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Increasing research findings suggest that circular RNA (circRNA) exerts a crucial
function in the pathogenesis of complex human diseases by binding to miRNA.
Identifying their potential interactions is of paramount importance for the
diagnosis and treatment of diseases. However, long cycles, small scales, and
time-consuming processes characterize previous biological wet experiments.
Consequently, the use of an efficient computational model to forecast the
interactions between circRNA and miRNA is gradually becoming mainstream.
In this study, we present a new prediction model named BJLD-CMI. The model
extracts circRNA sequence features and miRNA sequence features by applying
Jaccard and Bert’s method and organically integrates them to obtain CMI
attribute features, and then uses the graph embedding method Line to extract
CMI behavioral features based on the known circRNA-miRNA correlation graph
information. And then we predict the potential circRNA-miRNA interactions by
fusing themulti-angle feature information such as attribute and behavior through
Autoencoder in Autoencoder Networks. BJLD-CMI attained 94.95% and 90.69%
of the area under the ROC curve on the CMI-9589 and CMI-9905 datasets. When
compared with existing models, the results indicate that BJLD-CMI exhibits the
best overall competence. During the case study experiment, we conducted a
PubMed literature search to confirm that out of the top 10 predicted CMIs, seven
pairs did indeed exist. These results suggest that BJLD-CMI is an effectivemethod
for predicting interactions between circRNAs and miRNAs. It provides a valuable
candidate for biological wet experiments and can reduce the burden of
researchers.
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1 Introduction

Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs with
covalently closed loops that are important components of gene transcription. In
comparison to traditional linear RNA, circRNA, due to it is end-to-end covalent
closure and the absence of a 5′ cap or 3′ poly(A) tail (Zheng et al., 2020), is less
susceptible to degradation by exonucleases, rendering it is structure more stable.
CircRNA was first discovered in virus-infected plant particles in 1976. However, due to
it is low expression levels and sparse occurrence, it was initially considered a byproduct of
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gene transcriptional splicing errors or “splicing noise,” receiving
limited attention from researchers at that time. Hsu and Coca-
Prados (1979) used electronic microscopy in 1979 to provide
indications of the existence of circRNA in the cytoplasm of
eukaryotic cell lines. With the maturity of high-throughput
sequencing technology as well as the continuous development of
bioinformatics, researchers have discovered that circRNA is
abundant in eukaryotes and performs a crucial role in various
biological processes. In 2013, Memczak et al. (2013)
demonstrated through sequence analysis that circRNA has
important regulatory functions. In the same year, Hansen et al.
(2013) discovered a highly expressed circular RNA that binds with
miR-7 within human and mouse brain. Additionally, they identified
a testis-specific circRNA acting as a miR-138 sponge. This led to the
inference that the miRNA sponge effect formed by circRNA is a
widespread phenomenon. Simultaneously, various biological
functions of circRNA have been gradually understood by
humans. For instance, circRNA can act as a scaffold for protein
complex assembly, regulate gene expression, and modulate selective
splicing RNA-protein interactions (Deng et al., 2019). As
understanding of circRNA and miRNA deepens, an increasing
amount of research evidence suggests the existence of
connections between the two. CircRNAs participate in organic
processes, and their dysregulation and mutations can affect
disease progression. As an example, Gong et al. (2023)
discovered that hsa_circ_0064644 could inhibit the proliferation
and migration of osteosarcoma cells by acting as a miR-424-5p
sponge to regulate eIF4B and YRDC. Wang et al. (2022a)
demonstrated that hsa_circ_0005505 modulates KIF2A
expression by acting as a miR-603 sponge, and silencing hsa_
circ_0005505 will cause self-apoptosis of breast cancer cells,
which cannot normally multiply, move and invade other tissues
in vitro. Causing tumor growth in the body to slow down. Pan et al.
(Pan and Binghua, 2023) confirmed that hsa_circ_
0135761 positively regulates EFR3 by competitively binding to
miR-654-3p. Reducing the gene level of hsa_circ_
0135761 promotes apoptosis in NP carcinoma cells, as well as
inhibits the increase and relocation of nasopharyngeal carcinoma
cells. Therefore, circRNA may serve as a potential biomarker.
Examining the potential correlation between circRNAs and
miRNAs holds significant clinical guidance for biologists in
diagnosing and treating diseases.

Before the popularity of computational models, identifying the
relation of circRNAs to miRNAs typically relied on classical biological
experimental methods. However, validating these experimental results
often proved to be quite cumbersome. With the discovery of an
increasing number of circular RNAs, the growing number of
miRNAs to be validated has posed significant challenges to
traditional biological experimental verification methods. As
computational models gradually address the drawbacks of traditional
biological experiments, including long experimental cycles, high costs,
small-scale studies, and susceptibility to external interference, an
increasing number of researchers have begun to predict the
interrelationships between circRNAs and miRNAs with the help of
computational modeling. This alleviates the burden of experimental
validation and provides researchers with a broader perspective. In 2018,
Li et al. (2018) explored data integration principles using a machine
learning approach to analyze a variety of downstream tasks using a

computer-based perspective. In 2019, the computational framework
CMASG was introduced by Qian et al. (2021b), which utilizes singular
value decomposition and graph variational autoencoder to extract linear
and nonlinear features from circRNA and miRNA. Additionally, they
integrated the framework to predict the interactions between them. In
2021, Lan et al. (2021) suggested a new method named NECNA for
network-based embedding. This method utilizes GIP kernel similarity
networks of circRNAandmiRNA, alongwith their associated networks,
to construct a heterogeneous network. Through neighborhood
regularized matrix factorization and inner product, NECNA predicts
the interaction between circRNA and miRNA.

