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As ancient organisms, tree ferns play a crucial role as an evolutionary bridge
between lower and higher plant species, providing various utilitarian benefits.
However, they face challenges such as overexploitation, climate change, adverse
environmental conditions, and insect pests, resulting in conservation concerns. In
this study, we provide an overview of metabolic and transcriptomic resources of
leaves in two typical tree ferns, A. spinulosa and A. metteniana, and explore the
resistance genes for the first time. The landscape ofmetabolome showed that the
compound skimmin may hold medicinal significance. A total of 111 differentially
accumulated metabolites (DAMs) were detected, with pathway enrichment
analysis highlighting 14 significantly enriched pathways, including 2-
oxocarboxylic acid metabolism possibly associated with environmental
adaptations. A total of 14,639 differentially expressed genes (DEGs) were
found, among which 606 were resistance (R) genes. We identified BAM1 as a
significantly differentially expressed R gene, which is one of the core genes within
the R gene interaction network. Both the maximum-likelihood phylogenetic tree
and the PPI network revealed a close relationship between BAM1, FLS2, and TMK.
Moreover, BAM1 showed a significant positive correlation with neochlorogenic
acid and kaempferol-7-O-glucoside. These metabolites, known for their
antioxidant and anti-inflammatory properties, likely play a crucial role in the
defense response of tree ferns. This research provides valuable insights into the
metabolic and transcriptomic differences between A. spinulosa and A.
metteniana, enhancing our understanding of resistance genes in tree ferns.
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Introduction

Tree ferns (Cyatheaceae) have attracted significant attention due to their diverse utility
values, mainly distributed in mainland China, Southeast Asia and southern Japan. These
ancient organisms, predating dinosaurs, have existed on Earth for hundreds of millions of
years, preceding the evolution of flowering or cone-bearing plants (Cleal and Thomas,
2009). During the Carboniferous period 300–360 million years ago, tree ferns were a

OPEN ACCESS

EDITED BY

Guilherme Targino Valente,
São Paulo State University, Brazil

REVIEWED BY

Adauto Lima Cardoso,
Federal University of Pará, Brazil
Muhammad Tahir Ul Qamar,
Government College University, Faisalabad,
Pakistan

*CORRESPONDENCE

Yu Jiang,
jiangyu20090820@163.com

†These authors have contributed equally to this
work and share first authorship

‡These authors have contributed equally to this
work and share last authorship

RECEIVED 10 March 2024
ACCEPTED 30 April 2024
PUBLISHED 10 June 2024

CITATION

Yang W, He Q, Zhang L, Xiao J, Yang J, Che B,
Zhang B, Chen H, Li J and Jiang Y (2024),
Transcriptomics and metabolomics analyses
provide insights into resistance genes of
tree ferns.
Front. Genet. 15:1398534.
doi: 10.3389/fgene.2024.1398534

COPYRIGHT

© 2024 Yang, He, Zhang, Xiao, Yang, Che,
Zhang, Chen, Li and Jiang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 10 June 2024
DOI 10.3389/fgene.2024.1398534

https://www.frontiersin.org/articles/10.3389/fgene.2024.1398534/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1398534/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1398534/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1398534/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1398534&domain=pdf&date_stamp=2024-06-10
mailto:jiangyu20090820@163.com
mailto:jiangyu20090820@163.com
https://doi.org/10.3389/fgene.2024.1398534
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1398534


prominent component of the Earth’s flora when conditions for plant
growth were optimal. Being the closest lineage to seed plants, tree
ferns represent an ancient and highly diverse group (Pryer et al.,
2001). Throughout their extensive evolutionary history, tree ferns
have adapted to changes in paleogeographic environments,
developing mechanisms to cope with environmental stresses,
thereby contributing to further adaptive evolution. In addition to
their evolutionary significance, tree ferns exhibit high ornamental
values and serve as a source of natural products with pharmaceutical
applications (Cao et al., 2017). Traditional medicine utilizes tree
ferns to treat various health conditions, including bacterial skin
infections, kidney diseases, hemorrhoids, varicose veins, and
diabetes (Chaparro-Hernández et al., 2022). Metabolites in
Alsophila spinulosa have been identified for their anti-tumor and
antibacterial properties (Ying et al., 2011; Longtine and
Tejedor, 2018).

