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Background: Prevalent urological cancers, including kidney, prostate, bladder,
and testicular cancers, contribute significantly to global cancer incidence and
mortality. Metabolomics, focusing on small-molecule intermediates, has
emerged as a tool to understand cancer etiology. Given the knowledge gap in
this field, we employ a two-sample Mendelian randomization (MR) analysis to
investigate the causal relationships between genetically determined metabolites
(GDMs) and the susceptibility to four common urological cancers.

Methods: The study employs genome-wide association studies (GWAS) data
from European populations, featuring themost extensive case count available for
both blood metabolites and four prevalent urological cancers. Preliminary and
secondary MR analyses were separately conducted, employing inverse variance
weighted (IVW) as the primary method. Multiple statistical analyses, including the
MR-Steiger test, Cochran’s Q test, leave-one-out analysis, MR-Egger intercept
analysis, and MR-PRESSO analysis, were executed to ensure robustness.
Additionally, a meta-analysis was carried out to consolidate findings. The
weighted median (WM) method was utilized for a relatively lenient
correction (PWM < 0.05).

Results: After rigorous genetic variation filtering, 645 out of 1,400 metabolites
were included in both preliminary and secondary MR analyses. Preliminary MR
analysis identified 96 potential causal associations between 94 distinct
metabolites and four urological cancers. Secondary analysis based on Finnish
outcome data revealed 93 potential causal associations. Cross-database meta-
analysis identified 68 blood metabolites associated with four urological cancers.
Notably, 31 metabolites remained significant after using WM for correction, with
additional 37 suggestive causal relationships. Reverse MR analysis revealed a
significant causal association between genetically predicted prostate cancer and
elevated 4-hydroxychlorothalonil levels (IVW, combined OR: 1.039, 95% CI
1.014–1.064, p = 0.002; WM, combined OR: 1.052, 95% CI 1.010–1.095,
p = 0.014).

Conclusion: This comprehensive MR study provides insights into the causal
relationships between blood metabolites and urological cancers, revealing
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potential biomarkers and therapeutic targets, thereby addressing gaps in
understanding and laying the foundation for targeted interventions in urological
cancer research and treatment.
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1 Introduction

The prevalent cancers affecting the urinary system,
encompassing kidney, prostate, bladder, and testicular cancers,
present a formidable challenge in the realms of cancer
epidemiology and clinical management. These malignancies
significantly contribute to the global incidence and mortality
rates of cancer, constituting a substantial component of the
worldwide health burden (Sung et al., 2021). A focused research
endeavor is imperative for comprehending the intricate etiology of
urinary system cancers and devising effective prevention and
treatment strategies. For instance, prostate cancer (PC) ranks as
the second most prevalent cancer in global males, demonstrating
noteworthy geographical variations in incidence and mortality
rates (Rawla, 2019). These disparities underscore distinctions in
genetic susceptibility, diagnostic practices, lifestyle factors, and
healthcare access (Rawla, 2019). Bladder cancer (BC), the tenth
most globally diagnosed cancer, exhibits a male predilection (Sung
et al., 2021) and is markedly influenced by factors such as smoking
(Cumberbatch et al., 2016; van Osch et al., 2016), occupational
carcinogen exposure (Rota et al., 2014), and environmental
exposure (el-Mawla et al., 2001). Kidney cancer (KC), the
eleventh most common cancer in global males (Sung et al.,
2021), often manifests asymptomatically, leading to later-stage
diagnosis and a higher proportion of metastasis (Motzer et al.,
1996). Despite being relatively rare, testicular carcinoma (TC) is
the most prevalent cancer in young males of European descent
(Sung et al., 2021) and has witnessed an increase in incidence in
Western countries (Van Hemelrijck et al., 2013). While treatment
modalities have made strides, including surgery, radiation therapy,
chemotherapy, targeted therapy, and immunotherapy, the
prognosis for metastatic urinary system cancers remains
pessimistic (Stecca et al., 2021; Rahnea-Nita et al., 2023),
underscoring the urgency of early detection and personalized
treatment paradigms.

Metabolite research, focusing on small-molecule
intermediates and products of metabolic processes, has
garnered attention in cancer research (Gu et al., 2022).
Metabolomics has been applied to identify biomarkers by
revealing altered metabolic pathways and intermediate
metabolites, offering in-depth insights into the occurrence and
development of diseases (Lains et al., 2019). Numerous studies
indicate that metabolites, as functional intermediates, aid in
elucidating potential disease genetic biology mechanisms
(Yang et al., 2020; Xiao et al., 2022) and may serve as
biomarkers for personalized cancer treatment (Wishart, 2019).
Genome-wide association studies (GWAS) of blood metabolites
have identified numerous genetic loci associated with
endogenous metabolite levels (Chen et al., 2023), paving the

way for understanding the genetic basis of metabolic diversity
and its significance in disease susceptibility.