As methods for extracting and fusing features continue to
mature, a single feature cannot interpret all the information in
an organism, so researchers have begun to combine multiple
features to interpret information in organisms. In 2021, Qian
et al. (2021a) proposed a model, MKSVM, which fuses multiple
feature information extracted from protein sequences through a
central kernel alignment-based multiple kernel learning (MKL-
CKA) algorithm to predict DBP. In 2022, a computational model
called WSCD was introduced by Guo et al. (2022). It utilizes graph
embedding and word embedding to extract features and integrates
convolutional neural networks (CNN) and deep neural networks
(DNN) to deduce the potential interactions between circRNA and
miRNA. In the same year, Qian et al. (2022a) proposed a prediction
model for adverse drug reactions, which constructs two spatial
RBMs to predict drug-side effect associations by fusing the
similarity feature matrix of the drug chemical structure
information and the similarity feature matrix of the association
mapping based on the central kernel alignment (MKL-CKA)
algorithm, as well as the adjacency matrix supplemented by
Weighted K nearest known neighbors. Yu et al. (2022)
introduced a model named SGCNCMI. This model employs a
graph neural network with a contribution mechanism to
aggregate multi-modal information from nodes for predicting
CMIs. Qian et al. (2022b) proposed a model, MvKSRC, which
combines multi-view features such as amino acid composition,
evolutionary information and amino acid physicochemical
information to further predict membrane protein types by Kernel
Sparse Representation based Classification (KSRC). Wang et al.
(2022b) designed a computational method, KGDCMI, based on
the fusion of multiple sources of information to predict interactions
between circRNA andmiRNA. This method combines sequence and
similarity to obtain attribute features, combined with the behavior
features, the extracted feature vectors are sent to the deep neural
network for prediction. In 2023, Li et al. (2023) introduced a multi-
source information fusion model, DeepCMI. This model integrates
various information, including sequence similarity matrices and
Gaussian interaction kernel features, to construct multi-source
features. Through linear embedding prediction of CMI by
enhanced feature extraction through linear embedding.

Although the existing models mentioned above have achieved
relatively influential prediction results, they still inevitably have
certain limitations in terms of efficiency and methodology, and
many prediction models are built on statistical models and machine
learning algorithms that lack an understanding of biological
information. Consequently, the prediction results may be difficult to
interpret or unreliable. To address the above issues, we proposed a novel
computational model-based approach called BJLD-CMI for predicting
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circRNA-miRNA interactions in this study. Firstly, We utilized the
Jaccard and Bert (Devlin et al., 2018) methods to extract features from
the circRNA and miRNA sequences respectively and organically
integrate them into attribute features of CMI. Secondly, we
employed the graph embedding method Line (Tang et al., 2015) to
extract behavioral features of CMI based on the graph information of
circRNA-miRNA interactions. We then introduce the Autoencoder in

AutoencoderNetworks (Zhang et al., 2019)model to fuse the behavioral
and attribute features of circRNA and miRNA, obtaining
comprehensive features between them. Finally, an XGBoost (Chen
and Guestrin, 2016) classifier is utilized to predict potential CMIs. We
conducted a comprehensive evaluation of themodel performance based
on five-fold cross-validation (5-fold CV). In the validation on the CMI-
9905 dataset, we achieved remarkable performance, with the AUC

FIGURE 1
BJLD-CMI workflow diagram. (A) Data were collected and cleaned from MiRbase, CircBank, and CircR2cancer databases to obtain the CMI-9589
dataset and CMI-9905 dataset, respectively. (B) Jaccard, Bert, and Line were applied to extract the known attribute features and behavioral features of
CMI. (C) Use Autoencoder in Autoencoder Networks to fuse the attribute features and behavioral features, and the fused features are predicted and
analyzed by the XGBoost classifier for each CMI.
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reaching 90.69%, accuracy as high as 88.36%, and precision reaching
85.31%. We also compared different classifiers and obtained favorable
results. Additionally, we conducted a case study on BJLD-CMI, wherein
we validated the top 10 predicted CMI pairs from the experiment
through the latest literature in the PubMed database. It was found that
7 of these pairs have already been confirmed to have a
relationship. Based on these experimental results, we conclude that
the BJLD-CMI model plays a significant role in predicting the
interaction between circRNA and miRNA, providing effective
guidance for biological experiments to identify circRNA as relevant
miRNA sponges. Figure 1 illustrates the workflow of BJLD-CMI.

