

The second part of the monitoring statistic (i.e., pC(Xi))
represents the probability of an observation being associated with
one of the categories, and can be obtained using the following
sigmoid function, shown in Formula 10:

pC Xi( ) � 1
1 + e−θ

(10)

where θ is the output of linear neural units.

Now we return to Eq. 6. Here, δ(Xi) indicates the confidence of
the predicted value from the classification model, which can be
determined using Equation 11:

δ Xi( ) � 0.5 − pC Xi( )∣∣∣∣
∣∣∣∣·2 (11)

Because the distribution of the sensitized T2 monitoring statistic is
unknown, the control limit (CL) is determined from a percentile value
estimated by bootstrapping. To enhance the effectiveness of
identifying pOCRs, we have fine-tuned the pre-determined control
limits by multiplying them with the factor of mixture ratio. This
approach allows for a more accurate classification of the sample
categories. By accommodating the mixture ratio, we can fully utilize
the characteristics of partially open states and thus improve the
classification performance of the training set.

2.3 Construct deep learning model based on
confident learning framework

Although sensitized T2 control chart can classify OCRs, non-
OCRs, and pOCRs to a certain extent in the training set, theremay still
be a few noisy labels in the classification results. In order to obtain
more accurate classification results, we have introduced a machine
learning model based on the confident learning framework (Curtis
et al., 2021) after the sensitized T2 control chart. The confident
learning framework can be divided into the following three steps:
1) estimating the joint distribution of noisy labels and true labels; 2)
identifying erroneous samples and filtering them out; 3) adjusting the
weights of the sample classes and retraining the model. In order to
address the issue of noisy label overfitting, we have implemented a co-
teaching approach (Han et al., 2018). Compared to training with noisy
labels using a single model, this collaborative training method
effectively reduces the overfitting impact of incorrect labels. This
involves training two identical models and utilizing the clean data to
guide each other during the back-propagation process. Specifically, in
each iteration (e.g., the kth iteration), model A utilizes a clean dataset
DA during the forward propagation, and then model B employs DA

FIGURE 3
Hotelling T2 control charts on different reference genome fragments, representing each of the three cases in which open chromatin regions appear.
Red lines are control limits. (A) Hotelling T2 control chart on reference genome fragment from 59760000 to 59780000, representing the occurrence of
the OCR in run rule 1. (B) Hotelling T2 control chart on reference genome fragment from 32840000 to 32860000, representing the occurrence of the
OCR in run rule 2. (C) Hotelling T2 control chart on reference genome fragment from 45440000 to 45460000, representing the occurrence of the
OCR in run rule 3.
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for backpropagation to update itself. The same process is reciprocated
for model A’s update. By employing this co-teaching strategy, we
indirectly mitigate the problem of overfitting that arises when a single
model employs identical parameters for both prediction and update.

In this section, we convert the cfDNA-seq data into image-based
inputs. Our model architecture comprises several key components,
including a one-dimensional convolutional layer, a max-pooling
layer, a bidirectional LSTM layer, another one-dimensional
convolutional layer, another max-pooling layer, and finally a fully
connected layer. In this paper, the deep learning model is called
ConvLSTM. The focus of this study is on how to design a noisy label
learning algorithm based on deep learning for OCRs estimation
rather than feature extraction, the selection of deep learning models
is not considered in this paper.

The OCRClassifier algorithm is designed to accurately classify
data that contains a mixture of the third category labels, while only
two labels are marked. The training dataset, obtained after the
application of the robust Hotelling T2 control chart filtering,
exclusively consists of reliable OCRs and non-OCRs data. This
dataset is used to train a sensitized T2 control chart that is
capable of recognizing three categories: chromatin open regions,
partially open regions, and closed regions. For dataset including
pOCRs, the sensitized T2 control chart can reassign labels and then
the co-teaching model will produce the final accurate
classification results.

3 Results

The cfDNA sequencing data of healthy individuals (IH01, IH02,
BH01) used in this study were provided by Snyder (Snyder et al.,
2016). The sequenced reads were aligned to the GRCh37 human
reference genome. The sequencing coverage was 96-105x, with
approximately 15–16 million sequencing fragments (Snyder et al.,
2016). The OCRs of the hematopoietic lineage used in this study were
obtained from the ENCODE database, specifically from the results of
ATAC-seq and DNase-seq experiments. The housekeeping genes file,
ATAC-seq experimental results, and DNase-seq experimental results
were all obtained from Wang’s study (Wang et al., 2021).