Emerging evidence suggests that changes in specific metabolites
are associated with the risk of urinary system cancers. For instance,
dysregulation in lipid metabolism, including increased lipogenesis
and β-oxidation, is linked to a heightened risk of PC (Deep and
Schlaepfer, 2016; Zekovic et al., 2023). Additionally, metabolites like
4-hydroxynonenal and 2-hydroxybutyric acid have been
significantly elevated in the plasma of PC patients (Perkovic
et al., 2023). Abnormal amino acid metabolism may contribute
to the progression of KC (Sciacovelli et al., 2022). Liu et al. utilized
liquid chromatography-mass spectrometry to identify significant
elevations of 12,13-DHOME and 9,10,13-TriHOME in BC patients
(Liu et al., 2020). Furthermore, serum phosphocholine levels were
notably increased in patients with TC (Cheng et al., 2016).
Collectively, these findings highlight the potential of
metabolomics profiling as biomarkers for cancer risk and
progression. However, ethical considerations often limit the
ability to validate the causal relationships between serum
metabolite levels and cancer incidence. Therefore, there is an
urgent need for innovative research methods to infer causality
and advance our understanding of these associations.

Mendelian randomization (MR) analysis is a method that
utilizes the random allocation of alleles at conception to assess
causality in relationships (Smith and Ebrahim, 2003). It provides a
unique opportunity to study the causal role of genetically
determined metabolites (GDMs) in urinary system cancers. MR
uses genetic variation, often single nucleotide polymorphisms
(SNPs), as instrumental variables (IVs) for the exposure of
interest (Burgess et al., 2015a), reducing common confounding
and reverse causation seen in traditional epidemiological studies
(Lu, 2009; Smit et al., 2014).

Recent MR studies have applied this method to investigate the
causal impact of various risk factors on urological cancers (Chen
et al., 2020; Xiong et al., 2022). By integrating GWAS data on GDMs
with GWAS data on urinary system cancer susceptibility, MR
analysis can provide robust evidence linking changes in
metabolism to cancer risk.

The necessity of our study arises from the knowledge gap
regarding the causality of metabolite-urinary system cancer
associations and the potential for metabolic-targeted
interventions. Utilizing GWAS data for blood metabolites and
urological cancers, our two-sample MR study and subsequent
meta-analysis aim to unravel the causal relationships between
GDMs and the susceptibility of four common urinary system
cancers. Our research not only aims to enhance our
understanding of the metabolic pathways involved in urinary
system cancer pathogenesis but also lays the groundwork for
novel prevention and treatment strategies.
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2 Materials and methods

2.1 Study design

This study employs a two-sample MR analysis to investigate the
causal relationship between 1,400 blood metabolites and the
susceptibility to four common urological cancers. We acquired
two sets of independent outcome GWAS data and subsequently
conducted preliminary MR and secondary MR analyses on each

dataset. This was followed by a meta-analysis to consolidate the
findings. The foundational dataset for this study comprises publicly
available data. All included studies obtained approval from their
respective academic ethics committees, and each participant
provided informed consent. As this study does not involve the
use of raw data, ethical approval was not required. Figure 1A
illustrates the overall framework of the study design. Utilizing
genetic variations as IVs for MR analysis requires adherence to
three crucial assumptions, as depicted in Figure 1B: 1) Relevance:

FIGURE 1
Study design and Mendelian randomization core assumption. (A) Data sources and study design of Mendelian randomization study. (B) Three core
assumptions in the Mendelian randomization. GWAS, genome-wide association study; CLSA, Canadian Longitudinal Study of Aging; KC, kidney cancer;
BC, bladder cancer, PC, prostate cancer; TC, testicular carcinoma; IVs, instrumental variables; SNPs, single nucleotide polymorphisms; MR, Mendelian
randomization; LOO, Leave-one-out; IVW, inverse variance weighted; MR-PRESSO, MR pleiotropy residual sum and outlier; PRACTICAL, Prostate
Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome.
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Variables selected as genetic instruments must be closely associated
with blood metabolites; 2) Independence: Genetic variations should
be unrelated to confounding factors; 3) Exclusion restriction:
Genetic variations should not influence outcomes through
pathways other than affecting blood metabolites (Lawlor et al.,
2008; Emdin et al., 2017).

2.2 GWAS data for human blood metabolites

Statistical data for 1,091 blood metabolites and 309 metabolite
ratios were sourced from Chen’s study (Chen et al., 2023).
Specifically, this study conducted GWAS and MR analyses on
8,299 European individuals from the Canadian Longitudinal
Study on Aging (CLSA). Quantitative measurement of
1,458 plasma metabolites using the Metabolon HD4 platform
underwent rigorous quality control, standardization, and
screening. The study identified genetic variation data for
1,091 blood metabolites and 309 metabolite ratios. Additionally,
248 and 69 gene loci were discovered to be significantly associated
with 690 metabolites and 143 metabolite ratios, respectively.

2.3 GWAS data for urological cancers

To ensure the accuracy and reliability of our MR study, we
selected GWAS statistical data with the largest available case count
for European populations. In the preliminary MR analysis, genetic
variation data for KC and BC were derived from meta-analyses with
sample sizes of 411,688 and 412,592, respectively. PC data originated
from the Prostate Cancer Association Group to Investigate Cancer-
Associated Alterations in the Genome (PRACTICAL) study (N =
140,254), and TC data came from the UK Biobank (N = 167,020).
For the secondary MR analysis, outcome data were sourced from the
FinnGen consortium (Kurki et al., 2023), with sample sizes for KC,
BC, PC, and TC being 316,565, 316,386, 146,465, and 131,692,
respectively (see Supplementary Table S1 for details), publicly
accessible at the website: https://www.finngen.fi/fi.