2 Materials and methods

2.1 Dataset

For this study, to assess the model’s ability to predict CMI, we
utilized two commonly used datasets, namely, the CMI-9589 dataset
and the CMI-9905 dataset. The CMI-9589 dataset is sourced from the
CircBank (Liu et al., 2019) database, which is a comprehensive human
circRNA database containing detailed annotations for 140,790 human
circRNAs from various sources. In addition to providing basic
information about circRNA, CircBank also offers a set of interaction
data between circRNA and miRNA for predicting and analyzing
miRNA interactions. Based on the cleaning and summarizing the
data, we acquired known 9,589 circRNA-miRNA pairs, among
which 2,115 circRNAs and 821 miRNAs were involved. The
CircR2Cancer (Lan et al., 2020) database is a manually curated
database that associates circRNA with cancer. The CMI-9905
dataset, obtained by Wang et al. (2022b), comprises data on
circRNA-miRNA interactions from the public database
CircR2Cancer, including combined 318 circRNA-miRNA pairs
among 238 circRNAs and 230 miRNAs. By integrating the data of
the two databases, 9,905 good-quality CMI pairs were final acquired,
comprising 2,346 circRNAs and 962 miRNAs. In this study, we
primarily utilized the CMI-9905 dataset and regarded it as the
positive sample, detailed information is available in Table 1.
Subsequently, we randomly selected 9,905 unknown CMI pairs from
the data pool of 2346 × 962 − 9905 � 2, 246, 947 as negative samples.

2.2 Constructing attribute characteristics

In bioinformatics, researchers typically analyze the
nucleotide sequences of RNA to extract features such as
nucleotide composition, base pair frequency, sequence length,
etc. These features help reveal the structure, function, and
relationships with other biomolecules of RNA. Due to the
substantial differences in the length of circRNA nucleotide

sequences, with some long circRNAs containing thousands of
nucleotides and short circRNAs containing only a few hundred
nucleotides, we chose to use the Jaccard similarity coefficient to
extract attribute features from circRNA sequences. This is
because the Jaccard similarity coefficient can better reflect the
similarity between sequences of different lengths. miRNAs
usually have relatively short lengths, typically between 20 and
22 nucleotides. To extract attribute features from miRNA
sequences, we employed the Bert model. Finally, we integrate
the attribute features of circRNAs and miRNAs depending on the
interaction relationships and finally obtain the CMI attribute
features of known relationship pairs.

2.2.1 Jaccard similarity coefficient
The Jaccard model is one of the fundamental models for

similarity recognition, while the Jaccard similarity coefficient is
an important metric used to measure the similarity between two
sets. The factor takes values between 0 and 1, and the closer the
value is to 1, the more similar the two sets are. The Jaccard
similarity coefficient, widely employed in bioinformatics, serves
to assess the dissimilarity or similarity between finite sets of
samples (Wang et al., 2021). In order to extract the most effective
sequence information, we use a moving window whose window
size is 5 and whose stride size is 1 to split the sequence. This
divides a circRNA of length L into sets of length L/5. Then, we
utilize the Jaccard similarity coefficient to gauge the
representation of differences in circRNA Ca and other
circRNA sequences in the sample, represented as Formula 1:

JCa �
Ca ∩ Ce

Ca ∪ Ce

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (1)

Where Ce represents the sequence set of 2,346 different
circRNAs, with e ∈ [1, 2346].

2.2.2 Natural language processing model of bert
Bert (Devlin et al., 2018) is an unsupervised pre-trained language

model used for natural language processing tasks. It consists a
bidirectional multi-layer Transformer encoder stack. Bert learns
from two unsupervised pre-training tasks, namely, Masked Language
Model (MLM) and Next Sentence Prediction (NSP) tasks. In the MLM
task, model learning anticipates some tokens of the input sequence by
shadowing them randomly. In the NSP task, model learns to judge
whether two sentences were adjacent or not. As shown in Figure 2, Bert
preprocesses the input information, represented as Formula 2 when the
input is miRNA sequence information:

inputpre � CLS[ ],U ,G, . . . , SEP[ ],A,G, . . . ,C, SEP[ ]( ) (2)
[CLS] is a special token added at the beginning of each input
sequence, and [SEP] is a special token used as a separator. Bert’s
input is the sum of Token embedding, Segment embedding, and
Position embedding, represented as Formula 3:

input � EmbeddingTok inputpre( ) + EmbeddingSeg inputpre( )
+EmbeddingPos inputpre( ) (3)

At the encoding layer, Bert comprises a 12-layer Transformer
encoding network, with each layer having a hidden size of 768,
aimed at extracting latent features and establishing correlations

TABLE 1 CMI data set information used in BJLD.

Dataset CircRNA MiRNA Interaction

CMI-9589 (CircBank) 2,115 821 9,585

CMI-9905 (CircBank,
Circr2cancer)

2,346 962 9,905
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between contexts. Compared to ELMo (Sarzynska-Wawer et al.,
2021), Bert uses Transformer blocks as extractors, pre-trained
through MLM (Masked Language Model) to enhance semantic
feature extraction capabilities. In contrast to GPT (Radford et al.,
2018), Bert switches from unidirectional to bidirectional encoding,
leveraging all context information for each word and predicting and
reconstructing the original data from corrupted input data through
autoencoding. Compared to unidirectional encoders that can only
utilize leading information for semantic information extraction, Bert
exhibits stronger semantic information extraction capabilities.