In order to evaluate the performance of our algorithm, we adopt
a similar approach as OCRFinder, relying on known gene expression
levels or chromatin accessibility levels. For the initial training and
test sets, we adopt the same selection approach as OCRFinder,
chromosomes 2-7 are used for training, and chromosome 1 is used
for testing. The OCR samples in initial training set are from
housekeeping genes and non-OCRs samples are obtained by non-
genetic regions. Specifically, the training set is filtered by the robust
Hotelling T2 control charts based on MRCD estimation, and we get
800 OCR samples through this process. The principle of filtering is
that if the OCR sample in the training set overlaps with the open area
obtained by the robust Hotelling T2 control chart, the OCR sample is
retained and others will be filtered out. The same filtering rules are
applied to the non-OCR samples. Among these 800 OCR samples,
we selected 400 to serve as OC information for training the
sensitized T2 control chart. Additionally, we chose 1,000 samples
from the filtered non-OCR samples to provide IC information for
training the sensitized T2 control chart. Due to the unavailability of
clearly labeled data for pOCRs, we simulate the required dataDPOCR

by utilizing filtered chromatin open regionsDOCR and closed regions
DCCR, the Formula 12 is as follows:

DPOCR � DOCR · τ +DCCR · 1 − τ( ) (12)
where τ is the composite rate, unless otherwise stated, the value of τ
is 0.7 in this paper. Since the simulated sequencing data is extracted
from the real cfDNA-seq data, the research conducted on the
simulated data could be appropriate for the real scenario. Indeed,
it should be noted that the labels for partially open region data were
randomly assigned either an open region label or a closed region
label during the OCRClassifier training process.

For test set, we also selected highly expressed housekeeping
genes as OCR samples (class 1) and non-genetic regions without
gene expression as non-OCR samples (class 0) and simulate the
pOCR samples (class 2). To exclude gene-specific chance, the results
of ATAC-seq and DNase-seq experiments in hematopoietic lineage
cells are combined. We conducted comparison experiments on three
test sets: HK_TSS, Hematopoietic_Lineage_ATAC, Hematopoietic_
lineage_DNase.

We used the accuracy (ACC), recall (REC), precision (PRE),
F1 score (F1), area under the receiver operating characteristic
curve (AUC) and area under the precision-recall curve (AUPR)
as the criteria for the performance evaluation.

ACC � TP + TN

P +N
� TP + TN

TP + FN + TN + FP

REC � TP

P
� TP

TP + FN

PRE � TP

TP + FP

F1 − score � 2 ×
PRE × REC

PRE + REC

During model training, we used the ConvLSTM network and
selectd Adam optimizer (Kingma and Ba, 2014). The learning rate
was set to 1e-4, the batch size was 128, and the training epoch was
150, with an additional warm-up training epoch of 10. It is
important to note that the reported results in this paper are the
average of five independent experiments, each initialized with a
different random seed.

3.1 Effectiveness analysis of the robust
Hotelling T2 control chart

Due to the dynamic nature of open chromatin regions in tissue-
specific contexts, it is challenging to obtain a large number of reliable
labeled samples for model training. OCRFinder is a noise-tolerance
approach and has performed impressive results in various
evaluations. However, it is observed that the performance of
current noisy label learning methods tends to diminish as the
proportion of noisy labels in the training set increases. Thus, the
performance of the OCRFinder is still attenuated by the proportion
of noisy labels in the training sets. In this study, we utilize the robust
Hotelling T2 control chart to further filter out the noisy labels in the
initial training dataset and then enhance the performance of the
noise-tolerance model.

As mentioned earlier, the original training dataset used for
OCRFinder was filtered through robust Hotelling T2 control
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chart, resulting in 800 positive samples. To ensure a balanced
dataset, an equal number of negative samples are also retained,
resulting in a training set comprising a total of 1,600 samples. After
retraining OCRFinder with the filtered training dataset, as shown in
Figure 4, there has been an improvement in the model’s
performance. Table 1 shows that the retrain model outperforms
OCRFinder in both AUC and AUPR on each test set. From this
perspective, it is evident that the robust Hotelling T2 control chart is
capable of performing OCR recognition on the training dataset,
thereby reducing noise percentage in the initial training set. This
dual effect allows for an improved performance of the OCRFinder
model in OCR recognition while also providing assurance for the
training of a three-class sensitized T2 control chart recognition.