2.4 Selection of IVs

To ensure the authenticity and accuracy of causal relationships,
the study implemented quality control steps for IVs selection.
Initially, a genome-wide significance threshold of 5 × 10−8 was
used, resulting in a limited number of metabolite IVs. To capture
more potential causal associations between blood metabolites and
urological malignancies, the threshold was extended to 1 × 10−5, a
common practice in current MR studies (Yu et al., 2021; Xiao et al.,
2022; Yin et al., 2023). Subsequently, IVs with linkage disequilibrium
(LD) (r2 > 0.001 or clustering distance within 10,000 kb) were
excluded to ensure their independence. A minor allele frequency
(MAF) threshold of 0.01 for relevant genetic variations was set. To
prevent bias from strand direction or allele coding, palindrome and
synonymous SNPs were excluded. Phenotypic information related
to selected SNPs was queried using PhenoScannerV2 to eliminate
SNPs associated with outcomes or other confounding factors (Staley
et al., 2016; Kamat et al., 2019). F-statistics [F = R2 (N-2)/(1-R2)] for

each SNP were calculated to identify potential weak IVs, with a
threshold of F > 10 used to exclude weak IVs (Pierce et al., 2011).
Here, N represents the sample size of the exposure variable, and R2

represents the proportion of exposure variable variance
explained by IVs.

For reverse MR, to ensure an adequate number of exposure-
related IVs, significance thresholds were set at 1E-5 for BC, 1E-6 for
KC, 5E-8 for PC, 1E-5 for TC (UK Biobank), and 5E-8 for TC
(FinnGen consortium). Other screening criteria remained consistent
with those mentioned previously.

2.5 Statistical analysis

To assess the strength of IVs in explaining exposure versus
outcome variations, MR-Steiger test was conducted to validate
the causal relationships’ directionality (Hemani et al., 2017). In
investigating the link between blood metabolites and urological
cancers, we employed the Wald ratio for a single IV and a
random-effects inverse-variance weighted (IVW) model for
multiple IVs (Burgess et al., 2013; Burgess et al., 2015b),
serving as our primary MR analysis methods. IVW, a widely
used approach, combines Wald ratios for each SNP to generate a
comprehensive estimate (Pierce and Burgess, 2013).
Additionally, sensitivity analyses included weighted median
(WM) (Bowden et al., 2016), MR-Egger (Bowden et al., 2015),
weighted mode (Hartwig et al., 2017), and simple mode methods.
WM, adept at combining data from multiple genetic variants into
a single causal estimate, exhibits decreased type I error rates in
limited samples, even when up to 50% of genetic variants are
invalid (Bowden et al., 2016). Heterogeneity tests utilized
Cochran’s Q test and funnel plots. Lack of significant
heterogeneity was assumed with Q-test p-values exceeding
0.05 and symmetric funnel plots. To assess the impact of
horizontal pleiotropy, an MR-Egger intercept analysis was
conducted (Bowden et al., 2015). Significance of the intercept
term (p < 0.05) would indicate potential pleiotropic effects of the
selected IVs. The MR pleiotropy residual sum and outlier (MR-
PRESSO) method (Verbanck et al., 2018) were employed to
identify and correct for outlier SNPs impacting estimation
results. To ensure study robustness, leave-one-out (LOO)
analysis systematically evaluated the impact of each removed
SNP on the overall causal relationship estimate (Flatby et al.,
2023). In preliminary and secondary MR analyses, a potential
causal relationship was considered when PIVW was <0.05, and the
other four sensitivity analysis effect directions were consistent.
Subsequently, a meta-analysis of potential meaningful
metabolites from two independent outcome datasets was
conducted. A two-sided p-value <0.05 was considered
statistically significant. If heterogeneity (I2) between two MR
analyses was ≥50%, a random-effects model was used; otherwise,
a fixed-effects model was employed to combine odds ratio (OR)
values from the IVW andWMmethods separately. To correct for
multiple testing false-positive errors, a significant causal
relationship was considered when both Pmeta-IVW and Pmeta-

WM to be < 0.05, with consistent effect directions. A potential
causal association was presumed if only Pmeta-IVW <0.05 and the
effect direction of WM was consistent. All analyses were
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performed using R 4.2.3 software with the Mendelian
Randomization (0.9.0), TwoSample MR (0.5.6) (Hemani et al.,
2018), and meta (6.5.0) packages.

3 Results

The results of this study are divided into several key sections.
First, IVs were selected. Next, a preliminary analysis explored the
potential causal relationships between these metabolites and four
urological cancers. Subsequently, a secondary analysis using data
from the FinnGen consortium was conducted. Finally, a cross-
database meta-analysis confirmed significant causal associations.
Each section is detailed below.

3.1 Selection of IVs

Following a series of IVs selection steps, a total of
645 metabolites were identified for subsequent MR estimation
(755 metabolites were excluded due to the absence of available
IVs) (Supplementary Table S2). Supplementary Table S3 lists the
significant SNPs associated with each metabolite and their
corresponding traits (PhenoScannerV2). Supplementary Table S4
lists the confounding SNPs excluded in this study. The number of
IVs for each metabolite ranged from 6 to 42, with a minimum
F-statistic value of 19.507, surpassing the threshold of 10, indicating
the absence of weak instrument bias. All IVs passed the MR-Steiger
filtering (TRUE). Detailed IVs information is provided in
Supplementary Material S2. In the reverse MR analysis, the
number of IVs for the four urological malignancies ranged from
1 to 109, with a minimum F-statistic value of 19.539. All IVs passed

the MR-Steiger filtering (TRUE). Detailed IVs information of
reverse MR is available in Supplementary Table S5.

