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Introduction: Periodontitis, a common chronic inflammatory disease,
significantly impacted oral health. To provide novel biological indicators for
the diagnosis and treatment of periodontitis, we analyzed public microarray
datasets to identify biomarkers associated with periodontitis.

Method: The Gene Expression Omnibus (GEO) datasets GSE16134 and
GSE106090 were downloaded. We performed differential analysis and robust
rank aggregation (RRA) to obtain a list of differential genes. To obtain the core
modules and core genes related to periodontitis, we evaluated differential genes
through enrichment analysis, correlation analysis, protein-protein interaction
(PPI) network and competing endogenous RNA (ceRNA) network analysis.
Potential biomarkers for periodontitis were identified through comparative
analysis of dual networks (PPI network and ceRNA network). PPI network
analysis was performed in STRING. The ceRNA network consisted of RRA
differentially expressed messenger RNAs (RRA_DEmRNAs) and RRA
differentially expressed long non-coding RNAs (RRA_DElncRNAs), which
regulated each other’s expression by sharing microRNA (miRNA) target sites.

Results: RRA_DEmRNAs were significantly enriched in inflammation-related
biological processes, osteoblast differentiation, inflammatory response
pathways and immunomodulatory pathways. Comparing the core ceRNA
module and the core PPI module, C1QA, CENPK, CENPU and BST2 were
found to be the common genes of the two core modules, and C1QA was
highly correlated with inflammatory functionality. C1QA and BST2 were
significantly enriched in immune-regulatory pathways. Meanwhile,
LINC01133 played a significant role in regulating the expression of the core
genes during the pathogenesis of periodontitis.

Conclusion: The identified biomarkers C1QA, CENPK, CENPU, BST2 and
LINC01133 provided valuable insight into periodontitis pathology.
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1 Significance

The development of periodontitis involves multiple biological
processes. If not treated promptly, it will have a significant impact on
an individual’s oral health, causing aggressive periodontitis, which leads
to the destruction of periodontal tissues (Carvalho et al., 2018). Hence,
we present a bioinformatics-based methodology for the identification of
markers associated with periodontitis. This approach entails integrating
diverse transcriptomic datasets and conducting a comparative network
analysis to delineate functional pathways related to potential markers
and differentially expressed genes in periodontitis. Through this
methodology, we aim to elucidate the underlying mechanisms of
periodontitis and unearth novel biomarkers. These findings are
anticipated to contribute to the development of more precise
strategies for early diagnosis, treatment, and prevention of periodontitis.

2 Introduction

Periodontitis is a common oral disease characterized by an
inflammatory response of the periodontal tissues. The development
and progression of periodontitis involve several biological processes,
including bacterial infection, inflammatory response, immune
regulation and tissue repair. If periodontitis is left untreated, it can
ultimately result in tooth loss, significantly impacting an individual’s oral
health and overall quality of life. Currently, diagnosing periodontitis
relies on methods such as oral examinations, gingival probing and
X-rays. Nevertheless, these methods have some limitations. In recent
years, transcriptomics has become an essential tool for studying complex
diseases (Supplitt et al., 2021). By analyzing the expression of genes,
transcriptomics can reveal the molecular mechanisms and biological
processes of diseases. For the study of periodontitis, transcriptomics can
provide insight into themolecular basis of disease onset and progression
(Liu et al., 2022a). However, transcriptomics research also faces some
challenges (Jiang et al., 2015). Initially, periodontitis is a complex disease
involving multiple biological processes (Cecoro et al., 2020).
Transcriptomics data from a single source may not fully reflect the
complexity of periodontitis. Secondly, transcriptomics data have high-
dimensional characteristics, which poses challenges for data processing
and analysis. Therefore, when studying the gene expression patterns
related to periodontitis, appropriate methods must be employed to
tackle and analyze these high-dimensional data. For instance, one may
employ a differential analysis to discern variations in gene expression
levels between healthy tissues and those afflicted by periodontitis.

Recently, scientists have initiated utilizing bioinformatics
methodologies to discern and characterize biomarkers, striving to
enhance their proficiency in recognizing disease-specific biomarkers.
For instance, Ji et al. reveal the progression of human osteoarthritis with
the help of single-cell RNA-seq analysis, integrating transcriptomics data
from multiple biological specimens, such as blood, tissues and cell lines
(Ji et al., 2019). Liu et al. identify osteosarcoma metastasis-associated
signaling pathways with the help of logistic regression analysis (Liu et al.,
2018). Yang et al. explored the relationship between MitoEVs and the
immune microenvironment in periodontitis by using machine learning
and bioinformatics methods (Yang et al., 2024). Cai et al. found a
common pattern of gene expression between obesity and periodontitis
by analyzing transcriptomic data and identified five important
biomarkers (Cai et al., 2023). Huang et al. used machine learning