A. spinulosa represents a typical species of tree fern. Studies on
A. spinulosa, including genome de novo assembly (Huang et al.,
2022), complete chloroplast genome sequencing (Gao et al., 2009),
and full-length transcriptomes (Hong et al., 2022), provide essential
groundwork for further investigations. Notably, the main differences
between A. spinulosa and A. metteniana Hance are evident in
various aspects such as plant morphology, leaves, petioles,
branches, and distribution areas. A. spinulosa typically grows to a
stem height of 6 m or higher, with a diameter ranging from 10 to
20 cm, displaying a tree-like structure. Its leaves are thin and deeply
lobed, while the branches are brown and thorny, commonly
inhabiting ravines, mountain forests close to water sources, and
secluded areas. In contrast, A. metteniana plants are generally
shorter, around 2 m in height, featuring thicker leaves with a
distinct waxy layer and shallow lobes. The branches of A.
metteniana are darker, and these plants are typically found in
relatively damp dense forests or crevices among rocks. The
endangerment of A. spinulosa and A. metteniana Hance by
plant-eating insects poses a significant threat to their growth.
Insect mouthpart density varies between the two plant species,
influenced by factors like host defense responses and insect
oviposition selection. Land plant genomes harbor a class of genes
collectively known as Resistance (R) genes, comprising tens to
hundreds of genes per genome. R genes are essential for plant
defense against various biotic stresses, insect pests, and pathogens
(Kaloshian, 2004). To our knowledge, the R genes in Alsophila
species have not yet been reported.

High-throughput omics techniques, specifically transcriptomics
and metabolomics, have become increasingly prevalent in scientific
research (Raza, 2020). By predicting and integrating metabolite-
protein interactions, a deeper understanding of central regulatory
mechanisms can be achieved (Yang et al., 2023). Integrating
metabolome and transcriptome data has been explored in
multiple plants, including tomato, ginkgo, and peanut (Bai et al.,
2021; Lu et al., 2021; Li et al., 2022a). Gene networks play a crucial
role in various organisms and systems, effectively revealing the
fundamental principles of numerous biological processes and
reactions within organisms (Zhao et al., 2021a). In this study, we
present an analysis of transcriptomics and metabolomics data
obtained from leaf tissues of the tree ferns A. spinulosa and A.
metteniana. Our investigation aims to characterize differentially
expressed genes and metabolites, as well as explore the

interactions and evolutionary relationships of R genes. This study
provides insights into the plant resistance mechanisms of tree ferns.

Materials and methods

Experimental materials and tissue collection

The fresh leaves ofA. spinulosa andA. mettenianawere gathered
in the afternoon of 20 December 2020, at Chishui alsophila national
nature Reserve (109°45’~ 106° 03′n, 28°23’~ 28° 27′e), Chishui,
Guizhou Province, P. R. China. The samples were placed in
microcentrifuge tubes, rapidly frozen in liquid nitrogen, and
stored at −80°C until metabolite and RNA isolation. Three
biological replicates were included for each plant.

RNA extraction, library preparation, and
sequencing

Total RNA was extracted using TRIzol reagent kit (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol.
Degradation and contamination of RNA were verified using 1%
RNase-free agarose gel electrophoresis, and the purity and integrity
of RNA was assessed on an Agilent 2,100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). High-quality RNA (RNA
Integrity Number [RIN] scores >7.5) was used for subsequent
experiments. The messenger RNA (mRNA) was enriched using
Oligo(dT) beads, followed by fragmentation into short fragments
using fragmentation buffer and reverse transcribed into cDNA with
random primers. Second-strand cDNA was synthesized by DNA
polymerase I, RNase H, dNTP and buffer. Subsequently, the cDNA
fragments were purified with QiaQuick PCR extraction kit (Qiagen,
Venlo, Netherlands), end repaired, A base added, and ligated to
Illumina sequencing adapters. The ligation products were size
selected (~300 bp) by agarose gel electrophoresis, PCR amplified,
and sequenced using Illumina NovaSeq 6,000 by Gene Denovo
Biotechnology Co. (Guangzhou, China).