In this study, we obtained a set of 9,905 relationship pairs between
circRNA andmiRNA, involving the IDs of 962miRNAs. To study these
miRNAs in depth, we introduced that Bertmodel. By queryingmiRbase
(Griffiths-Jones et al., 2007), we retrieved sequence information for the
962 miRNAs corresponding to their IDs. This sequence information
was used as input, and after processing through the Bert model, we
obtained a digitized representation of the output, extracting attribute
features representing the miRNAs.

2.3 Graph embedding for behavioral feature
extraction

Graph embedding (Yan et al., 2006) is a technique that maps every
node in a diagram structure to a low-dimensional vector space, and it
plays a crucial role in many graph data analysis tasks. In the field of
bioinformatics, graph embedding is widely used to study complex
biological relationships (Yi et al., 2022), such as molecular
interactions and gene regulatory networks. Graph embedding utilizes
known interactions among circRNAs with miRNAs to obtain a matrix
that the behavior feature of circRNAs with miRNAs. An interaction
information network is regarded asG � (V,E), in whichV denotes the

collection of vertices (data objects) andE denotes the collection of edges
interactions between vertices. Most graph embedding methods only
consider first-order proximity, such as Deepwalk (Perozzi et al., 2014).
In this study, we employ the Line (Tang et al., 2015) graph embedding
algorithm, which preserves both first-order and second-order
proximity, thus better preserving the global structure of the network.
By learning low-dimensional representations of nodes, we can more
effectively capture the similarity and interaction of nodes in the
graph structure.

The first-order proximity in the interaction network of circRNA
and miRNA is the local pairwise proximity between two vertices, Vc

and Vm. If there is no edge, the first-order proximity is 0. For each
undirected edge (c,m), the formula for the first-order joint probability
distribution of vertices Vc and Vm is defined as Formula 4:

p1 Vc ,Vm( ) � 1

1 + exp − �uT
c · �um( ) (4)

Where �uc, �uc ∈ Rd are the low-dimensional representation
vectors of vertices Vc and Vm. It is first-order goal function is
shown in Formula 5:

O1 � ∑
c,m( )∈E

Wcm · log p1 Vc,Vm( ) (5)

WhereWcm is the connection weight between vertices Vc and Vm.
The second-order proximity in the interaction network of CircRNAand
miRNA is the similarity between the neighborhood network structures
of two vertices Vc and Vm. If there is no neighborhood network
structure, the second-order proximity is 0. In the second-order
proximity, each vertex has two tasks: Task 1: the vertex itself, Task
2: a specific context with other vertices. For each edge (c,m), the
second-order joint probability distribution formula is Formula 6:

FIGURE 2
Basic flowchart of Bert pre-training.
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p2 Vm|Vc( ) � exp �u′ Tm · �uc( )
∑V| |

k�1
exp �u′Tk · �uc( )

(6)

where |V| is the number of vertices or contexts. It is second-order
goal function is shown in Formula 7:

O2 � ∑
c,m( )∈E

Wcm · log p2 Vm|Vc( )( ) (7)

To expedite the learning process, we modify the Formula 7 using
negative sampling. The modified objective function is expressed as
Formula 8:

O2 � log σ �u′ Tm · �uc( ) +∑K
i�1
EVn~Pn V( ) log σ − �u′Tn · �uc( )[ ] (8)

Where σ(x) � 1
(1+ exp(−x)) is the sigmoid function, K is the

number of negative samples, and Pn(V) ~ d(V) 3
4 is usually set,

where d(V) represents the degree of vertex V.

2.4 A neural network model for double layer
nested automatic encoder

Autoencoder is an unsupervised learning neural network model
designed to learn efficient representations of data. It can be utilized for
tasks such as data compression, denoising, and feature extraction. The
autoencoder model is instrumental in aiding the exploration and
prediction of interactions among non-coding RNAs. In this study,
we use the Autoencoder in Autoencoder Networks (Zhang et al., 2019)
model to effectively fuse circRNA and miRNA with multi-angle
features, that is, to fuse the two angular features of circRNA and
miRNA, so that the fused features not only have complementarity
between behavioral features and attribute features, but also have
complementarity between behavioral features and attribute features.
It also has the consistency between behavior characteristics and
attribute characteristics. The Autoencoder in Autoencoder Networks
model mainly includes the First-AE network and the Second-AE
network, which can learn single-angle feature representation and
complete multi-angle feature representation together. Then the First
AE network is used to extract the implicit information of each Angle
automatically, and the degradation process of the Second AE network is
used to encode the implicit information of each Angle into the potential
representation. We represent the sample of multi-angle features as
X � X(1),X(2), ...,X(V), X(V) ∈ Rdv×n is the feature matrix of the V −
thAngle feature, whereV represents the number of angles of theV − th
Angle feature, n represents the number of samples of the V − th Angle
feature, and dv represents the feature dimension of the V − th
Angle feature.