combined with L1 regularisation and the LIME model interpreter to
identify genes associated with periodontitis (Huang et al., 2023). He et al.
analyzed the data for differential expression by bioinformatics techniques
and screened for lncRNAs associated with periodontitis (He et al., 2023).
Liu et al. used quantitative TMT proteomics and transcriptomics
analyses to determine the protein expression profiles of patients with
periodontitis and constructed nine representative biomarkers using
machine learning models (Liu et al., 2022b). This approach can
obtain more comprehensive and consistent information, improving
the diagnosis and prediction of diseases. However, few studies have
reported cases of using integrated multi-source transcriptomics data to
identify markers related to oral diseases. For example, Wang et al.
identify key markers of gingival tissue and immune cell infiltration
studies in periodontitis (Wang Zihui et al., 2021). However, theremay be
batch effects and inconsistencies in data from different sources. It is
necessary to consider some algorithms to remove the batch effects.
Therefore, the introduction of RRA analysis in our study contributed to
the further removal of batch effects Liu et al. use existing methods to
analyze transcriptomics data from multiple sources, so it is possible to
identify differential genes associated with pulpitis (Liu et al., 2021). Their
approach took into account the batch effects from different sources of
transcriptomic data. Therefore, We proposed methods for integrating
multi-source transcriptome data to identify periodontitis-related
markers by referring to the approach of Liu et al. Meanwhile, we
refined the core gene identification process through a network
comparative analysis involving both the core PPI network and the
ceRNA network. The amalgamation of information from diverse
networks contributed to the heightened accuracy and robustness of
the identified biomarkers. Besides, we supplemented ceRNA network
analysis based on their experiments. Functional enrichment analysis
was performed in the core ceRNA network, which helped to uncover
the major biological processes and pathways involved in the core
ceRNA network. We performed correlation analysis of adjacent genes
of core genes and identified lncRNAs with important regulatory roles.

3 Materials and methods

3.1 Workflow of the study

This study summarized the workflow diagram in Figure 1.
Transcriptome datasets (GSE16134 and GSE106090) were

collected from GEO, including proximal gingiva, distal gingiva
and medial gingiva. The preprocessing included steps such as
batch effect detection and probe remapping, which ensured data
standardization between different datasets to eliminate differences
due to batch effects. Then, the preprocessed data were subjected to
differential analysis. The ranked list of differential genes (p < 0.05)
was aggregated using RobustRankAggreg (version 0.6.1) to mitigate
potential effects from smaller datasets. By employing an aggregation
p-value threshold of less than 0.05 and aggregation ranking, we
identified a list of differently expressed genes. Additionally, the
differential mRNAs were subjected to functional enrichment
analysis to understand their functions. To validate the correlation
between the periodontitis genes and specific genes, we extracted
inflammation-related genes and odontogenesis-related genes from
geneCards. Subsequently, utilizing pre-existing miRNA targeting
information, we constructed a ceRNA network comprising
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differential mRNA and lncRNA. MCODE was utilized to identify the
core ceRNA module. Enrichment analysis was performed on the core
ceRNA module to determine its associated functional pathways. Then
we constructed a PPI network utilizing STRINGand identified the core
module of this PPI network by employing the MCODE plug-in. The
core ceRNA module was compared with the core PPI module to
identify potential genes implicated in periodontitis. Subsequently, we
undertook a more detailed analysis of the correlation between the
potential genes and associated geneswithin the core ceRNAnetwork to
pinpoint lncRNAs that played a crucial regulatory role in periodontitis.

3.2 Data processing

Unless specified otherwise, all data processing and statistical
analyses were conducted using the R programming environment (R
version 4.2.2). Gene expression profiling of GSE106090 involved
screening the expression of lncRNAs and mRNAs in gingival tissues
from six patients with peri-implantitis, six patients with periodontitis
and six healthy individuals. GSE16134 was obtained from

120 systemically healthy periodontitis patients. The entire samples
above were divided into diseased and healthy periodontal inclusion
treatments. The collected transcriptomics datasets were tested for batch
effects with the help of principal component analysis. The possible
batch effects of GSE16134 and GSE106090 were removed from the
batch effects with the help of the combat package (version 3.42.0).

3.3 Integration and identification of
differential genes

Differential analysis was performed with the help of the limma
package (version 3.48.3) and differential mRNAs and differential
lncRNAs of the two datasets were extracted. Differential mRNAs
and differential lncRNAs were obtained by threshold (p < 0.05,
|logFC|≥ 0.3) screening. The ranked gene list was subsequently
aggregated using the RRA () function from the RRA package
(version 0.6.1). Based on the amalgamated p-value (p < 0.05) and
predefined significance threshold, a taxonomy of genes exhibiting
differential expression had been determined.

FIGURE 1
Flowchart of the study. The black part represents data preprocessing, the red part represents the integration and identification of differential genes,
the brown part represents the processing of post-polymerization differential mRNAs, the green part represents the identification of inflammatory and
odontogenic genes, the blue part represents the construction and analysis of the ceRNA network, the purple part represents the identification and
analysis of the PPI network, and the yellow part is the final identification of the potential genes related to the mechanisms of periodontitis genesis.
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3.4 Functional enrichment analysis

The differential gene sets were functionally annotated by the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. The analysis of GO and KEGG was performed by
using the clusterProfiler (version 3.18.0) package. The results of GO
and KEGG enrichment analysis were subsequently visualized by the
ggplot2 package (version 3.3.5) by plotting the bubble plot and the bar
plot to show the enrichment of differential genes.