Quantification of gene expression level and
differential expression analysis

RNAseq raw reads were trimmed by fastp (v 0.18.0) (Chen et al.,
2018) to remove adapter contamination and reads with high
uncertainty (N > 10%) or low base quality with default
parameters. The gene expression levels were quantified and
differential expression analysis was conducted based on the
reference genome of A. spinulosa (Huang et al., 2022), following
methods described in previous studies (Sun et al., 2020). Briefly,
index of the reference genome was built and paired-end clean reads
were aligned to the reference genome using Hisat2 (v 2.2.1) (Kim
et al., 2015) with parameters of “--sensitive --no-discordant --no-
mixed -I 1 -X 1000”. The reads numbers matrix was generated using
htseq (v 0.12.4) (Anders et al., 2015). We used fragments per
kilobase of exon model per million reads mapped (FPKM)
algorithm (Roberts et al., 2011) to obtain transcriptional profile.
Differentially expressed genes (DEGs) of A. metteniana (H) vs. A.
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spinulosa (S) was identified using the DEseq2 R package (Love et al.,
2014). Genes with FDR values ≤0.05 and FPKM values showing at
least a 2-fold difference among samples were considered as DEGs.
The hierarchical cluster was performed using R software with
hclust function.

GO and KEGG enrichment analysis of
differentially expressed genes

The Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were using clusterProfiler (Wu et al., 2021).

Identification and analysis of differential
metabolites

The Q1, Q3, retention time, declustering potential (DP) and
collision energy (CE) were used for metabolite identification. The
SCIEX OSV1.4 software was used to open the downtime mass
spectrum file, and the chromatographic peaks were integrated
and corrected. The chromatographic peaks were screened
according to the minimum peak height of 500, signal-to-noise
ratio of 5, smoothing number of 1 and other information. The
peak area of each chromatographic peak represents the relative
content of the corresponding substance. Finally, the integral data of
all chromatographic peaks are derived to obtain the qualitative and
quantitative results of metabolites (Bai et al., 2021). These
metabolites were annotated using the KEGG database (Kanehisa
and Goto, 2000), HMDB database (Wishart et al., 2013), and
Lipidmaps database (Zhu et al., 2013), separately. PLS-DA
analysis was applied to calculate the corresponding variable
importance in projection (VIP) value. The condition of
differential metabolites was VIP value of the PLS-DA
model ≥1 and independent sample t-test’s p-value ≤0.05.
Heatmap clustering analysis was performed in the R software
with ComplexHeatmap package. KEGG pathway enrichment
analysis of DAMs was examined using KOBAS (v2.0.12) (Xie
et al., 2011). DAMs were considered to be significantly enriched
in metabolic pathways when their p-values were <0.05.

Correlation between genes and metabolites

We adopted a similar method as described in Yang, Sun et al.
(Yang et al., 2023) to integrate metabolomics and transcriptomic
analyses. The expression correlation between genes and metabolites
was evaluated using ‘cor.test’ function under R software (v 3.5.1). We
deemed a correlation significant if the absolute value of Pearson
correlation coefficient ≥0.9 with a corresponding p-value ≤0.01.

The identification, protein interaction
network, and phylogenetic tree of R genes

As genomic data for A. metteniana is not available, we used the
gene set of A. spinulosa as a reference to study R genes. Using a

method similar to that described in the eggplant genome study (Li
et al., 2021), we employed the RGAugury pipeline (Li et al., 2016) to
screen the entire gene set for R gene prediction. The default p-value
cutoff for initial R gene filtering was set to le-5 for BLASTP. Protein-
protein interaction (PPI) network was analyzed using the Search
Tool for the Retrieval of Interacting Gene (STRING) database
(Szklarczyk et al., 2018), which included direct and indirect
associations of proteins. The hub gene was determined using
cytoHubba (Chin et al., 2014) with the MCC algorithm. The
amino acid sequences of R genes were computed multiple
sequence alignments using MAFFT (v 7.505) (Nakamura et al.,
2018). Subsequently, the maximum-likelihood phylogenetic tree was
obtained by using iqtree (v 2.0.6) (Minh et al., 2020) with parameters
of ‘-bb 1,000 -pre iqtree -nt AUTO -m MFP -bnni’. The best model
inferred by iqtree was “VT + R9”. The tree was displayed using
Interactive Tree Of Life (Letunić and Bork, 2021).

