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Objective: Numerous studies have reported that metformin can reduce the risk
of tumor development. However, some of the results of these studies are
conflicting, necessitating a more reliable evaluation.

Methods:We conducted aMendelian randomization phenome-wide association
study (MR-PheWAS) of tumors to explore the causal relationship between
metformin and tumors. Two cohorts of patients taking metformin were
obtained from the UK Biobank. Complete phenotype data of the tumors were
obtained from FinnGen_R10. We elucidated the causal relationship using a two-
sample Mendelian randomization (MR) analysis. More importantly, we conducted
a meta-analysis to ensure relatively unbiased results. In the MR analysis, we used
the inverse-variance weighted (IVW) method as the main outcome indicator.
Subsequently, two cohorts were integrated for the meta-analysis. Finally, we
investigated the mechanisms through mediational MR analysis.

Results: MR analysis revealed that metformin might have a causal relationship
with 13 tumor-associated phenotypes in the training cohort. Four phenotypes
were validated in the testing cohort. In the training and testing cohorts,
metformin exhibited a protective effect against brain meningiomas and
malignant neoplasms of the breast (HER-positive), oral cavity, tonsils, and the
base of the tongue. Intriguingly, after integrating the results of the two cohorts for
the meta-analysis, 12 results were statistically significant. Mediational MR analysis
suggested that the effects of metformin on brainmeningiomasmay beweakened
by the presence of the family Oxalobacteraceae.

Conclusion: Metformin exhibits potential preventive and therapeutic effects on
four types of tumors: brain meningioma, malignant neoplasms of the breast
(HER-positive), oral cavity and tonsils, and the base of the tongue. Large
randomized controlled trials are required to confirm these findings.

KEYWORDS

causal relationship, metformin, tumors, phenome-wide Mendelian randomization,
meta-analysis

OPEN ACCESS

EDITED BY

Feng Xu,
Shantou University, China

REVIEWED BY

Francisco Martin Barajas-Olmos,
National Institute of Genomic Medicine
(INMEGEN), Mexico
Chin-Hsiao Tseng,
National Taiwan University, Taiwan
Li Zhang,
Sun Yat-Sen University Cancer Center
(SYSUCC), China

*CORRESPONDENCE

Haibo Zhang,
haibozh@gzucm.edu.cn

†These authors share first authorship

RECEIVED 08 March 2024
ACCEPTED 03 June 2024
PUBLISHED 19 June 2024

CITATION

Zhang Z, Wu W, Wu Z, He Y, Chang X, Deng S,
Zhou R, Chen Y and Zhang H (2024), Bridging
the gap: exploring the causal relationship
between metformin and tumors.
Front. Genet. 15:1397390.
doi: 10.3389/fgene.2024.1397390

COPYRIGHT

© 2024 Zhang, Wu, Wu, He, Chang, Deng,
Zhou, Chen and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 19 June 2024
DOI 10.3389/fgene.2024.1397390

https://www.frontiersin.org/articles/10.3389/fgene.2024.1397390/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1397390/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1397390/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1397390&domain=pdf&date_stamp=2024-06-19
mailto:haibozh@gzucm.edu.cn
mailto:haibozh@gzucm.edu.cn
https://doi.org/10.3389/fgene.2024.1397390
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1397390


Background

Malignant tumors represent the most significant threat to
human health and survival worldwide (Wang et al., 2020).
According to the World Health Organization (WHO)
2022 report, malignant tumors account for approximately
10 million deaths globally, constituting one-sixth of the total
deaths (World Health Organization, 2022a). Approximately
19.29 million new cancer cases were reported in 2020, of which
10.06 million were among men and 9.23 million were among
women. The high mortality rate and growing number of patients
with cancer have imposed a significant burden on the global
economy. Data have demonstrated that approximately
$1.2 trillion is needed to treat tumor patients annually, nearly 2%
of the world’s gross product in 2019 (Wild and Stewart, 2020).
Therefore, it is imperative to improve the quality of life and prolong
the survival time of patients with cancer while reducing the medical
and economic burden.