3.2 Effectiveness analysis of the detection
capability of sensitized T2 control chart

To verify the detection capability analysis of sensitized T2

control charts on partially open chromatin regions, we compared
the classification results of EWMA, OCRFinder, and the designed
sensitized T2 control chart. Traditional multivariate control charts
can only identify two states: out-of-control and in-control. When
the statistic exceeds the control limit, it is considered out-of-control,
while it is considered in-control when the statistic is below the
control limit. Similarly, the MEWMAmultivariate control chart can
only distinguish between OCRs (out-of-control) and non-OCRs (in-
control), but it cannot differentiate pOCRs. pT2 represents the

FIGURE 4
The comparison on sensitivity between retrained OCRFinder and OCRFinder on different testing sets.
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probability of the sample belonging to the OCR estimated by the
MEWMA control chart. When pT2 ≤ 0.5, it indicates that the sample
is estimated to belong to the non-OCR; when pT2 > 0.5, it indicates
that the sample is estimated to belong to the OCR. Figure 5A shows
the probability distribution of samples estimated to belong to the
open chromatin state by the MEWMA control chart. For the
OCRFinder binary classification model, pC represents the
probability of the sample belonging to the open chromatin state
estimated by the OCRFinder model. When pC ≤ 0.5, it indicates that
the sample is estimated to belong to the non-OCR; when pC > 0.5, it
indicates that the sample is estimated to belong to the OCR.
Figure 5B shows the probability distribution of samples estimated
to belong to the open chromatin state by the OCRFinder model.
Therefore, relying solely on the MEWMA control chart or

OCRFinder classification model cannot distinguish the pOCRs.
The sensitized T2 control chart proposed in this study combines
the MEWMA control chart and OCRFinder classification model,
and its performance is shown in Figure 5C. It can be observed that
the sensitized T2 control chart can roughly detect pOCRs. As shown
in Figure 5C, samples are classified as CCRs when the value
ST2ϵ[0, CL], categorized as pOCRs when ST2ϵ(CL, 1 − η] and fall
into the OCRs category when ST2ϵ(1−η, 1].

To determine the optimal value of η, the size of η varied from 0.1,
0.2, and 0.3 to 0.9 in the experiment. It should be noted that the control
limits of the sensitized T2 control chart are indicators for distinguishing
between in-control and out-of-control states. The non-OCR belongs to
the in-control state, and its statistic should be below the control limit.
The OCR and pOCR both belong to the out-of-control state, and their

TABLE 1 The AUC and AUPR values of retrained OCRFinder and OCRFinder on different testing sets.

Re-OCRFinder (%) OCRFinder (%)

AUC AUPR AUC AUPR

HK_TSS 98.46 98.7 97.57 97.81

Hematopoietic_Lineage_ATAC 96.23 96.98 94.98 95.43

Hematopoietic_Lineage_DNase 91.98 93.69 89.42 91.29

Bold values represent the results from the proposed method.

FIGURE 5
Performance of sensitized T2control chart. (A)MEWMA estimates the probability distribution of samples belonging to the open chromatin state. (B)
OCRFinder estimates the probability distribution of samples belonging to the open chromatin state. (C) Statistical monitoring of sensitized T2 control
chart (η � 0.3). (D) Statistical monitoring of sensitized T2 control chart (η � 0.8).
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statistics should be above the control limit. However, when η exceeds
0.7, the statistics of the pOCRs are also below the control limit.
Figure 5D shows the monitoring statistics for η � 0.8, where the red
dashed line represents the control limit. It can be seen that only a very
small portion of the pOCRs has statistics exceeding the control limit,
while the majority are below the control limit, indicating that η ≥ 0.7
leads to inaccurate conclusions. Therefore, we only consider η≤ 0.6 in
the following experiment. Figure 6 shows the performance of the
OCRClassifier model on various evaluation metrics at different η

values, using the HK_TSS dataset. From Figure 6, it can be
observed that as η increases from 0.1 to 0.3, the model’s precision,
recall, F1 score, and accuracy values all show an increasing trend.
However, as η increases from 0.3 to 0.6, the model shows a general
decline in performance across all metrics. Therefore, when η is set to
0.3, the model achieves optimal performance. Unless otherwise
specified, the value of η is set to 0.3 in this paper.

3.3 Comprehensive performance analysis of
OCRClassifier under different data sets

The primary objective of our study is to thoroughly evaluate the
performance of the OCRClassifier algorithm using diverse reference
datasets. In Figure 7, we present an extensive analysis of the
OCRClassifier’s performance specifically on the HK_TSS dataset.
The results reveal that the OCRClassifier has exceptional
performance in identifying three essential categories: open
chromatin regions, partially open regions, and closed chromatin
regions. In four evaluation criterions, the OCRClassifier achieves the
level above 84%. Moreover, we also provide the results from the
OCRClassifier without the confident learning (OCRClassifier_
initinal). Notably, the OCRClassifier outperforms OCRClassifier_

initinal, exhibiting improvements of up to 3 percentage points
across all evaluation metrics, demonstrating that incorporating
confident learning significantly enhances the overall performance of
the algorithm.