2.4.1 First-AE network
We use f(X(v); ξ(v)ae ) to denote the First-AE network for the V −

th angle feature, where ξ(v)ae � W(c,v)
ae , b(c,v)ae{ }Cc�1 is the parameter set

for all layers, W(c,v)
ae represents the relevant weights for the c − th

layer, b(c,v)ae represents the relevant biases for the c − th layer, and C
represents the number of layers for nonlinear transformations. The
first C/2 encoding layers encode the input feature vector into a new
vector, and the last C/2 decoding layers reconstruct the new vector.

When the input feature vector is x(v)
i � z(0,v)i ∈ Rdv , the output of the

c − th layer is Formula 9:

z c,v( )
i � σ W c,v( )

ae z c−1,v( )
i + b c,v( )

ae( ), c � 1, 2, . . . ,C (9)

where σ(·) is the sigmoid activation function, and when the input is
the feature matrix X(v) � [x(v)

1 , x(v)
2 , . . . , x(v)

n ] ∈ Rdv×n of the v − th
Angle feature, the corresponding reconstruction formula is as
Formula 10:

Z C,v( ) � z c,v( )
1 , z c,v( )

2 , . . . , z c,v( )
n[ ] (10)

Where Z(C,v) is the reconstructed representation of the i sample
in the v − th Angle feature. We obtain a low-dimensional
representation Z(C2,v) through minimal reconstruction loss, the
minimal reconstruction loss is obtained as Formula 11:

min
ξ v( )
ae{ }Vv�1

∑V
v�1

X v( ) − Z C,v( ) 2F·
2

(11)

We encode the obtained low-dimensional angle feature
representation Z(C2,v) into a holistic latent information H for the
entire angle feature, where H ∈ Rk×n and k represents the complete
spatial dimension.

2.4.2 Second-AE network
The degradation reduction network of the Second-AE network

uses a fully connected neural network (FCNN) to realize that each
angular feature can be represented by a new common representation
of the whole. We use g(H; ξ(v)dr ) to represent the degradation
restoration network of the v − th angle feature, where
ξ(v)ae � W(s,v)

dr , b(s,v)dr{ }S
s�1, and S + 1 is the number of layers in

the degradation restoration network. We take H � G(0,v)

as input, then G(s,v) � [g(s,v)
1 , g(s,v)

2 , . . . , g(s,v)
n ], where

g(s,v)
i � σ(W(s)

dr g
(s−1,v)
i + b(s,v)dr ), and the formula for the goal of

degradation reduction is Formula 12:

min
ξ v( )
dr{ }Vv�1

∑V
v�1

Z
C
2,v( ) − G S,v( )

 2F·
2

(12)

2.4.3 Coupling the First-AE network with the
Second-AE network

In the same framework, we learned new vector
representations for each angle feature (via the First-AE
network) and latent representations for the complete multi-
angle features (via the Second-AE network) by coupling the
First-AE network with the Second-AE network. The objective
function of Autoencoder in Autoencoder Networks model is
summarized as Formula 13:

min
ξ v( )
ae ,ξ

v( )
dr{ }Vv�1 ,H

∑V
v�1

X v( ) − Z C,v( ) 2F + λ Z
C
2,v( ) − G S,v( )

 2F[ ]
2

(13)

Here, λ represents the balance between the consistency and
complementarity of multi-angle features.
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2.5 XGBoost classifier

XGBoost (Chen and Guestrin, 2016) is referred to as extreme
gradient boosting, and it is an integrated learning algorithm based on
gradient boosting decision trees (GBDT). It is employed to solve
machine learning issues such as classification, regression, and
ranking. XGBoost benefits from its efficiency, regularization
processing, feature importance analysis, and ability to handle missing
values, making it a powerful tool for many data science problems. We
employ XGBoost as a classifier for predicting circRNA-miRNA
interactions. Through multiple iterations, we gradually construct a
decision tree model, emphasizing error samples to enhance model
performance. The objective function of XGBoost is composed of the
loss function and regularization, and is formulated as Formula 14:

L u( ) � ∑M
i�1
l yi, ŷ

u−1( )
i + f u xi( )( ) +∑

u

φ f u( ) (14)

Here, i represents the i − th sample, u represents the u − th tree, yi
is the true value of the i − th sample xi, ŷi is the predicted value of the
i − th sample xi, l is the differentiable loss function computing the
difference between the predicted value ŷi and the target value yi, and
φ(·) represents the complexity of the tree. By expanding the second-
order Taylor series and regularization term, separately optimizing the
loss function term and regularization term, and merging similar terms,
the final objective function is obtained as Formula 15:

L u( ) � ∑U
j�1

Bnwn + Dn + λ( )w2
n

2
[ ] + γU (15)

Here, Bn and Dn respectively represent the sums of the first and
second-order partial derivatives of the samples contained in leaf
node n, wn represents the weight of the n − th leaf node, and U
represents the number of trees.