3.5 Correlation analysis

The expression data of differential genes after RRA analysis were
extracted from the gene expression matrices of GSE16134 and
GSE106090, and then the correlation analyses were performed
respectively. The pearson method was chosen here to calculate the
correlation coefficients. The correlation matrix was subsequently used
to cluster genes with similar expression patterns together. The
correlation coefficient matrix was visualized using heatmaps to show
the correlation between different genes. Additionally, Inflammation-
associated regulatory genes and odontogenesis-associated fundamental
genes were discerned in geneCards, scrutinizing the correlation
between these genes in both expression patterns.

3.6 Construction and scrutiny of
ceRNA networks

The lists of differential mRNAs and differential lncRNAs were
extracted from the results of differential analysis. Targets of miRNAs
were derived from starBase (https://rnasysu.com/encori/). Based on the
results of miRNA-mRNA prediction, relationships between differential
mRNAs and miRNAs were screened. Additionally, in light of the
miRNA-lncRNA target prediction outcomes, the interplay between
the differently expressed lncRNAs and miRNAs was scrutinized. We
ascertained mRNA-lncRNA pairs featuring identical miRNAs between
differentially expressed mRNAs and differentially expressed lncRNAs.
Furthermore, the mRNA-lncRNA pairs possessing overlapping miRNAs
were deemed as nodes to construct a triangular relationship. Ultimately,
we interlinked the triangular relationship between differentially expressed
mRNAs and differentially expressed lncRNAs to form a comprehensive
ceRNAnetwork diagram. Subsequently, the ceRNAnetwork identified in
the preceding phase was imported into Cytoscape for comprehensive
visualization of the ceRNA network. Afterward, the built-in plug-in
NetworkAnalyzer of Cytoscape was used to calculate the metrics such
as degree (number of connections) and centrality of each node (mRNA,

lncRNA), and MCODE was used to screen the core ceRNA module.
Subsequently, enrichment analysis was conducted on the pinpointed core
ceRNA module to scrutinize their potential functional pathways.

3.7 Construction of PPI network

PPI network was constructed for differential mRNAs with the help
of STRING’s built-in interaction relationships. Each gene represented a
node, and their interaction relationship represented an edge.
Additionally, the edges with a composite score ≥0.4 were selected for
PPI network construction. For the constructed network, core module
was selected by MCODE (parameters: degree cutoff: two, node score
cutoff: 0.2, K-core: two) to identify tightly connected subgraphs in the
network as gene modules with functional relevance. In PPI network
analysis, Cytoscape’s built-in plug-in NetworkAnalyzer was used to
calculatemetrics such as degree (number of connections), centrality, etc.,
for each node (gene) to assess its importance in the network.

3.8 Correlation analysis of mRNAs and
lncRNAs directly associated with core genes
in the ceRNA core network

In the core ceRNAmodule, we selected those differential mRNAs
and differential lncRNAs. Subsequently, core genes and their direct
neighbor genes were extracted from gene expression matrices of
GSE16134 and GSE106090. Subsequently, a correlation analysis
was conducted. The pearson method was chosen to compute the
correlation coefficient. Heat maps were utilized to project the
correlation coefficient matrix, providing a visual display of the
correlation between core genes and their direct neighbor genes.

4 Result

4.1 Differential mRNAs enriched in cell
differentiation and regulation of toxic
substances

The detailed depiction of distinct gene integration and identification
was illustrated in Table 1. The differential mRNAs and lncRNAs have
been systematically identified based on the defined threshold (p < 0.05,
|logFC|≥ 0.3), encompassing a total of 670 downregulated differential
mRNAs and lncRNAs, alongside 309 unregulated ones. After RRA
analysis, a total of 13 unregulated mRNAs and lncRNAs were selected;
257 downregulated mRNAs and lncRNAs were identified. The

TABLE 1 The number of genes in differential analysis and RRA analysis.

Data Differential analysis RRA analysis

Type Up Down Up Down

GSE16134mRNA 68 219 0 118

GSE16134lncRNA 23 1 13 0

GSE106090mRNA 184 407 0 126

GSE106090lncRNA 34 43 0 13
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enrichment analysis of GO and KEGG was performed on the selected
differential mRNAs. Figure 2A summarised the top ten terms in the
biological process (BP). Based on the results of GO enrichment analysis
(Figure 2B), regulation of epidermal cell differentiation (GO:0045604,
p = 4.58e-5) was the most significantly enriched BP in inflamed
periodontium. Cellular response to toxic substances (GO:0097237,
p = 6.55e-5) and regulation of epidermal development (GO:0045682,
p = 8.66e-5) also had significant enrichment. KEGG pathway analysis
(Figures 2C, D), osteoclast differentiation (hsa04380, p = 1.69e-2) was
significantly enriched.