Validation of gene expression using
quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) has been emerged as an
effective method to verify gene expression. We performed qRT-PCR
experiment using a similar approach in the yellowhorn
transcriptome (Zhao et al., 2021b). Total RNAs were reverse-
transcribed using the PrimeScript first-strand cDNA synthesis kit
(Takara, Dalian, China). Specific primers were designed using
Primer-Blast tools (Ye et al., 2012). The qRT-PCR experiment
was carried out using SYBRGreen Fast qPCR Master Mix
(Sangon Biotech, China) on an ABI StepOne Plus Real-Time
System (ABI, USA), following the manufacturer’s instructions.
The quantitative PCR reaction conditions were as follows: 95°C
for 90 s, followed by 95°C for 5 s, 60°C for 15 s, and 72°C for 20 s
(45 cycles). Three biological replicates were included for each gene.
Actin was used as the internal reference gene to normalize the qRT-
PCR expression data. The 2−ΔΔCT method (Livak and Schmittgen,
2001) was employed to calculate the relative mRNA abundance in
each sample for every gene. Finally, we estimated the Pearson
correlation coefficient of gene expression between the qRT-PCR
and RNA-seq profiles in R software with “cor” function.

Results

Metabolome profiling of A. spinulosa and A.
metteniana

After collecting fresh leaves from A. spinulosa (S) and A.
metteniana (H) (Figure 1A), the metabolic components were
detected and analyzed. To improve the accuracy of analysis, each
group included three replicates. We identified 373 and
399 metabolites in positive and negative modes, respectively
(Supplementary Table S1). In A. spinulosa, the top 10 metabolites
with highest metabolite abundance were “2-Caffeoyl-L-tartaric acid
", “Isocitric Acid”, “Kaempferol-3-O-glucoside-7-O-rhamnoside”,
“Kaempferol-3-O-neohesperidoside”, “Skimmin ", “Luteolin-6-C-
glucoside ", “Demethyl coniferin”, "γ-Linolenic Acid”,
“Methylmalonic acid”, and “Aromadendrin-7-O-glucoside”. In A.
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metteniana, the top 10 metabolites with highest metabolite
abundance were “Skimmin”, “Isocitric Acid”, “6-
Methylmercaptopurine”, "γ-Linolenic Acid”, "α-Linolenic Acid”,
“Spermine”, “Histidinol”, “N-Benzylmethylene isomethylamine”,
“L-Glutamine” and “L-Lysine” (Figure 1B). The quantity of
DAMs was statistically analyzed (Supplementary Table S2).
Clustering heatmaps of DAMs showed significant differences in
111 metabolites. Of these, 82 DAMs were upregulated, and
29 metabolites were downregulated (Figure 1C). To verify the
function of the DAMs, KEGG pathway enrichment was
conducted. A total of 14 pathways were significantly enriched,
including “valine, leucine and isoleucine degradation”, “pyruvate
metabolism”, “2-Oxocarboxylic acid metabolism”, “valine, leucine
and isoleucine biosynthesis”, “citrate cycle (TCA cycle)”,
“biosynthesis of amino acids”, “biosynthesis of secondary

metabolites”, “aminoacyl-tRNA biosynthesis”, “glucosinolate
biosynthesis”, “glyoxylate and dicarboxylate metabolism”, “ABC
transporters”, and so on (Figure 1D). Notably, the pathway with
the most DAM enrichment pathways was the biosynthesis of
secondary metabolites, which had 21 DAMs.

Transcriptomics analysis of A. spinulosa and
A. metteniana

Six cDNA libraries were constructed from fresh leaves of A.
spinulosa (S) and A. metteniana (H), yielding a total of 231.57 Mb of
clean data, with 38.60 Mb obtained for each sample (Q30 ≥ 92.6%).
The mRNA abundance of each gene in each sample was profiled
using FPKM method. A total of 29,060 genes exhibited an FPKM