3 Results

3.1 Evaluation indicators criteria

Cross-validation is a commonly usedmethod in the field ofmachine
learning for assessing model performance and reducing the bias of
evaluation results. In thiswork, we employ 5-fold cross-validation (5-fold
CV) to assess the predictive power of BJLD-CMI over CMI-9905 dataset.
We initially randomly divided the dataset into five subsets, ensuring a
balanced distribution of categories in each subset as much as possible.
Four subsets were utilized for pieces of training of the model and then
one remaining subset was used for validation of the model. This process
is repeated five times, ensuring that each subset is used for validation
once. The results of the five validations were averaged to get the final
performance evaluation metrics (Wang et al., 2018). The experimental
evaluation of BJLD-CMI includes accuracy (ACC), precision (Prec.),
recall (Rec.), F1-score (F1), andMatthews correlation coefficient (MCC)
as reliability assessment criteria. The formula for accuracy is Formula 16,
for precision is Formula 17, for recall is Formula 18, for F1-score is
Formula 19, and for Matthews correlation coefficient is Formula 20:

ACC. � TN + TP
TN + TP + FN + FP

(16)

Prec. � TP
TP + FP

(17)

Rec. � TP
TP + FN

(18)

F1 − score � 2 × Precision × Recall( )
Precision + Recall

(19)

MCC. � TP × TN( ) − FP × FN( )�������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

(20)
In the above formula, true positives (TP) indicate the sample counts

in which the model predicts that circRNAs interact with miRNAs and
in which the interaction is realistically confirmed, false positives (FP)
indicate the sample counts in which the model predicts that circRNAs
interact with miRNAs but in reality are not interaction, true negative
(TN) indicates the sample count in which the model predicts that
circRNAs not interact with miRNAs and realistically confirms that
there is no interaction, false negative (FN) indicates the sample count in
which the model predicts that circRNAs not interact with miRNAs but
the interaction is confirmed in reality. We also plotted the Receiver
Operating Characteristic (ROC) curve of BJLD-CMI under 5-fold
cross-validation (Zweig and Campbell, 1993) and computed the
AUC to evaluate the performance of the models.

3.2 Evaluation model prediction ability

In this experiment, we tested the performance of BJLD-CMI in
predicting circRNA-miRNA interactions over the CMI-9905 dataset
with a 5-fold cross-validation method. Table 2 lists the details of the
experimental results. FromTable 2, we can see that ourmodel obtained a
mean accuracy of 83.41%. The accuracies for the five experiments were
83.47%, 84.07%, 82.53%, 83.06%, and 83.90% respectively, with a
standard deviation of 0.56%. In the evaluation criteria of precision
(Prec), recall (Rec), F1-score, and Matthews correlation coefficient
(MCC), BJLD-CMI demonstrated an accuracy of 85.31%, 80.70%,
82.94%, and 66.91%, with respective standard deviations of 0.38%,
0.93%, 0.64%, and 1.10%. In addition, we also computed the AUC
and AUPR that BJLD-CMI generated over the CMI-9905 dataset with
their ROC curves and PR curves plotted. Concerning AUC, the five
experiments yielded results of 90.56%, 91.41%, 90.21%, 90.49%, and
90.75%, with a mean value of 90.69% and a standard deviation of 0.45%.
Concerning AUPR, the five experiments resulted in 88.87%, 90.06%,
89.01%, 88.66%, and 89.39%with amean value of 89.20%and a standard
deviation of 0.55%, respectively. Figure 3A shows the ROC curves
generated by five experiments, and Figure 3B shows the PR curves
generated by five experiments. Through the experimental results
described above, it is clearly observed that the BJLD-CMI is able to
predict CMI effectively on CMI-9905, and shows excellent
comprehensive performance, exhibits good application prospects, and
may be considered as a potential tool for exploring the unknown CMI.

3.3 Evaluation comparison of different
dimensions of line

The model utilizes the Line algorithm in graph embedding to
learn low-dimensional embeddings of nodes in the circRNA-
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miRNA relationship network, preserving the network structure and
relationships between nodes. Determining the dimension is a crucial
factor in describing the features of circRNA andmiRNA. Choosing a
big dimension could increase the computational workload and
intricacy of the suggested model, resulting in longer execution
times and potentially lower accuracy. Conversely, selecting a
small dimension might lead to an insufficient feature extraction.
Therefore, we chose a series of commonly used dimensions,
specifically 32, 64, 128, 256, 512, and conducted a 5-fold cross-
validation experiment to select the optimal dimension. Based on the
experimental results in Table 3; Figure 4, we observed a continuous
improvement in the overall performance of the model with

increasing dimensions. When the dimension parameter increases
to 128, the model achieves optimal performance, as reflected in the
maximum values of ACC, AUC, Prec., and MCC. However, when
the dimension exceeds 128, the performance gradually declines.
Therefore, we decided to fix the dimension parameter at 128.

3.4 Comparison of different classifiers

Our proposed BJLD-CMI model uses the XGBoost classifier for
data training and classification tasks over the CMI-9905. To validate
the performance of the XGBoost classifier, we replaced it with four

TABLE 2 Cross-validation results of BJLD-CMI on the CMI-9905 dataset.

Test set ACC. (%) Prec. (%) Rec. (%) F1-score (%) MCC. (%) AUC (%)

1 83.47 85.12 81.12 83.07 67.01 90.56

2 84.07 85.94 81.47 83.65 68.24 91.41

3 82.53 84.93 79.10 81.91 65.22 90.21

4 83.06 85.03 80.26 82.58 66.23 90.49

5 83.90 85.55 81.57 83.51 67.87 90.75

Average 83.41 ± 0.56 85.31 ± 0.38 80.70 ± 0.93 82.94 ± 0.64 66.91 ± 1.10 90.69 ± 0.45

FIGURE 3
Performance evaluation of BJLD-CMI (A) ROC curve obtained by BJLD-CMI on the CMI-9905 dataset (B) PR curve obtained by BJLD-CMI on the
CMI-9905 dataset.