4.2 Periodontitis-related genes were highly
correlated with inflammation and
odontogenesis

Correlation analysis was a further validation and exploration of
correlation between periodontitis genes. Based on the results of

correlation analysis, it was known that in GSE16134 (Figure 3A),
ICAM2, NCF4, CD79A, FKBP11, FCGR2B, LY96, DSPP, FOXC1,
HES1, RASGRP2, PSMB9, TYROBP, C1QA, RUNX3, ITGA3,
CARM1, SH3GL1, SPI1, A4GALT, MSC, MGMT and BAX had
high correlation, among which DSPP, FOXC1 and BAX was
associated with odontogenesis. In GSE106090 (Figure 3B), there
were two highly correlated blocks, region1 for C1QA, FOXC1,
A4GALT, SPI1, MGMT, RUNX3, CXCL12, COL9A3, TRYOBP,
CD79A, ICAM2 and NCF4, region2 for MGST1, LBR, GSTO1,
ITGA3, DMBT1, HSPA1A, CRYAB, DSC2, EFNA1, ABCG2, HES1,
MX1, SH3GL1, KRT8, ESRP1, PKP1, SLPI, IVL, CARM1, IL36RN
and KRT18. FOXC1, CXCL12, KRT8 and PKP1 were correlated
with odontogenesis. Comparing the high correlation between the
two data sets revealed that ABCG2, LBR, ITGA3, CARM1 and
SH3GL1 had high correlation in both GSE16134 high correlation
region and GSE106090 region2. C1QA, FOXC1, SPI1, MGMT,
CXCL12, COL9A3, TYROBP, CD79A, ICAM2 and NCF4 were
highly correlated in both GSE16134 and GSE106090 region1.

FIGURE 2
Results of GO/KEGG functional enrichment analysis of post-polymerisation differential mRNAs. Blueprint representation of (A) GO evaluation and
(C) KEGG analysis via its network mapping. The distinctive mRNA GO/KEGG enrichment appraisal results are illustrated utilizing bubble charts and
network maps, with the radius of the circles denoting the number of enriched genes. The tint of the circles mirrors the p-value, with all enriched terms
deemed significant (p < 0.05). Network maps depict the distribution of genes residing within highly reinforced pathway clusters. (B) Enriched GO
terms identified across the categories of biological processes, molecular functions, and cellular components. (D) Bubble chart of enriched pathway
clusters identified through the KEGG pathway.
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4.3 Inflammatory, odontogenic genes
played hub gene roles in ceRNA networks

The correlation between RRA_DEmRNAs and RRA_DElncRNAs
was selected by identical miRNAs to establish a ceRNA network, of
which tenmRNAs were associated with inflammation, and twomRNAs
were associated with odontogenesis (Figure 4A). The PPI network was
extracted by the STRING platform (Supplementary Figure S1A), and
core PPI module was identified by using the MCODE plug-in
(Supplementary Figure S1B). They revealed a nucleus composed of
C1QA, CENPK, CENPU and BST2 as central elements within the
complex network. Additionally, C1QA exhibited a correlation with
inflammation in geneCards, which implied that CENPK, CENPU
and BST2 could feasibly manifest as factors linked to periodontitis.
They potentially contributed to regulating the physiological processes
associated with periodontitis. The core ceRNA module comprised
28 mRNAs and 21 lnRNAs (Figure 4B). Among these, seven
mRNAs were found to be associated with inflammation, while two
mRNAs were associated with odontogenesis. Among them, C1QA,
CENPK, CENPU and BST2 were also core genes identified in the
PPI network. Supplementary Figure S2 demonstrated that 11 lncRNAs
were intrinsically linked to C1QA within the core ceRNA module.
Additionally, 13 lncRNAs were directly linked to CENPU, and
17 lncRNAs were directly associated with CENPK. BST2 was directly
related to 18 lncRNAs. Additionally, among the intersection of the
lncRNAs linked to these core genes, there were six lncRNAs

(LINC00943, LINC00174, DSCAM-AS1, MAGI1-IT1, MIR4458HG
and LINC01133) that were universally linked to them. Notably,
LINC00943, LINC00174, DSCAM-AS1 and MAGI1-IT1 were
upregulated lncRNAs. Therefore, it was postulated that these six
lncRNAs might play key roles in the regulation of gene expression in
periodontitis.

4.4 Core ceRNA module enriched in
immunoregulatory and complement
activation

GO analysis of the core ceRNA module was performed to
further reveal the biological significance of genes within the core
ceRNA network. In the GO analysis, activation of immune
response (Figures 4C, D) [GO:0002253, p = 1.06e-6, involving
genes BAX/BTN3A3/C1QA/C1QB/CFD/CFH/CFI (Figure 4E)]
was the most significantly enriched BP in the core ceRNA
module. Complement activation (Figures 4C, D) [GO:0006956,
p = 1.10e-6, involving genes C1QA/C1QB/CFD/CFH/CFI
(Figure 4E)] and humoral immune response (Figures 4C, D)
[GO:0006959, p = 8.01e-5, involving genes C1QA/C1QB/CFD/
CFH/CFI (Figure 4E)] also significantly enriched. It can be seen
that C1QA was significantly enriched in immunomodulation-
related pathways. The top ten terms in the BP were
summarized in Figure 4E.