3.2 Preliminary analysis

Employing the IVW method, we identified 96 potential causal
associations (PIVW<0.05), corresponding to 94 distinct and known
metabolites (Figure 2A). Specifically, 9, 11, 11, and 17 GDMs
displayed potential negative associations with the incidence risks
of BC, KC, PC, and TC, respectively (Supplementary Table S6).
Conversely, 11, 13, 15, and 9 GDMs exhibited potential positive
associations with the incidence risks of BC, KC, PC, and TC,
respectively (Supplementary Table S6).

Sensitivity analyses, including WM, MR-Egger, weighted mode,
and simple mode, consistently supported the findings, maintaining a
uniform direction of effect for the 96 causal associations identified
by IVW (Supplementary Table S6). No evidence of potential
horizontal pleiotropy was observed (all PMR-Egger intercept > 0.05,
Supplementary Table S7). Notably, the Cochran Q test indicated
heterogeneity in the analysis of 1-(1-enyl-palmitoyl)-GPE (p-16:0)
on PC (both PMR-Egger.Q and PIVW.Q <0.05). However, LOO analysis
demonstrated robust results without high-influence SNPs, and MR-
PRESSO did not identify any outliers.

Heterogeneity was also detected in the analysis of 1-
methylxanthine on BC, N-acetylalliin on PC, and
glycoursodeoxycholic acid sulfate on TC (both PMR-Egger.Q and
PIVW.Q <0.05), and outliers were also identified through MR-
PRESSO analysis (PMR-PRESSO Global <0.05). After excluding
outliers (Supplementary Table S8) for correction, we attained
acceptable heterogeneity and global test p-values (Supplementary
Table S9), with causal effects remaining unchanged (all PIVW <

FIGURE 2
Mendelian randomization association of four urological cancers with blood metabolites. (A) Preliminary analysis reveals 96 potential causal
associations, involving 94 distinct and known metabolites. (B) Secondary analysis, focused on Finnish outcomes, identifies 93 potential causal
associations, linked to 86 unique and known metabolites. KC, kidney cancer; BC, bladder cancer; PC, prostate cancer; TC, testicular carcinoma.
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0.05). No heterogeneity or outliers were detected for the remaining
causal associations (Supplementary Table S10). LOO analyses and
funnel plots are provided in Supplementary Material S3. All
preliminary MR analysis results are summarized in
Supplementary Table S11.

In a reverse MR analysis focusing on the 96 identified causal
associations, predominantly utilizing the IVW method, we
discovered potential links. Specifically, higher genetic predictions
of 4-hydroxychlorothalonil were associated with an increased risk of
PC (OR: 1.040, 95% confidence interval (CI) 1.004–1.077, p = 0.030),
while higher genetic predictions of 3-methyladipate were associated
with a decreased risk of TC (OR: 2.01E-07, 95%CI 0.000–0.703, p =
0.045). Sensitivity analysis did not reveal evidence of heterogeneity
or pleiotropy (Supplementary Tables S12, S13), and the reverse MR
results are detailed in Supplementary Table S14.

3.3 Secondary analysis based on
Finnish outcome

Using outcome GWAS data from the FinnGen consortium, we
conducted a comprehensive secondary analysis. Employing the IVW
method, we identified 93 potential causal associations
corresponding to 86 unique and known metabolites (PIVW <
0.05, Figure 2B). Specifically, 9, 16, 11, and 11 GDMs exhibited
potential negative associations with the incidence risks of BC, KC,
PC, and TC, respectively (Supplementary Table S15). Conversely,
11, 16, 12, and 7 GDMs displayed potential positive associations
with the incidence risks of BC, KC, PC, and TC, respectively
Supplementary Table S15).

Crucially, the following causal relationships aligned consistently
with the preliminary analysis: an elevated genetic prediction of 1-
palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) (OR: 1.116, 95%CI
1.002–1.242, p = 0.046), a decreased N-formylphenylalanine (OR:
0.846, 95%CI 0.740–0.967, p = 0.014), and a decreased 1-palmitoyl-
2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6) (OR: 0.867, 95%CI
0.765–0.983, p = 0.026) were potentially associated with increased
susceptibility to KC. Additionally, an elevated genetic prediction of
5-oxoproline (OR: 1.052, 95%CI 1.003–1.104, p = 0.039) was
potentially associated with increased susceptibility to PC.

For the 93 causal associations identified by IVW, four sensitivity
analyses consistently yielded concordant conclusions with a
consistent direction of effect (Supplementary Table S15). No
evidence of potential horizontal pleiotropy was observed (all
PMR-Egger intercept > 0.05, Supplementary Table S7). Notably, the
Cochran Q test indicated heterogeneity in the analysis of
glycocholenate sulfate on PC (both PMR-Egger.Q and PIVW.Q <
0.05) and adrenate (22:4n6) on TC (PIVW.Q < 0.05). However,
LOO analyses showed robust results without high-influence
SNPs, and MR-PRESSO identified no outliers.

Heterogeneity was also detected in the analysis of sphingomyelin
(d18:2/24:2) on PC, 3-hydroxypyridine glucuronide on PC, and 1-
(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) on KC (both PMR-

Egger.Q and PIVW.Q < 0.05), and outliers were also identified through
MR-PRESSO analysis (PMR-PRESSO Global < 0.05). After excluding
outliers (Supplementary Table S8) for correction, we attained
acceptable heterogeneity and global test p-value (Supplementary
Table S9), with causal effects remaining unchanged (all PIVW <

0.05). No heterogeneity or outliers were detected for the remaining
causal associations (Supplementary Table S10). LOO analyses and
funnel plots are provided in Supplementary Material S4. All
secondary MR analysis results are summarized in
Supplementary Table S11.