TABLE 3 Results of 5-fold cross-validation on CMI-9905 dataset with different Line dimensions.

Dimensions Mean ACC Mean Prec Mean Rec Mean F1-score Mean MCC Mean AUC

32 0.7675 0.7637 0.7748 0.7692 0.5351 0.8449

64 0.8151 0.8232 0.8026 0.8127 0.6303 0.8858

128 0.8341 0.8531 0.8070 0.8294 0.6691 0.9069

256 0.8029 0.8094 0.7923 0.8008 0.6059 0.8869

512 0.7473 0.7867 0.6786 0.7287 0.4994 0.8431
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other classifiers while keeping the dataset and other conditions
unchanged. These classifiers are Random Forest (RF) (Breiman,
2001), Gaussian Naive Bayes (GaussianNB), Support Vector
Machine (SVM) (Suykens and Vandewalle, 1999), and Logistic
Regression (LR) (Dreiseitl and Ohno-Machado, 2002). The
performance of these five classifiers in predicting CMI was
evaluated by 5-fold cross-validation and their categorization
performance is compared. Table 4 concludes the average results
of the five classifiers combined with the CMI-9905 dataset after 5-
fold cross-validation and is presented in line graph form. From
Figure 5, we can intuitively observe that XGBoost achieved the
highest results in six evaluation metrics, including ACC, Prec, Rec,
F1, MCC, and AUC. This indicates that XGBoost performs better in
predicting unknown CMI in the proposed model.

3.5 Comparison of the existing method

Currently, numerous outstanding computational
approaches have been proposed, relying on benchmark

datasets CMI-9589 [from the Circbank database (Liu et al.,
2019)] and CMI-9905 [from the Circbank database (Liu et al.,
2019) and Circr2cancer database (Lan et al., 2020)]. These
methods include WSCD (Guo et al., 2022), SGCNCMI (Yu
et al., 2022), KGDCMI (Wang et al., 2022b), DeepCMI (Li
et al., 2023), CMIVGSD (Qian et al., 2021b), GCNCMI (He
et al., 2022), JSNDCMI (Wang et al., 2023), aim to forecast
potential CMIs. In order to further assess BJLD-CMI’s predictive
performance, we have compared it to these methods in two
datasets, respectively. For fairness, we chose the AUC generated
by the fivefold CV method as the parameter for evaluation.
Table 5 presents the contrasting outcomes of CMIVGSD,
SGCNCMI, KGDCMI, GCNCM, JSNDCMI, and DeepCMI
with BJLD-CMI utilizing the CMI-9589 dataset. Table 6
shows the contrasting outcomes of KGDCMI, WSCD,
SGCNCM, JSNDCMI, and DeepCMI with BCMCMI utilizing
the CMI-9905 dataset. The results in Tables 5, 6 indicate that our
model achieved the highest AUC results, surpassing the averages
by 0.00986 and 0.03158, respectively. Overall, BJLD-CMI
demonstrates strong competitiveness among existing methods.

FIGURE 4
Performance bar visualization comparison with different Line dimensions on CMI-9905 dataset.

TABLE 4 Results of different traditional classifiers and XGBoost in 5-fold cross-validation on CMI-9905 dataset.

Classifier Testing set ACC. (%) Prec. (%) Rec. (%) F1-score (%) MCC. (%) AUC (%)

XGBoost Average 83.41 85.31 80.70 82.94 66.91 90.69

SD 0.56 0.38 0.93 0.64 1.10 0.45

RF Average 82.30 85.14 78.26 81.56 64.82 89.77

SD 0.30 0.35 0.75 0.39 0.58 0.36

GaussianNB Average 77.40 84.24 67.40 74.88 55.92 87.68

SD 0.78 0.65 1.51 1.05 1.46 0.54

SVM Average 77.36 83.09 68.69 75.21 55.55 81.44

SD 0.64 0.88 1.02 0.76 1.28 0.80

LR Average 77.30 81.67 70.41 75.62 55.13 81.30

SD 0.19 0.30 0.33 0.22 0.39 0.46
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3.6 Case studies

In order to validate the genuine predictive ability of BJLD-CMI
for miRNA-associated circRNA, we performed a case study utilizing
the CMI-9905 dataset. In the experiment, we trained the BJLD-CMI
model using known CMIs extracted from the CMI-9905 dataset and
then used the trained model to predict unknown CMIs. Following
the acquisition of the prediction outcomes, we organized the
prediction scores in descending order and validated the top
10 circRNA-miRNA pairs in the published literature. The specific
findings are outlined in Table 7. From the table, we can conclude
that 7 pairs have been confirmed in PubMed, confirming the
involvement of circRNA as miRNA sponges in the biological
processes of diseases such as lung cancer (Wang et al., 2019; Yao
et al., 2019; Zhou et al., 2019), prostate cancer (Wu et al., 2019), and
gastric cancer (Zhong et al., 2018; Liang et al., 2019). It’s worth
noting that the lack of confirmation in existing literature for the
other 4 pairs does not necessarily negate the possibility of an
interaction between them. The results of the case study indicate

that BJLD-CMI is a powerful tool with the prospect of exploring the
interaction of unknown circRNAs with miRNAs.