FIGURE 3
Results of correlation analysis of differential mRNAs for inflammation and odontogenic functions. We signifyed the extent of the positive or negative
correlation through the color intensity (p < 0.05). Correlation coefficients exhibiting red or blue color respectively signify a positive or negative
correlation. (A) The correlation analysis was conducted to examine the relationship between genes associated with odontogenesis and inflammation
within the mRNAs that were differentially expressed in GSE16134. Among these, boxed in red are significantly associated with region. (B) The
correlation analysis was conducted to examine the relationship between genes associated with odontogenesis and inflammation within the mRNAs that
were differentially expressed in GSE106090. The top left corner red triangular area is designated as region 1. The central red large triangular area is
designated as region 2. Red areas represent strong correlations, blue areas represent weak correlations, genes named in blackness are inflammation-
related genes, and genes named in blue are odontogenesis-related genes.

Frontiers in Genetics frontiersin.org06

Peng et al. 10.3389/fgene.2024.1398582

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1398582


4.5 LINC01133 played a role in regulating the
expression of core genes in the
pathogenesis of periodontitis

The results of differential mRNA and lncRNA correlation
analysis of direct association of core genes were performed in
Figure 5. In GSE16134 expression profile analysis (Figure 5A),
two regions appeared to have a high correlation of expression
effect at either end of the diagonal with the upper right
expression highly correlated. In the GSE106090 expression
profile analysis (Figure 5B), most of the core-associated genes
showed significant positive correlations. Then we compared with
the higher correlation region in the GSE16134 expression profile,
which revealed that C1QA and A4GALT, BST2; BST2 and
A4GALT, ABCB7, C1QA; CENPU and ABCA13, ABCB7,
ABI1, CENPK, LINC01133; CENPK and ABCA13, ABCB7,
ABI1, CENPU, LINC01133 were positively correlated in both
expression profiles. This observation strongly suggested that
LINC01133 might serve as regulators in regulating the
expressions of these core genes implicated in the development
of periodontitis. Meanwhile, C1QA-BST2 and CENPU-CENPK
were highly correlated with each other in the core genes. It can be
hypothesized that CENPK, CENPU, BST2 and LINC01133 were
potential periodontitis-associated genes.

5 Discussion

Transcriptomics data analysis has emerged as a promising
approach for periodontitis research. It enables the identification
of markers associated with periodontitis, providing valuable support
for diagnosis and treatment. However, transcriptomics data analysis
is challenging due to the high dimension, complexity and diversity of
the data. Li et al. point out that although a variety of algorithms have
been designed to integrate spatial and single-cell transcriptome data,
there are significant differences in how these algorithms work and
their scope of application (Li et al., 2022). Spatial transcriptome data
are highly non-ideal, including features such as complex data
structure, low signal-to-noise ratio, high sparsity, and uneven
coverage, which pose challenges for in-depth analysis of the data
and parsing of biological information (Li et al., 2024). Therefore,
efficient algorithms are necessary for identification and analysis.
Additionally, integrating and normalizing different transcriptomics
data sources is crucial for subsequent research (Hauser et al., 2017).

Therefore, the paper proposes an integrated approach to identify
periodontitis-related markers using transcriptomics data from
multiple sources. This method efficiently processes large-scale
transcriptomics data and employs advanced analysis algorithms to
accurately identify these markers. It also enables the integration of
periodontitis-related transcriptomics data from different sources.

FIGURE 4
Construction of the ceRNA network and core network functionmining results. (A) The ceRNA network: circles represent mRNAs, triangles represent
lncRNAs, the size of the nodes indicates the degree of sparseness of connection with other nodes, node borders in purple indicate inflammation-related,
blue indicates odontogenesis-related, and orange indicates that no correlation has been detectedwith both genes for the time being. (B) The ceRNA core
module: node size and border settings refer to the ceRNA network. For the core ceRNAmodule, GO function enrichment analysis was performed for
(C), (D), (E), and (F). Box plots andmesh plots were generated to visualize the result. GO functional enrichment analysis of core ceRNAmodules, box plots,
bubble plots, and mesh plots were drawn, and the settings of bubble plots and mesh plots were referred to in Figure 2. In the box plots, the longer the
bands are, the more significant the functional enrichment is.
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Furthermore, concerns regarding diagnostic techniques and their
impact on analysis quality are addressed by checking for batch
effects and ensuring sample homogeneity and between-group
variability. Remapped probes retain updated annotation information
from various platforms. Therefore, this paper presents a comprehensive
approach to identify periodontitis-related markers using transcriptomic
data from multiple sources. Meanwhile, considering batch effects for
both datasets, we performed batch effect removal and introduce RRA
analysis to enhance the robustness of results. In addition, core genes and
potential markers were previously determined by network analysis for
experimental single network determination. In this study, PPI network
and ceRNA network are used to identify core genes and potential
markers. This allows for more comprehensive biological information.
Moreover, the accuracy and robustness of the identified biomarkers can
be enhanced by integrating the information from different networks.