In a reverse MR analysis focusing on the 93 identified causal
associations, primarily utilizing the IVW method, no evidence of
reverse causal relationships was found (all PIVW > 0.05). The
complete reverse MR results are detailed in
Supplementary Table S14.

3.4 Confirmation of the causal relationship
by cross-database meta-analysis

Before the meta-analysis, we thoroughly screened for pleiotropy,
excluding three causal associations (PMR-Egger intercept < 0.05 in the
other analysis, Supplementary Table S16). This step ensured the
robustness of the meta-analysis results. The meta-analysis, based on
the IVW method, revealed 68 causal associations of blood
metabolites on four urological cancers (Pmeta-IVW < 0.05,
Supplementary Table S17). These associations corresponded to
68 specific blood metabolites (Figure 3). After applying the WM
method for correction, we observed 31 blood metabolites
significantly associated with four urological cancers (both Pmeta-

IVW and Pmeta-WM < 0.05, Figures 4, 5). The remaining
37 associations are considered suggestive of causality (Figure 3).
The detailed significant causal relationships are as follows:

BC: 1-palmitoleoyl-GPC (16:1) (IVW, combined OR: 1.141,
95%CI 1.031–1.262, p = 0.011; WM, combined OR: 1.170, 95%CI
1.016–1.347, p = 0.029), 1-methyl-5 imidazoleacetate (IVW,
combined OR: 1.130, 95%CI 1.001–1.276, p = 0.048; WM,
combined OR: 1.240, 95%CI 1.037–1.481, p = 0.018), Beta-
citrylglutamate (IVW, combined OR: 1.135, 95%CI 1.049–1.227,
p = 0.002; WM, combined OR: 1.125, 95%CI 1.019–1.243, p = 0.020)
and Eicosenedioate (C20:1-DC) (IVW, combined OR: 1.175, 95%CI
1.060–1.303, p = 0.002; WM, combined OR: 1.191, 95%CI
1.037–1.368, p = 0.013) were associated with higher BC risk.

Conversely, N-acetylputrescine (IVW, combined OR: 0.859,
95%CI 0.798–0.924, p = 4.73E-05; WM, combined OR: 0.817,
95%CI 0.745–0.896, p = 1.67E-05) was correlated with a reduced
risk of BC.

KC: 4-guanidinobutanoate (IVW, combined OR: 1.138, 95%CI
1.026–1.262, p = 0.014; WM, combined OR: 1.186, 95%CI
1.072–1.313, p = 0.001), Stearidonate (18:4n3) (IVW, combined
OR: 1.269, 95%CI 1.099–1.465, p = 0.001;WM, combined OR: 1.259,
95%CI 1.020–1.554, p = 0.032), 3-(3-amino-3-carboxypropyl)
uridine (IVW, combined OR: 1.287, 95%CI 1.070–1.548, p =
0.007; WM, combined OR: 1.496, 95%CI 1.157–1.934, p = 0.002),
3-hydroxyhexanoate (IVW, combined OR: 1.349, 95%CI
1.118–1.627, p = 0.002; WM, combined OR: 1.317, 95%CI
1.048–1.655, p = 0.018), 1-palmitoyl-2-stearoyl-GPC (16:0/18:0)
(IVW, combined OR: 1.156, 95%CI 1.034–1.293, p = 0.011; WM,
combined OR: 1.231, 95%CI 1.037–1.461, p = 0.018), 1-(1-enyl-
palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) (IVW, combined OR: 1.277,
95%CI 1.125–1.449, p = 1.49E-04;WM, combined OR: 1.311, 95%CI
1.097–1.566, p = 0.003), 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/
22:6) (IVW, combined OR: 1.146, 95%CI 1.050–1.250, p = 0.002;
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WM, combined OR: 1.143, 95%CI 1.024–1.275, p = 0.017),
Arachidonoylcholine (IVW, combined OR: 1.204, 95%CI
1.043–1.389, p = 0.011; WM, combined OR: 1.248, 95%CI
1.036–1.503, p = 0.020) and Glyco-beta-muricholate (IVW,
combined OR: 1.114, 95%CI 1.028–1.208, p = 0.009; WM,
combined OR: 1.112, 95%CI 1.010–1.224, p = 0.031) were
associated with higher KC risk.

Conversely, Carnitine C14 (IVW, combined OR: 0.829, 95%CI
0.704–0.977, p = 0.025; WM, combined OR: 0.728, 95%CI
0.587–0.902, p = 0.004), Epiandrosterone sulfate (IVW, combined
OR: 0.932, 95%CI 0.876–0.991, p = 0.025;WM, combined OR: 0.932,
95%CI 0.872–0.995, p = 0.035), N-formylphenylalanine (IVW,
combined OR: 0.825, 95%CI 0.739–0.920, p = 0.001; WM,
combined OR: 0.824, 95%CI 0.704–0.964, p = 0.016), 1-
palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6) (IVW,
combined OR: 0.848, 95%CI 0.765–0.939, p = 0.002; WM,
combined OR: 0.815, 95%CI 0.712–0.933, p = 0.003), 1-stearoyl-
2-linoleoyl-GPI (18:0/18:2) (IVW, combined OR: 0.899, 95%CI
0.810–0.997, p = 0.043; WM, combined OR: 0.847, 95%CI
0.727–0.986, p = 0.032), 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-
16:0/18:2) (IVW, combined OR: 0.844, 95%CI 0.741–0.961, p =
0.011; WM, combined OR: 0.833, 95%CI 0.700–0.991, p = 0.040)

and 2-methoxyhydroquinone sulfate (2) (IVW, combined OR:
0.817, 95%CI 0.697–0.956, p = 0.012; WM, combined OR: 0.718,
95%CI 0.589–0.875, p = 0.001) were correlated with a reduced
risk of KC.