FIGURE 1
Metabolome profiling of A. spinulosa (S) and A. metteniana (H). (A) The leaves of A. spinulosa and A. metteniana. (B) The heatmap of metabolites,
each column represents a sample, and each row represents a metabolite. (C) The heatmap of DAMs, each column represents a sample, and each row
represents a DAM. The DAM clustering tree is shown on the left. The color scale shown on the right illustrates the relative expression level across all
samples: red color represents high expression level, blue color represents low expression level. (D) Scatter plot for top 20 KEGG enrichment
pathways of DAMs. The X-axis label represents rich factor. The rich factor is the ratio of DAMs numbers annotated in this pathway term to all metabolite
numbers annotated in this pathway term. The greater the rich factor, the greater the degree of pathway enrichment. A qvalue is the corrected p-value
ranging from 0 to 1, and a lower value indicates greater pathway enrichment.
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expression value above 1.0 in at least one sample (Supplementary
Figure S1). The hierarchical cluster dendrogram showed the
expression pattern of biological repeats be clustered together
(Supplementary Figure S2). Furthermore, a total of 14,639 DEGs
were identified in the H vs. S comparison, with 7,764 upregulated
genes and 6,875 downregulated genes (Figure 2A). Among the five
most differentially upregulated genes, three genes had defined
functions: indole-3-pyruvate monooxygenase YUCCA1

(YUCCA1), pleiotropic drug resistance protein 1 (PDR1), and
cholesterol 22-hydroxylase CYP90B27 (CYP90B27).
Correspondingly, all five of the most differentially downregulated
genes had defined functions: 14 kDa zinc-binding protein (ZBP14),
expansin-A10 (EXPA10), protein MEN-8 (MEN-8), methyl
jasmonate esterase 1 (MJE1), and mannose-specific lectin (dfa).
The results of DEGs KEGG enrichment analysis indicated that
38 pathways were enriched (Figure 2B; Supplementary Table S3).

FIGURE 2
Transcriptomics analysis of A. spinulosa and A.metteniana. (A) Volcano plots illustrate themagnitude and significance of DEGs. X-and Y-axis present
the log 2 (Fold Change) for the two groups and -log10(padj), respectively. Red (Upregulated) and blue (Downregulated) dots mean that the genes have
significant difference, while the dark blue-gray dots correspond to genes with no significant differences. (B) Scatter plot for top 20 KEGG enrichment
pathways of DEGs. The X-axis label represents rich factor. The rich factor is the ratio of differentially expressed gene numbers annotated in this
pathway term to all gene numbers annotated in this pathway term. The greater the rich factor, the greater the degree of pathway enrichment. The Y-axis
label represents pathway. The size and color of the bubble represent the amount of DEGs enriched in the pathway and the enrichment significance,
respectively. A Q value is the corrected p-value ranging from 0 to 1, and a lower value indicates greater pathway enrichment. (C) GO enrichment circle
plots for the top 20 most significant GO categories. The outer circle shows the relative fold change for each significant RNA feature compared to air
contributing to the GO term with blue dots showing downregulated RNA features and red dots showing upregulated features. The z-score color scale
represents the number of upregulated genes minus the number of downregulated genes for a given GO term divided by the square root of the total
count. The associated tables present the GO term ID and function for the enriched term.
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Furthermore, GO enrichment analysis revealed that the top 20 most
significant GO categories as follows: “regulation of transcription,
DNA-templated”, “protein phosphorylation”, “carbohydrate
metabolic process”, “defense response”, “transmembrane
transport”, “membrane”, “transmembrane transporter activity”,
“copper ion binding”, “iron ion binding”, “ADP binding”,
“sequence-specific DNA binding”, “ATPase activity”,
“monooxygenase activity”, “protein kinase activity”, “microtubule
binding”, “carbohydrate binding”, “protein serine/threonine kinase
activity”, “DNA binding”, “DNA-binding transcription factor
activity”, “oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular” (Figure 2C).

Identification of R genes

A total of 1,290 R genes were identified in theA. spinulosa genome
using a genome-wide scanning pipeline (Li et al., 2016)
(Supplementary Table S4). Among these R genes, 62.2% (803)
belonged to the RLK category, while there were 110 NBS-related R
genes, with 25 being of the TIR type. Further analysis revealed that
839 R genes were expressed in leaf tissue (Supplementary Figure S3).
Of these, 606 R genes overlapped with DEGs, including 426 RLK-
encoding R genes . Ten of the most differentially expressed genes were
as follows: disease resistance protein L6 (L6), receptor-like protein
kinase At1g49730 (At1g49730), disease resistance protein RUN1
(RUN1), leucine-rich repeat receptor-like serine/threonine-protein
kinase BAM1 (BAM1), leucine-rich repeat receptor-like protein
kinase At5g63930 (At5g63930), salt tolerance receptor-like
cytoplasmic kinase 1 (OsI_16820), G-type lectin S-receptor-like
serine/threonine-protein kinase SD2-5 (SD25), wall-associated