From the GO and KEGG analysis, it can be seen that differential
mRNAs were involved in several processes related to inflammation
and immunity. Among the GO enrichment pathways,
immunomodulation, B-cell activation, cell detoxification, epidermal
cell differentiation, developmental regulation and apoptosis showed a
more significant enrichment. The medical literature provides a wealth
of information on the molecular and immunological mechanisms by
which T cells and B cells are involved in the pathogenesis of
inflammatory diseases (Gonzales, 2000). Cell detoxification has
been shown to be significantly enriched in periodontitis (Lehmann,
2020). Suzuki et al. indicate that periodontitis-related genes are
significantly enriched in epidermal cell differentiation (Suzuki
et al., 2019). Salmon et al. have suggested that developmental
regulation is involved in the pathogenesis of periodontal disease
(Salmon et al., 2017). Recent studies have demonstrated the
involvement of ER stress in periodontal disease (Jiang et al., 2022).
Therefore, we assessed the relevance and differential expression of the

expressions of ER proteins and activation of immune response
pathway in the GO-enriched pathway. The expressions of ER
proteins and activation of immune response pathway have a
strong correlation (Supplementary Figure S3A). As can be seen
from the box plots of differential expression, the expressions of ER
proteins and activation of immune response pathway were
significantly different in both inflammatory and normal samples
(Supplementary Figure S3B, Supplementary Figure S3C,
Supplementary Figure S4D). In KEGG enrichment pathways,
osteoblastic cell differentiation, glutathione metabolism, the tonicity
and coagulation cascades and ECM-receptor interactions presented
more enriched pathways. Comparison of the core PPI module and the
core ceRNA module revealed that C1QA, BST2 and TYROBP in the
PPI core module were significantly enriched in the
immunomodulatory and B-cell activation pathways. Willems et al.
clearly indicate that the C1Q family (C1QA) is associated with
immunoregulatory pathways and autoimmune diseases (Willems,
2021). Alvarez et al. found that BST2 genes associated with
antiviral defense, interferon signaling and Toll-like receptor
signaling were significantly upregulated in the OPM of VEH/SIV
(Alvarez et al., 2020). Huo et al. found that TYROBP rich in
complement, inflammatory response, interferon γ response, and
TNF-α signaling via NF-κB (Huo and Wang, 2021). The core
ceRNA module genes C1QA, BAX, CFD, CFH and CFI were
significantly enriched in the immune regulation pathway. Ma et al.
noted that CFD + fibroblasts show high expression of chemokines
similar to iCAF in some types of tumors (Ma et al., 2023). Duan et al.
found that CFH and CFI were associated with immunity and
characteristic reflection of periodontitis (Duan et al., 2023).
BST2 was significantly enriched in the B-cell activation pathway.
Moreover, according to geneCards, C1QA, TYROBP and CFI were
found to be associated with inflammation, while BAX was associated

FIGURE 5
Results of correlation analyses of core gene-associated genes. Red hue signifies a positive correlation, whereas blue signals a negative one (p <0.05).
(A) Shows the correlation analysis of mRNAs and lncRNAs associated with the four core genes in the ceRNA core network in the GSE16134 expression
profile, and (B) shows the correlation analysis of mRNAs and lncRNAs associated with the four core genes in the ceRNA core network in the
GSE106090 expression profile. Among them, region 1 and region 2 within (A) have a high correlation.
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with the process of odontogenesis. Additionally, the results of the
correlation analysis indicated a strong correlation between C1QA and
TYROBP within the two datasets. In summary, it can be inferred that
changes in differential mRNA expression were closely associated with
inflammation and immune-related biological processes. These
findings may contribute to an in-depth understanding of the
molecular mechanisms of inflammation and immune regulation.