Table 2 presents a comprehensive overview of the performance
of the OCRClassifier algorithm across different datasets. From the
table, it is evident that the OCRClassifier consistently outperforms
the OCRClassifier_initial in various metrics. Additionally, the HK_
TSS dataset exhibits the highest model performance, followed by the
Hematopoietic_Lineage_ATAC dataset, while the Hematopoietic_
Lineage_DNase dataset lags behind. These results are consistent
with established biological findings.

3.4 Influence of mixture ratios on the
performance of OCRClassifier

By varying the magnitude of the mixture ratio, the degree of
openness of pOCRs can be altered. To investigate the impact of
pOCRs openness on OCRClassifier model classification
performance, we increased the values of the mixture ratio from
0.55 to 0.85. Then the relationship between pOCRs openness and
model classification performance can be obtained. In Figure 8, the
degree of openness of pOCRs is indicated by the mixture ratio. It
could be observed that the variation of pOCR openness has no
significant impact on OCRClassifier’s performance, suggesting the
robustness of OCRClassifier. It should be noted that the model’s
classification performance slightly decreased from 0.8 to 0.85.
This could be the reason that the degree of openness of pOCRs at
0.85 becomes quite similar to that of OCRs, making it challenging
for the sensitized T2 control chart to differentiate between these
two states during the training set partitioning process.

FIGURE 6
The performance on the HK_TSS dataset under different η values.
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Furthermore, this study made fine adjustments to the control
limits of the sensitized T2 control chart. As depicted in Table 3,
OCRClassifier‘s performance improved after these adjustments.
Because pOCRs are positioned in an intermediate state, the
sensitized T2 control chart becomes more effective in
distinguishing pOCRs by refining the control limits, thereby
enhancing the overall performance of the model.

3.5 Analysis of classification ability
compared with OCRFinder

The OCRFinder model is a binary classification model that can
only identify two categories: open and closed regions of chromatin.
However, the proposed model OCRClassifier in this study is a three-
classification model that not only identifies open and closed chromatin

FIGURE 7
The performance of OCRClassifier on the HK_TSS dataset.

TABLE 2 The performance of the OCRClassifier algorithm across different datasets.

OCRClassifier (%) OCRClassifier_initial (%)

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy

Hematopoietic_Lineage_ATAC 78.54 74.2 74 74.2 74.12 71.92 70.76 71.92

Hematopoietic_Lineage_DNase 74.6 67.99 67.76 67.99 70.41 66.18 65.04 66.18

Bold values represent the results from the proposed method.
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regions but also recognizes partially open regions. Nevertheless, both
models share similarities in terms of their training datasets, which
consist of samples labeled as either 0 or 1. The difference lies in the fact

that the OCRClassifier’s training dataset includes a mixture of samples
labeled as 2 in practice. To evaluate the classification performance of the
OCRClassifier, we conducted two comparative experiments.

FIGURE 8
The classification performance under different mixture ratios on the HK_TSS dataset.

TABLE 3 The sensitivity of OCRClassifier before and after the adjustment of control limits in sensitized T2 control chart on different datasets.

0.55 0.6 0.65 0.7 0.75 0.8 0.85

HK_TSS OCRClassifier (%) 74.45 79.67 80.8 84.33 84.87 84.96 72.36

OCRClassifier_initialCL (%) 71.36 75.83 79.67 82.7 84.01 83.65 71.31

Hematopoietic_Lineage_ATAC OCRClassifier (%) 64.44 68.99 71.03 74.2 75.51 75.44 61.87

OCRClassifier_initialCL (%) 62.47 66.01 68.14 73.35 74.37 73.45 66.83

Hematopoietic_Lineage_DNase OCRClassifier (%) 60.28 63.74 65.63 67.99 68.58 68.48 62.09

OCRClassifier_initialCL (%) 58.54 61.47 63.3 67.13 67.83 66.5 61.93

Bold values represent the results from the proposed method.
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Firstly, we compared its binary classification ability,
specifically, the capability to identify OCRs and non-OCRs,
with that of the OCRFinder model. The performance results of
the OCRClassifier and OCRFinder for different datasets are
presented in the Table 4. From the table, the OCRClassifier
exhibits a slightly lower classification ability compared to the
OCRFinder when the test dataset only includes OCRs and non-
OCRs. This finding aligns with practical expectations because the
OCRClassifier is designed for a three-classification. When
restricted to binary classification, the OCRClassifier model may

misclassify certain samples as a third category, leading to a weaker
performance than the OCRFinder.