receptor kinase 2 (WAK2), disease resistance protein RPS2 (RPS2)
and L-type lectin-domain containing receptor kinase VIII.1
(LECRK81). Notably, of the differentially expressed 606 R genes,
551 genes could be further supported by known resistance genes
reference from the latest PRGdb (Osuna-Cruz et al., 2017). These
genes were significantly enriched in “Plant-pathogen interaction” and
“MAPK signaling pathway - plant” pathway. Based on the GO
enrichment analysis, these genes were assigned to 16 GO terms,
such as “protein kinase activity,” “ATP binding,” “protein
phosphorylation,” “defense response,” “protein binding,” and more
(Supplementary Table S5). Using these 551 genes’ protein sequences
as queries, 250 interactions were identified by using the STRING
database (Supplementary Table S6). The first four key genes calculated
by sytoHubba with the MCC algorithm were BAM1, inactive leucine-
rich repeat receptor-like protein kinase At5g48380 (BIR1), receptor-
like protein kinase BRI1-like 3 (BRL3), and leucine-rich repeat
receptor-like serine/threonine/tyrosine-protein kinase SOBIR1
(SOBIR1) (Figure 3A). To investigate the phylogenetic relationship
between R genes, we constructed an evolutionary tree. Themaximum-
likelihood phylogenetic tree showed that the closest relative genes of
BAM1 were LRR receptor-like serine/threonine-protein kinase FLS2
(FLS2) and receptor-like kinase TMK (TMK) (Figure 3B). PPI
network also revealed that BAM1 had interaction with FLS2 and
TMK (Supplementary Table S6).

Correlation between DEGs and DAMs
associated with R genes

The expression levels of 14,097 DEGs were significantly
correlated with the abundance of 111 DAMs. Further analysis

FIGURE 3
The interactions and evolutionary relationships of differentially expressed R genes. (A) The interaction network of top 10 nodes ranked by degree
algorithm. Themore forward ranking is represented by a redder color. (B) Themaximum-likelihood phylogenetic tree of 551 RGAs. The BAM is highlighted
in red, the FLS2 in yellow, and the TMK in blue.
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showed that 585 significantly differentially expressed R genes were
significantly positively correlated with 111 DAMs, while
574 significantly differentially expressed R genes were
significantly negatively correlated with 111 DAMs
(Supplementary Tables S7, S8). Subsequently, we constructed
interaction networks between R genes and DAMs exhibiting
significantly positive correlations, as well as for R genes and
DAMs showing significantly negative correlations, respectively.
According to the results of cytoHubba, in the significantly
positively correlated network, the top 10 core genes are probably
inactive leucine-rich repeat receptor-like protein kinase At5g48380
(BIR1), receptor-like protein kinase BRI1-like 3 (BRL3), BAM1,
phytosulfokine receptor 1 (PSKR1), leucine-rich repeat protein
kinase family protein (AT1G27190), leucine-rich receptor-like
protein kinase family protein (At5g46330), SOBIR1, lysm-
containing receptor-like kinase 1 (LYK1, also named as CERK1),
leucine-rich repeat transmembrane protein kinase family protein
(AT1G68400), and Leucine-rich repeat protein kinase family protein
(AT1G67510). The first 10 core metabolites are N-Benzylmethylene
isomethylamine, 1-O-p-Coumaroylquinic acid, Neochlorogenic
acid (5-O-Caffeoylquinic acid), Ferulic acid-4-O-glucoside,
Scopoletin-7-O-glucuronide, 1-O-Feruloylquinic acid, 3-O-
Feruloylquinic acid, Luteolin-4′-O-glucoside, Kaempferol-7-
O-glucoside, and Kaempferol-4′-O-glucoside. In the significantly
negatively correlated network, the top 10 core genes are BIR1, BRL3,
BAM1, At5g46330, AT1G27190, SOBIR1, Leucine-rich receptor-like
protein kinase family protein (PSY1R), STRUBBELIG-receptor
family 8 (SRF8), LRR receptor-like serine/threonine-protein
kinase HSL2 (HSL2), and PSKR1. The first 10 core metabolites
are Demethyl coniferin, Luteolin-8-C-glucoside (Orientin),