LncRNAs play a pivotal role in periodontitis and there is
growing evidence that lncRNAs have diagnostic value. Wu et al.
found that inflammation in diabetes-associated periodontitis can be
attenuated by activating the CTBP1-AS2/miR-155/SIRT1 axis (Ng
et al., 2024). Xia et al. found that long-chain non-coding RNA
PVT1 can be involved in pulpitis pathogenesis by regulating miR-
128-3p (Xia et al., 2022). We constructed a ceRNA network aiming
to discover the regulatory relationship between differential mRNAs
and differential lncRNAs. Meanwhile, we found ten inflammation-
associated genes and two odontogenesis-associated genes within the
geneCards. Additionally, C1QA, CENPU, CENPK and BST2 were
also present in the core PPI module, and C1QA was identified to be
highly correlated with inflammatory genes within geneCards from
the core ceRNA network. We also found 11 lncRNAs related to the
regulation of C1QA, 13 lncRNAs linked to CENPU, 13 lncRNAs
linked to CENPK, 17 lncRNAs linked to CENPK and 18 lncRNAs
linked to BST2. Six lncRNAs were found to be co-linked to the above
four genes, namely, LINC00943, LINC00174, DSCAM-AS1,
MAGI1-IT1, MIR4458HG and LINC01133, suggesting that these
six lncRNAs may play a role in the regulation of gene expression in
periodontitis. Meng et al. found that LINC00943 could attenuate
MPP + -induced neuronal injury through the RAB3IP axis in SK-N-
SH cells (Meng et al., 2021). Su et al. found that LINC00174 could
attenuate cardiac muscle injury through p53-mediated autophagy
and apoptosis (Su et al., 2021). Maimeti et al. found that
LINC00174 as an immune regulator may have a regulatory role
in low-grade gliomas (Maimaiti et al., 2021). Ning et al. found that
DSCAM-AS1 can accelerate cell value-addition and migration in
osteosarcoma through GPRC5A signaling (Ning and Bai, 2021).
Wang et al. found that MAGI1-IT1 has a regulatory role in
controlling the value-addition of gastric cancer (Wang et al.,
2021). Sun et al. found that LINC01133 also has a regulatory
effect on the value-added of gastric cancer (Sun et al., 2022).
Zeng et al. found that CENPK has the potential to serve as a
predictive marker gene for clinical prognosis and personalized
immunotherapy in cancer patients (Zeng et al., 2021). Zhou et al.
found that CENPU was a key gene in the development of LUAD,
closely associated with the infiltration of various immune cells
(Zhou et al., 2021). Shan et al. found that BST2 contributes to
the promotion of metastasis, invasion and proliferation of oral
squamous cell carcinoma (Shan et al., 2023). Through the above
core gene-associated lncRNAs, it has been shown that the above
lncRNAs were related to the value-added and differentiation
regulation of cancer cells, and LINC00174 is related to immune
regulation. Meanwhile, in the enrichment analysis of the core
ceRNA network, it was found that the immune-regulatory
pathway was the most significant enriched pathway, and C1QA
was one of the genes of the pathway. Therefore, we suspected that
LINC00943, LINC00174, DSCAM-AS1, MAGI1-IT1, MIR4458HG
and LINC01133 may have similar regulatory roles in the
proliferation and differentiation of stromal and neutrophil cells

as those in the proliferation and differentiation of cancer cells.
They may also have a role in the process of immune regulation.

In the enrichment analysis of core ceRNA network, C1QA was
significantly enriched in immune activation, complement
activation, humoral immune response and leukocyte-mediated
immune pathway. Hajishengallis et al. collation of an exposition
of how to intervene in periodontal disease mechanisms using
complement dependence (Hajishengallis et al., 2019). In this
study (Supplementary Figure S4A), ficolin-1 and C1QA have
some correlation. Supplementary Figure S4B, Supplementary
Figure S4C and Supplementary Figure S4D pointed out that
the two have significant differences. BST2 was significantly
enriched in leukocyte-mediated immune pathway. The
enriched pathways in the PPI network were also immune-
regulation related, which suggested to a certain extent that
C1QA played a certain role in immune regulation in
periodontitis, and BST2 was a more likely potential
periodontitis regulator. Meanwhile, CENPU and CENPK also
existed in the core PPI network and were associated with
cancer cell value-added and differentiation-related processes.
Thus, it was speculated that they were also potential regulators
in diagnosing periodontitis.

In the core ceRNA network, LINC01133 were identified as
positively correlated with coregulators. It implied that
LINC01133 may play a role in regulating coregulators’ expression
in cells. The positive correlation indicated that the expression levels
of LINC01133 were consistent with the trend of change in the
expression levels of regulatory genes. This may imply that
LINC01133 may be involved in the regulatory network of core
genes by interacting with core genes, which in turn affects the
expression levels of core genes. This positive correlation may
provide a new explanatory mechanism that LINC01133 may
regulate the expression of core genes by sharing miRNA binding
sites with core genes as ceRNAs. Differential lncRNAs increase the
expression of core genes by adsorbing miRNAs and blocking the
inhibitory effect of miRNAs on core genes. Therefore, the
identification of some differential lncRNAs positively correlated
with core factor correlations may help to further understand the
role of these differential lncRNAs in regulating core factor
expression and cellular functions.

In the PPI network, we chose to polymerize the post-
differential mRNAs for the study of the interactions network,
once again reducing the problem of heterogeneity present in the
data from different platforms. The core PPI network was
identified within geneCards as containing seven genes related
to inflammation, in which C1QA, BST2, CENPU and CENPK
were simultaneously present in the core ceRNA module. So it can
be inferred that C1QA played an essential regulatory role in
periodontitis. Jahanimoghadam et al. describe the interactions of
common DEGs by constructing a protein interaction network, in
which C1QA is one of the core ceRNA regulators. They find that
IF135, MX1, SPI1 and IF144L associated with it are in the
periodontitis core PPI network, and C1QB in the
periodontitis core ceRNA network (Jahanimoghadam et al.,
2022). Wang et al. construct the PPI network of differential
genes when studying the changes in gene expression profiles in
the dorsal horn of the spinal cord after sciatic nerve injury, and
C1QA plays a more central role in this network. Meanwhile,
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C1QA has a strong interaction with TYROBP and C1QB, while
TYROBP also plays a certain regulatory role (Wang et al., 2017).
C1QA and C1QB are found to have a high interplay relationship
in the bioinformatics analysis studies on the regulatory role of
inflammatory genes in dwarfism diseases by Yuan et al. and
vascular dementia molecules by Shu et al. (Yuan et al., 2021; Shu
et al., 2022). In our study, C1QB exists in the core ceRNA
network in periodontitis differential mRNAs and differential
lncRNAs, which can be seen in the existing studies indicating
that C1QB and C1QA have a strong reciprocal relationship. It
can be speculated that there is also a potential reciprocal
relationship between C1QB and C1QA in the regulation of
periodontitis genes. BST2, CENPU and CENPK are the
potential undiscovered genes that are related to the regulation
of periodontitis.