4 Conclusion

With the popularity of computational models and the booming
development of bioinformatics, people are gradually realizing the
importance of the associative relationships between circRNAs and
miRNAs in various biological processes as well as in the treatment of
diseases. By applying computational models to predict CMI, we can
get a deeper understanding of the unrevealed hidden networks
between circRNAs and miRNAs, and thus study their roles in
regulating gene expression and participating in organic processes.
Exploring the correlation between circRNAs and miRNAs provides
biologists with new ideas, which are important clinical guidance for
the diagnosis and treatment of diseases.

On this work, we suggest a computationally grounded model,
BJLD-CMI, to forecast circRNA with miRNA interaction

FIGURE 5
Performance comparison line chart of different traditional classifiers and XGBoost on the CMI-9905 dataset.

TABLE 5 AUC values of related models and BJLD-CMI on 5-fold cross-validation in CMI-9589 dataset.

Models CMIVGSD SGCNCMI KGDCMI GCNCMI JSNDCMI DeepCMI BJLD-CMI

AUC 0.8804 0.9015 0.9041 0.9320 0.9415 0.9480 0.9495

AUPR 0.8629 0.9011 0.8937 0.9396 0.9403 0.9416 0.9474

TABLE 6 AUC values of related models and BJLD-CMI on 5-fold cross-validation in CMI-9905 dataset.

Models KGDCMI WSCD SGCNCMI JSNDCMI DeepCMI BJLD-CMI

AUC 0.8930 0.8923 0.8942 0.9003 0.9054 0.9069

AUPR 0.8767 0.8935 0.8887 0.8999 0.8978 0.8920
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relationships. In this model, we first convert miRNA sequences into
digital representations using natural language processing
techniques, apply Jaccard similarity coefficients to obtain the
feature expressions of circRNAs through the moving window
method, and construct the corresponding attribute feature
matrices from the known circRNA with miRNA relationship
pairs. Subsequently, from the known circRNA with miRNA
relationship network, we build the corresponding behavioral
feature matrix using the graph embedding method Line. In
addition, the Autoencoder in Autoencoder Networks model is
used to learn the new vector representation of each Angle feature
and the potential representation of the complete multi-angle feature
respectively from the perspective of the behavior and attribute
features of circRNA and miRNA, so that the obtained features
not only have the complementarity between the behavior feature
and the attribute feature but also have the consistency. On the CMI-
9589 and CMI-9905 datasets, BJLD-CMI achieved excellent results
using the XGBoost classifier. To evaluate the performance of BJLD-
CMI, we conducted experiments comparing different classifiers and
experiments comparing with other models. The results indicate that
BJLD-CMI outperforms other models. We also conducted a case
study, and among the top ten ranked circRNA-miRNA pairs in
prediction scores, 7 pairs were verified in our literature search on
PubMed. This provides new insights for research on diseases such as
non-small cell lung cancer, lung adenocarcinoma, prostate cancer,
and gastric cancer.

These results indicate that the BJLD-CMI model can predict the
underlying relationship between circRNAs and miRNAs efficiently and
is a reliable predictive model, but there are still some limitations. Firstly,
the BJLD-CMI model is dependent on the amount of data on known
circRNA-miRNA interaction, and too large a gap of positive and
negative samples can have a significant impact on the correctness of
the model’s predictions. Secondly, different feature extraction methods
and parameter settings may also impact the model’s predictions.
Additionally, the BJLD-CMI model could not make direct
predictions for circRNA-miRNA pairs that have no known
interactions. In future research, we will continue exploring the
application of NLP in extracting information from biological
sequence data and integrating additional perspectives of biological
feature information to enhance the accuracy and reliability of themodel.
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TABLE 7 Top 10 CMI pairs predicted by BJLD-CMI.

Num miRNA circRNA Evidence Cancer

1 hsa-miR-1183 hsa_circ_0004015 PMID:30509491 Non-Small Cell Lung Cancer

2 hsa-miR-4667-3p hsa_circ_0002172 Unconfirmed Unconfirmed

3 hsa-miR-135a-5p hsa_circ_0001946 PMID:30841451 Lung Adenocarcinoma

4 hsa-miR-181c-5p hsa_circ_0001427 PMID:30674872 Prostate Cancer

5 hsa-miR-139-3p hsa_circ_0000592 PMID:31189743 Gastric Cancer

6 hsa-miR-638 hsa_circ_0000177 PMID:30010402 Glioma

7 hsa-miR-1224-3p hsa_circ_0001731 Unconfirmed Unconfirmed

8 hsa-miR-214-5p hsa_circ_0000993 PMID:30215537 Gastric Cancer

9 hsa-miR-619-5p hsa_circ_0004939 Unconfirmed Unconfirmed

10 hsa-miR-330-5p hsa_circ_0001727 PMID:32010565 Non-Small Cell Lung Cancer
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