PC: Pyridoxate (IVW, combined OR: 1.052, 95%CI 1.004–1.101,
p = 0.033;WM, combined OR: 1.077, 95%CI 1.007–1.150, p = 0.030),
N-acetylalliin (IVW, combined OR: 1.061, 95%CI 1.023–1.101, p =
0.002; WM, combined OR: 1.057, 95%CI 1.008–1.108, p = 0.022),
N-acetylkynurenine (2) (IVW, combined OR: 1.034, 95%CI
1.010–1.058, p = 0.005; WM, combined OR: 1.044, 95%CI
1.014–1.075, p = 0.004), N-acetyl-2-aminooctanoate (IVW,
combined OR: 1.040, 95%CI 1.009–1.072, p = 0.012; WM,
combined OR: 1.051, 95%CI 1.019–1.085, p = 0.002) and 5-
oxoproline (IVW, combined OR: 1.041, 95%CI 1.014–1.068, p =
0.002; WM, combined OR: 1.034, 95%CI 1.002–1.068, p = 0.039)
were associated with higher PC risk.

Conversely, 6-oxopiperidine-2-carboxylate (IVW, combined
OR: 0.962, 95%CI 0.931–0.995, p = 0.024; WM, combined OR:
0.952, 95%CI 0.912–0.994, p = 0.024) andDihydrocaffeate sulfate (2)
(IVW, combined OR: 0.950, 95%CI 0.915–0.986, p = 0.007; WM,
combined OR: 0.922, 95%CI 0.876–0.971, p = 0.002) were correlated
with a reduced risk of PC.

FIGURE 3
Bidirectional causal association of four urological cancers with blood metabolites. Results for KC and BC apply to all genders, while PC and TC are
limited to males. BC, bladder cancer; KC, kidney cancer; PC, prostate cancer; TC, testicular carcinoma. Created with BioRender.com.
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TC: Glycoursodeoxycholic acid sulfate (1) (IVW, combined OR:
1.001, 95%CI 1.001–1.002, p = 0.002; WM, combined OR: 1.001,
95%CI 1.000–1.002, p = 0.0497), 3-ethylcatechol sulfate (2) (IVW,

combined OR: 1.002, 95%CI 1.001–1.003, p = 2.10E-04; WM,
combined OR: 1.001, 95%CI 1.000–1.003, p = 0.0497) and
Taurochenodeoxycholate (IVW, combined OR: 1.002, 95%CI

FIGURE 4
Significant causal associations between BC and KC with blood metabolites using the IVW and WM methods, along with sensitivity analyses. BC,
bladder cancer; KC, kidney cancer; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; WM, weighted median.
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1.001–1.003, p = 0.002; WM, combined OR: 1.002, 95%CI
1.000–1.003, p = 0.0496) were associated with higher TC risk.

For reverse MR analysis, we found a significant causal
association between genetically predicted PC and the elevation of
4-hydroxychlorothalonil (IVW, combined OR: 1.039, 95% CI
1.014–1.064, p = 0.002; WM, combined OR: 1.052, 95% CI
1.010–1.095, p = 0.014, Figure 3).

4 Discussion

To our knowledge, this represents the first MR study to apply a
combined genomics and metabolomics approach in assessing the
causal relationships between GDMs and susceptibility to prevalent
urological cancers, namely, KC, BC, PC, and TC. Utilizing GWAS
data on metabolites from the CLSA cohort involving
8,299 individuals, we meticulously selected IVs for
645 metabolites, a more comprehensive scope than the previous
486 metabolites studied (Shin et al., 2014). The paucity of knowledge
on the causal links between metabolomics and urological
malignancies led us to leverage two sets of independent large-
scale GWAS datasets with the largest available case numbers. To

uncover meaningful and credible causal associations, preliminary
and secondary MR analyses were conducted on these independent
outcome GWAS data, followed by meta-analyses, further bolstering
the robustness of our findings. Aware of the potential pitfalls
associated with multiple testing, we employed the WM method
for correction. This dual-threshold approach heightened the
credibility of our results, identifying 31 metabolites exhibiting
significant causal associations with four urological cancers and
37 metabolites showing suggestive causal associations with these
cancers (Supplementary Table S17). These insights not only deepen
our understanding of the pathogenic mechanisms underlying
urological malignancies but also offer novel clues for future
preventative and therapeutic strategies.

Notably, both primary and secondary MR analyses revealed that
an increase in 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) is
associated with a heightened risk of KC, while decreased levels of
N-formylphenylalanine and 1-palmitoyl-2-dihomo-linoleoyl-GPC
correlate with increased KC risk. An elevation in 5-oxoproline is
linked to an augmented PC risk.