Then, we validated the OCRClassifier’s ability in recognizing the
pOCRs. We applied OCRFinder to classify a test dataset that
contained pOCRs. The results of the classification generated only
labels 0 and 1. Simultaneously, we employed OCRClassifier to
classify the same test dataset, resulting in labels 0, 1, and 2.
Analyzing the classification results of OCRFinder, we removed
the intersection of labels 0 and 1 from the two sets (samples like
Figures 9A, B). After this removal, we found that some samples (like

TABLE 4 The comprehensive performance of the OCRClassifier and OCRFinder models across different training sets.

OCRClassifier (%) OCRFinder (%)

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy

HK_TSS 95.26 90.36 93.21 91.15 94.32 95.14 94.54 94.85

Hematopoietic_Lineage_ATAC 91.15 81.23 85.25 81.69 94.51 87.35 88. 65 88.92

Hematopoietic_Lineage_DNase 86.1 77.2 79.5 76.81 85.01 83.14 83 83.17

Bold values represent better performance of the two models under the same metric.

FIGURE 9
The classification results of different samples by OCRFinder and OCRClassifier models. (A) The OCR sample that was classified as OCR by both
models. (B) The CCR sample that was classified as CCR by both models. (C) The pOCR sample that has been misclassified as OCR by OCRFinder. (D) The
pOCR sample that has been misclassified as CCR by OCRFinder.
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Figures 9C, D) were classified as label 2 by OCRClassifier, while
OCRFinder misclassified them as label 0 or label 1, as depicted in the
waveform Figure 9. Hence, it is evident that OCRClassifier exhibits
the capability to recognize the third category pOCRs.

4 Discussion and conclusion

OCRs play a significant regulatory role in human biological
activities and growth. The multi-class evaluation of the open state
of chromatin regions can contribute to further cancer analysis
research. Currently, methods for identifying chromatin open
regions are limited to recognizing only two states: completely
open and completely closed. For datasets that contain partially
open chromatin regions, existing models may not be able to
identify them. Additionally, training datasets based on
biological experiments for OCRs and non-OCRs often include a
high proportion of noisy labels, which substantially attenuates the
model performance. By reducing the proportion of noisy labels in
the training set, the identification ability of model could be
further improved.

In this paper, we propose open chromatin region classifier
(OCRClassifier), which can reduce the noisy labels in the initial
training set and identify OCRs, non-OCRs, and pOCRs. The main
task of OCRClassifier is to utilize robust Hotelling T2 control chart to
filter the initial training set, which consists of only OCRs and non-
OCRs, based on the different distributions of cfDNA-seq data
features in different states. This filtering process aims to obtain
more reliable samples for training, thereby enabling the
development of a sensitized T2 control chart that can identify a
third category of pOCRs. The experimental results demonstrate that
OCRClassifier achieves a performance of over 84% in terms of
accuracy, precision, recall, and F1-score, indicating its strong ability
for three-class classification. Furthermore, the model exhibits high
robustness in classification performance, which is unaffected by
various openness levels of pOCRs. This framework allows for the
improvement of OCRFinder in binary classification, by integrating
the robust Hotelling T2 control chart with OCRFinder. Specifically,
the OCRFinder is trained after filtering the training set by the robust
Hotelling T2 control chart. The resulting model exhibits a 3-
percentage point increase in sensitivity compared to the original
OCRFinder. Additionally, the AUC and AUPR values of proposed
method are also higher than original OCRFinder. The concept of
OCRClassifier can be extrapolated to address label-unknown or
label-ambiguous challenges in other bioinformatics domains as well,
offering a promising approach to tackle the expensive annotation
issues associated with biomedical samples.

The OCRClassifier is capable of identifying OCRs, non-
OCRs, and pOCRs, where the data for pOCRs is simulated
based on the other two categories. However, cfDNA is a
composite of various cell types. Neutrophils, lymphocytes
and liver are the primary contributors to cfDNA (Sun et al.,

2015), resulting in the detection of a higher number of OCRs
through cfDNA analysis, and our method can only detect these
regions, independent of cell type. Therefore, the improvement
of the OCRClassifier for predicting cell type-specific or tissue-
specific OCRs and pOCRs is needed in future study.
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