Aromadendrin-7-O-glucoside, 4-O-(6′-O-Glucosylcaffeoyl)-3,4-
dihydroxybenzoic acid, LysoPC 20:5, Procyanidin B2,
Kaempferol-3-O-glucoside-7-O-rhamnoside, Kaempferol-3-
O-neohesperidoside, Quercetin-7-O-rutinoside, and
Cinnamtannin B1 (Figures 4A, B).

Verification of RNA-Seq gene expression

We utilized qRT-PCR to validate the gene expression profiles
identified through Illumina sequencing analysis. Ten DEGs were
randomly selected for validation, including wall-associated
receptor kinase-like 1, leucine-rich repeat receptor-like serine/
threonine-protein kinase BAM2, FLS2, and others
(Supplementary Tables S9, S10). The gene expression of all
10 DEGs in the qRT-PCR experiment was consistent with the
expression patterns in RNA-Seq results, with a Pearson
correlation coefficient of the fold change between the qRT-
PCR experiment and RNA-Seq being 0.78 (Supplementary
Figure S4). These results confirmed the reliability of Illumina
sequencing in this experiment.

Discussion

Tree ferns serve as a crucial evolutionary link between lower and
higher plant species (Cao et al., 2017). They are widely utilized
globally for ornamental, medicinal, and occasionally culinary
purposes, but face challenges such as overexploitation, climate
change, harsh living conditions, and insect pests (Dadang et al.,

FIGURE 4
The interaction network between DEGs and DAMs associated with R genes. (A) Positive regulatory network. (B) Negative regulatory network. A red
line indicates a positive correlation, whereas a blue line indicates a negative correlation between compound content and gene expression. pmp001287:
N-Benzylmethylene, pmb3068: 1-O-p-Coumaroylquinic, pme1816: Neochlorogenic, Hmmn002544: Ferulic, Lmgp003270: Scopoletin-7-
O-glucuronide, pma3724: 1-O-Feruloylquinic, pmb0752: 3-O-Feruloylquinic, Hmpp003270: Luteolin-4′-O-glucoside, mws0089: Kaempferol-7-
O-glucoside, Xmyp005654: Kaempferol-4′-O-glucoside, Hmsn002272: Demethyl, mws1299: Luteolin-8-C-glucoside, Lmtn002796: Aromadendrin-7-
O-glucoside, Zmhn002764: 4-O-(6′-O-Glucosylcaffeoyl)-3,4-dihydroxybenzoic, Lmhp008742: LysoPC, pme0434: Procyanidin, Lmsp004670:
Kaempferol-3-O-glucoside-7-O-rhamnoside, Lmjp002867: Kaempferol-3-O-neohesperidoside, pmb0711: Quercetin-7-O-rutinoside, HJN043:
Cinnamtannin.
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2020). These threats have led to 94 Alsophila species being listed on
the IUCN Red List, emphasizing the urgent need for conservation
efforts. R genes, key players in plant defense mechanisms, typically
encode proteins with conserved domains like nucleotide-binding
site, leucine-rich repeat, and Toll/interleukin-1 receptor (van Ooijen
et al., 2007). These genes provide resistance against a diverse array of
organisms including bacteria, viruses, fungi, oomycetes, nematodes,
and insects (Kaloshian, 2004). R gens have been investigated in
multiple important plants, such sorghum (Zhang et al., 2022a),
soybean (Wang et al., 2021b), and rice (Wang et al., 2019). In
sorghum, a total of 308 R genes have been identified, among which
three R genes, including G325100 (NBS-LRR), G131600 (RLK), and
G181300 (RLK), were confirmed to be upregulated in response to
aphids using quantitative real-time PCR (Zhang et al., 2022b).
Furthermore, in a study of a highly resistant selection eggplant
genome, 1023 R genes were identified, with 15 R genes overlapping
with positively selected genes, likely playing a key role in eggplant
self-defense (Li et al., 2021). Enhanced comprehension of R genes
can facilitate the development of more effective strategies to
safeguard the survival of tree ferns in the face of environmental
challenges. Pest-resistant rice could be developed through the
crossbreeding of plants expressing the Xa21 gene with those
expressing both a Bt gene (Pandolfi et al., 2017). We are looking
forward to developing insect-resistant Alsophila to safeguard this
rare plant.