For BC, our findings identified 1-palmitoyl-GPC, composed of
palmitic acid, as a risk enhancer. Existing research hints at a
potential association between palmitic acid and hypertension

FIGURE 5
Significant causal associations between PC and TC with blood metabolites using the IVW and WM methods, along with sensitivity analyses. PC,
prostate cancer; TC, testicular carcinoma; SNPs, single nucleotide polymorphisms; PRACTICAL, Prostate Cancer Association Group to Investigate
Cancer-Associated Alterations in the Genome; IVW, inverse variance weighted; WM, weighted median.
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(Zheng et al., 1999; Kulkarni et al., 2013), with further evidence
indicating a positive correlation between hypertension and BC (Kok
et al., 2018). This suggests that hypertension might mediate the
increased BC risk associated with 1-palmitoleoyl-GPC (16:1).
Additionally, research shows that palmitic acid can activate
various inflammatory mediators, such as NFκB and CCL2 (Wang
et al., 2024), and induce inflammation through Toll-like receptors
(TLR2 and TLR4), leading to the release of cytokines like IL-1β and
IL-6 (Matsufuji et al., 2023). This heightened inflammatory response
can promote cancer development. N-acetylputrescine (NAP), a
derivative of putrescine, has been found to help reduce
intracellular oxidative stress, enhance the ability of immune cells
to recognize and destroy cancer cells, and regulate the activity of key
enzymes such as ODC and SSAT to inhibit tumor cell proliferation
(Liu et al., 2017; Li et al., 2020), thereby exerting anti-cancer effects.
These findings are consistent with our study. However, there is a lack
of research on the associations between cancer and other metabolites
such as 1-methyl-5-imidazoleacetate, Beta-citrylglutamate, and
Eicosenedioate (C20:1-DC). Additional investigation is needed to
understand the mechanisms underlying these associations.

For KC, 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) is a
phospholipid that contains docosahexaenoic acid (DHA). While
DHA has antioxidant properties (Jewell and Jackson, 2022), at high
concentrations, it can also form harmful reactive oxygen species (ROS)
through self-oxidation (Su et al., 2019). These ROS can cause DNA
damage, thereby increasing cancer risk. Additionally, research by Shao
et al. supports the link between elevated 1-palmitoyl-2-
docosahexaenoyl-GPE (16:0/22:6) and metabolic dysfunction-
associated fatty liver disease (MAFLD) (Shao et al., 2023).
Consistently, Liu et al. (2022) reported an increased incidence of KC
in MAFLD patients (OR:1.77, 95%CI 1.49–2.11, p < 0.001). These
findings suggest that MAFLD may mediate the causal relationship
between 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) and KC,
further supporting our conclusion. N-formylphenylalanine is a
potent neutrophil chemoattractant with significant anti-
inflammatory properties. By binding to specific receptors such as
FPR1, N-formylphenylalanine can modulate immune cell activity
and reduce inflammatory responses, helping to lower the risk of
various cancers (Tennenberg et al., 1988; Snapkov et al., 2016). This
is consistent with our research findings. 1-palmitoyl-2-dihomo-
linoleoyl-GPC contains a Dihomo-γ-linolenic acid (DGLA) chain.
Studies have shown that prostaglandins (such as PGE1) derived
from the metabolism of DGLA exhibit anti-inflammatory effects,
which may help reduce cancer risk by mitigating chronic
inflammation (Das, 2006). Additionally, a study involving
1,111 Mexican Americans (Palmer et al., 2018) conducted a
dynamic measure analysis and found an association between the
improvement of insulin resistance (a hallmark of type 2 diabetes)
and 1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6).
Simultaneously, a meta-analysis of nine cohort studies (Larsson and
Wolk, 2011) found that patients with diabetes have a statistically
significant increase in the likelihood of developing KC compared to
those without diabetes (RR: 1.42, 95% CI 1.06–1.91). This suggests that
a potential mechanism for the protective role of 1-palmitoyl-2-dihomo-
linolenoyl-GPC (16:0/20:3n3 or 6) against KC could be the reduction of
diabetes risk. Similarly, a study by Feofanova et al. (2020) implicates
elevated 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) in increasing type
2 diabetes risk (OR: 1.24, 95% CI = 1.10–1.40), shedding light on

possible mechanisms by which certain metabolites might
influence KC risk.

However, conflicting evidence exists, such as a study from the
MetKid consortium (Guida et al., 2021), which in a crude model
suggests an inverse relationship between 1-(1-enyl-palmitoyl)-2-
oleoyl-GPC (P-16:0/18:1) levels and KC risk (OR: 0.83, 95% CI:
0.74–0.93). After adjusting for BMI, alcohol consumption, smoking,
and hypertension, this inverse relationship lost its statistical significance
(OR: 0.92, 95% CI: 0.79–1.07), contrary to our findings. Specifically, the
study by Guida et al. is a nested case-control study within five
prospective cohorts (EPIC, MCCS, NSHDS, Estonian BB, HUNT),
involving 2,614 participants. These cohorts have participants with
diverse genetic backgrounds and environmental factors. In contrast,
our study has a larger sample size and is based onmore uniform sample
selection and rigorous genetic analysis methods, reducing heterogeneity
between cohorts. Guida et al. used traditional observational methods,
which may be subject to confounding bias and reverse causation. Our
study, utilizing MR, employs genetic variants as IVs, minimizing these
influences. Additionally, the metabolites measured in Guida et al.’s
study lacked chemical standard confirmation, which could affect the
reliability of their results. Our results, supported by two independent
outcome MR analyses and meta-analysis (Figure 4), indicate 1-(1-enyl-
palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) as a risk factor for KC,
warranting further research on its biological effects.