Integrating transcriptomics data from multiple sources can
reduce bias and error, improving data reliability. It enables the
identification of more differentially expressed genes related to
periodontitis, enhancing our understanding of its pathogenesis. It
allows for comprehensive bioinformatics analysis, including gene
function annotation, pathway analysis and protein interaction
networks, deepening our understanding of periodontitis-related
markers. At the same time, the deletion of the six dental implant
samples did not affect the final conclusion. However, limitations
exist due to potential differences in sample processing and
sequencing platforms, which may affect data consistency.

In comparison with other studies, our research highlights four
major points of distinction. Firstly, we consider that multi-source
transcriptomic data may introduce batch effects due to factors such
as laboratory and sequencing platform. Therefore, the detection and
removal of batch effects are carried out before the differential analysis, in
order to increase the consistency of the data and reduce the possibility of
false positives, and to improve the accuracy of the differential analysis.
Secondly, two-net control analysis is used to identify potential markers
of periodontitis molecules to help obtain a more comprehensive
understanding of gene regulatory networks. The accuracy and
robustness of identifying biomarkers can be enhanced by integrating
the information of the PPI network and the ceRNAnetwork.Moreover,
the functional enrichment analysis of the core ceRNAnetwork is added,
which compares with the enrichment analysis of differential genes, and
find that the two are interlinked in immune regulation. It can also help
us to further determine whether the genes in the core ceRNA network
are involved in specific signaling pathways. This can help to further
reveal the key pathways that may be affected in the development of
periodontitis. Finally, we performed a correlation analysis of the core
adjacent genes in the core ceRNA network and identify some of the
genes highly positively associated with the core genes. Potential
cooperative relationships and therapeutic targets may exist for highly
positively correlated genes. This helps to provide a deeper
understanding of the molecular mechanisms and disease
development of periodontitis. Although there are limitations due to
potential differences in sample processing and sequencing platforms,
overall it does not affect the identification and identification of potential
markers of periodontitis.

In conclusion, this study identified potential markers in the
diagnostic process of periodontitis, and analyzed the functional
pathways and interactions of the core modules. These results
provided candidates for molecular diagnosis.
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SUPPLEMENTARY FIGURE S1
PPI network construction and MCODE mining of core networks. (A) The PPI
network: the PPI network was constructed for themRNAs with differences after
polymerization, the node size indicates the degree of the sparseness of the
association with other nodes, the node border color is purple for inflammation,
theborder color is blue for odontogenesis, and theborder color is orange for the
time being, no association was found with the two types of physiological
processes. (B) The PPI core network: Significant PPI modules delineated by
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MCODE. Node attributes such as color, dimension, and bordering styles are
altered by the parameters stipulated for the PPI network.

SUPPLEMENTARY FIGURE S2
Results of the identification of genes directly associated with core genes. (A)
Represents an inseparable gene cluster directly linked to C1QA, (B) signifies
another suchgene cluster linked toCENPU,while (C)denotes yet another about
CENPK. Lastly, (D) indicates a distinct gene cluster directly related to BST2. Within
this figure, circles signify mRNA molecules whereas triangles denote lncRNAs.

SUPPLEMENTARY FIGURE S3
The correlation assessment of the expressions of ER proteins and activation of
immune response pathway. The correlation between the expressions of ER
proteins and activation of immune response pathway in this studywas assessed
using normalized data of GSE16134 and GSE106090. (A) The scatter plot of
correlation, the abscissa is themean of expression of geneswithin the activation
of immune responsepathway inGSE16134 andGSE106090. Theordinate is the

mean expression of genes within the ER pathway. R is the correlation coefficient
while the P-values reflect the significance of the correlation. (B) “ai_ average” is
the mean of expression of genes within the activation of immune response
pathway inGSE16134 andGSE106090. “er_ average” is 16 themeanexpression of
genes within the ER pathway in GSE16134 and GSE106090. The expression of
two pathways in the (C) normal samples and (D) inflammatory samples. The
P-values were calculated by t-test.

SUPPLEMENTARY FIGURE S4
The correlation assessment of C1QA and ficolin-1. The assessment method was
consistent with the Supplementary Figure S3. (A) The scatter plot of correlation
with the abscissa representing the mean of expression of genes within the
ficolin-1 in GSE16134 and GSE106090. The ordinate is the mean expression of
C1QA in GSE16134 and GSE106090. (B) “f1_ average” is the mean of expression
of geneswithin ficolin-1 inGSE16134 andGSE106090. “C1QA” is the expression
of C1QA in GSE16134 and GSE106090. The expression of C1QA and ficolin-1 in
(C) normal samples and (D) inflammatory samples.
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