In this study, we present the metabolomics and
transcriptomic analysis of leaf tissues from two representative
tree fern species, A. spinulosa and A. metteniana, focusing on the
exploration of R genes. Our metabolomics analysis revealed a
high abundance of the metabolite skimmin in both A. spinulosa
and A. metteniana. Skimmin is known to exhibit numerous
bioactive and pharmacological properties, which may be
closely linked to the medicinal significance of Alsophila
species (Zhang et al., 2020; Sun et al., 2023). The DAMs were
significantly enriched in various pathways, including 2-
oxocarboxylic acid metabolism. Interestingly, 2-oxocarboxylic
acid metabolism has been highlighted as a top-5 KEGG
enriched pathway in drought-stressed sugarcane experiment
(Yang et al., 2022) and has been reported to be associated
with cell death and immunity in rice (Zhang et al., 2022a).
The potential connection of 2-oxocarboxylic acid metabolism
to the distinct ecological niches of A. spinulosa and A. metteniana
is worth exploring further. Accordingly, a total of 14,639 DEGs
were obtained. The GO enrichment analysis of DEGs revealed
that defense response was one of the top 20 most significant GO
categories. In the A. spinulosa genome, a total of 1,290 R genes
were identified, with 606 of them being DEGs. Both the KEGG
and GO enrichment analyses indicated that these genes are
significantly associated with disease resistance, including
pathways like plant-pathogen interaction and GO terms
related to defense response. Gene networks play a crucial role
in understanding biological processes and reactions in
organisms. The interactions network analysis revealed that
BAM1 was one of the first four key genes. BAM1 has been
reported to be involved in regulation of leaf shape, size and
symmetry in Arabidopsis (DeYoung et al., 2006). On the other
hand, BAM1 was also involved in virus-host interactions in
Tobacco (Tran and Citovsky, 2021). A precise gene

phylogenetic tree is essential for inferring the origin of genes,
detecting molecular adaptation, and understanding the evolution
of morphological characters (Kapli et al., 2020). The maximum-
likelihood phylogenetic tree indicates a close relationship
between BAM1, FLS2, and TMK, as supported by PPI network
analysis results. FLS2 has been known to enhance disease
resistance in crop plants while TMK plays a role in
orchestrating plant growth in Arabidopsis (Dai et al., 2013;
Wei et al., 2020). The study of interactions between cellular
macromolecules is fundamental to the understanding of
biological systems (Raman, 2010). In the gene-metabolite
interaction networks BAM1 emerges as the core gene,
underscoring its significance in the Alsophila species biological
system. The correlation analysis indicates that BAM1 is positively
correlated with DAMs of neochlorogenic acid and kaempferol-7-
O-glucoside. Neochlorogenic acid exhibits antioxidant,
antifungal, anti-inflammatory, and anticarcinogenic effects
(Navarro-Orcajada et al., 2021), while Kaempferol-7-
O-glucoside has been reported to possess antioxidant and
anti-inflammatory properties (Wang et al., 2018). Taken
together, BAM1 may indeed have a significant impact on the
biology of Alsophila species.

This is the first study to characterize R genes in Alsophila species.
The construction of a pan-genome can serve as a powerful tool for
exploring genomic evolution, the emergence and domestication of
species, and providing valuable insights for enhancing plant traits
(Li et al., 2022b). A pan-genome study on sorghum revealed high
levels of diversity among five sorghum accessions in R genes (Wang
et al., 2021a). Additionally, the pan-NLRome reported in Arabidopsis
indicated that a high diversity of NLR-integrated domains favor known
virulence targets (Van de Weyer et al., 2019). This suggests that
attention should be given not only to conserved regions but also to
genetic variations among different breeds. Therefore, exploring the pan-
genome in Alsophila species may offer a promising future direction for
studying the functions of R genes. The comprehensive analysis of global
metabolic and transcriptomic changes in the leaves of A. spinulosa and
A. metteniana broaden our understanding of resistance genes in
tree ferns.
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