Turning to PC, our study linked Pyridoxate, a vitamin
B6 metabolite (Costeira et al., 2023), to increased susceptibility of
PC. A case-control study in 1997 (Key et al., 1997) suggested a
protective role of higher vitamin B6 intake against PC. Yet, recent a
meta-analysis does not support significant associations between dietary
intake or plasma levels of vitamin B6 and PC (Mocellin et al., 2017). The
biological effects of Pyridoxate remain inadequately studied in the
context of academic research. A previous observational study that
had identified an association between N-acetylkynurenine and PC
(Huang et al., 2016). Building on this foundation, our current
research substantiates the role of N-acetylkynurenine as a risk factor
for PC. Furthermore, elevated levels of blood 5-oxoproline, also known
as Pyroglutamic acid, have been found to correlate with pancreatic
cancer (Wang et al., 2023a) and breast cancer (Park et al., 2019).
Complementing these findings, an analysis conducted by Markin et al.
(2020) revealed an increase in Pyroglutamic acid levels during the
progression from prostatic intraepithelial neoplasia to PC. This
observation aligns with the results of our study to some extent.
However, research regarding the remaining metabolites causally
associated with PC remains scant and warrants further investigation.

In the case of TC, although we identified three metabolites with
significant causal relationships, their effect sizes were modest. The
precise mechanisms through which glycoursodeoxycholic acid sulfate,
3-ethylcatechol sulfate, and taurochenodeoxycholate contribute to
testicular cancer remain under investigation. It is hypothesized that
their involvement in metabolic processes and cellular signaling
pathways may create conditions conducive to tumorigenesis.
Altered levels of bile acid conjugates, such as glycoursodeoxycholic
acid sulfate and taurochenodeoxycholate, may disrupt homeostatic
processes (Chiang, 2013). These disrupted homeostatic processes, in
turn, regulate metabolism and cell death pathways, thereby
influencing the tumor microenvironment and playing a crucial role
in tumorigenesis and tumor progression (Yang et al., 2024).
Simultaneously, metabolites like 3-ethylcatechol sulfate, related to
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catechol metabolism, could influence oxidative stress and hormonal
imbalances (Chainy and Sahoo, 2020). While these associations
require further validation through rigorous scientific research, they
underscore the complexity of metabolic alterations in cancer
development.

Moreover, our reverse MR analysis uncovered an intriguing
association—PC may lead to elevated levels of 4-
hydroxychlorothalonil in the blood. Cancer promotes the
proliferation of cancer cells and adaptation to the tumor
microenvironment through metabolic reprogramming and changes
in metabolite levels (Wang et al., 2023b). Circulating metabolites have
great potential as non-invasive cancer diagnostic markers. However,
there is currently a lack of specific research on the association between
PC and 4-hydroxychlorothalonil, and more studies are needed to
verify this finding and explore its clinical application value.

The strength of our study lies in utilizing large-scale GWAS sample
data from two independent sources for each outcome, corroborated by
meta-analysis of positive findings from two rounds of MR analysis to
assure the robustness and comprehensiveness of our results. However,
several limitations should be acknowledged. Firstly, to analyze a broader
range ofmetabolites, a significance threshold of p < 1 × 10−5 was applied
to the metabolomic GWAS data, while ensuring robustness by
excluding weak IVs (F-statistic >10 for each SNP). Secondly, the
study predominantly included individuals of European descent,
limiting generalizability to other ethnicities. Thirdly, while MR
analysis revealed some metabolites with causal links to urological
malignancies, the very low effect sizes limit their potential
application as biomarkers, particularly concerning TC. Fourthly, the
sample size differences for the four urological cancers fromUKBiobank
and FinnGen consortium may potentially impact the causal inference
from the meta-analysis. Future research should aim to expand existing
GWAS databases and conduct analyses on more balanced datasets to
further validate and strengthen our findings. Fifthly, the scarcity of
metabolites identified in relation to outcomes precluded performing
metabolic pathway enrichment analyses to delve into regulatory
mechanisms and biological processes. Sixthly, the reverse MR
analysis focused on meaningfully discovered metabolites and did not
comprehensively study all metabolites for potential reverse causal
effects. Lastly, in this MR study, we conducted a preliminary
exploratory analysis aimed at uncovering novel biological insights.
We opted to use the WM method (PWM < 0.05) for a relatively
lenient correction rather than applying more stringent Bonferroni
and false discovery rate (FDR) corrections. This decision was made
in order to retain a greater number of potential findings. Future research
should seek to validate our findings through randomized controlled
trials and further investigate the specific roles these metabolites play in
the etiology of urological malignancies.

5 Conclusion

This two-sample MR study revealed the significant role of blood
metabolites in four urological malignancies (BC, KC, PC, and TC).
The investigation identified 31 metabolites exhibiting significant
causal associations with the four urological cancers and
37 metabolites showing suggestive causal relationships.
Furthermore, a significant causal association was discovered
between genetically predicted PC and elevated levels of 4-

hydroxychlorothalonil. In summary, this study offers new insights
into the metabolic features of urological cancers, providing potential
biomarkers and molecular targets for early diagnosis and therapeutic
research in cancer. These findings pave the way for future explorations
in targeted interventions, fostering advancements in research and
treatment development within the urological cancer field.
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