As research on immune checkpoint inhibitors (ICIs) and
antibody-drug conjugates (ADCs) continues to advance, many
patients will benefit from new therapies. Data indicate that the
survival time of these patients can be significantly prolonged
(Robert, 2020; Fu et al., 2022). For example, the 5-year overall
survival (OS) rate of patients with non-small cell lung cancer
(NSCLC) who received programmed cell death protein-1 (PD-1)
inhibitors as second-line treatment rather than chemotherapy
increased from 13% to 25% (Marei et al., 2023). In contrast, it
peaked at 32% for first-line treatment (Xu et al., 2019). For patients
with unresectable or metastatic HER2-positive breast cancer,
DESTINY-Breast01 demonstrated that DS-8201a could achieve
an overall response rate (ORR) of 60.3% (95% CI: 52.9, 67.4),
with a median duration of response (DoR) of 14.8 months
(Narayan et al., 2021). Although ICIs and ADCs have brought
significant benefits to cancer patients, it is important to note that
these drugs form an impregnable barrier that prevents their effective
administration to cancer patients. Developing anti-tumor drugs is
often costly, with one study indicating a median cost of $648 million
(Prasad and Mailankody, 2017). Adverse effects present an
additional challenge for patients. Therefore, the balance between
efficacy and price is a key issue that needs to be addressed for future
use of oncology medicines.

Diabetes mellitus is associated with an increased risk of cancer
incidence and mortality (Tseng, 2004). Metformin is a treatment of
choice for patients with type two diabetes mellitus (T2DM) (Feig,
2012). The use of this drug has a history spanning over 60 years since
its inception in the 1950s (Tang et al., 2018). Metformin is widely
used to treat T2DM because of its significant efficacy and low price
(American Diabetes Association, 2015). The mechanism of action of
metformin is mainly related to its inhibition of intestinal glucose
absorption and increase in glucose uptake and utilization in the
peripheral tissues (Bowden et al., 2015).

Interestingly, many recent studies have explored the therapeutic
effects of metformin in tumors, implying that metformin may have
potential anti-tumor effects. Research has indicated that the anti-
tumor effects of metformin are mainly due to the activation of AMP-
activated protein kinase (AMPK) and inhibition of mammalian
targets of rapamycin (mTOR) (Dowling et al., 2007). Furthermore,
the intestinal flora is closely related to malignant intestinal tumors,

and metformin regulates the intestinal flora and improves the
intestinal barrier (Ursini et al., 2018), which is also one of the
potential mechanisms by which metformin exerts its anti-tumor
effects. However, not all results support this notion. MA.32 was a
phase III randomized trial that enrolled over 3,600 patients with
high-risk operable breast cancer and randomized them to receive
either 850 mg of metformin or a placebo for 5 years. Unfortunately,
the addition of adjuvant metformin did not improve the disease-free
survival (DFS) of patients with breast cancer, estrogen receptor-
positive or estrogen receptor-negative (Goodwin et al., 2022).

Similarly, two clinical trials evaluated the combined use of
metformin in patients with NSCLC, indicating no benefit
(Skinner et al., 2021; Tsakiridis et al., 2021). However, an
analysis of Asian populations revealed that metformin use in
newly diagnosed T2DM patients could significantly reduce the
incidence of lung cancer (Tseng, 2017). Although some studies
have confirmed the potential anti-tumor effects of metformin, its
underlying mechanisms often manifest in diverse ways.
Retrospective or prospective studies are susceptible to
confounding variables, which may challenge a reliable result.
Furthermore, some studies have reported conflicting results.
Therefore, using relatively reliable methods to evaluate the causal
relationship between metformin and tumors complementarily is
imperative and requires resolution.

Mendelian randomization (MR) is an emerging epidemiological
research method that uses genetic variants strongly correlated with
exposure factors as instrumental variables (IVs) to evaluate the
causal relationship between exposure factors and outcomes
(Richmond and Davey Smith, 2022). Because the screening of
IVs is rigorous, they can represent the research variables to infer
causal relationships. One notable advantage is its ability to
significantly minimize the influence of confounding variables and
reverse causality in observational studies, thus increasing the
reliability of the findings (Davies et al., 2018).

In summary, this study used tumor-associated MR-PheWAS to
reveal the causal relationship between metformin and tumors and to
validate the results using a testing cohort. After integrating the
results of the two cohorts, we performed a meta-analysis to improve
the evidence level of the outcome. Finally, a mediating MR analysis
was conducted to elucidate the potential mechanisms of metformin-
mediated tumor risk.

Materials and methods

Data sources and acquirement

The GWAS summary data for metformin came from the UK
biobanks and were obtained from the ieu opend gwas project
(https://gwas.mrcieu.ac.uk/). The GWAS summary datasets were
organized into 18 batches. These two cohorts are from the Neale lab
analysis of UK Biobank phenotypes, round 1 (ukb-a) (Elsworth
et al., 2023), and IEU analysis of UK Biobank phenotypes (ukb-b).
We used one of the cohorts as the training cohort and the other as
the validation cohort from two different consortiums: MRC-IEU
and Neale Lab.

Tumor-associated phenome-wide data were acquired from
the Finnish biobanks (Kurki et al., 2023). The FinnGen study is a
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large-scale genomics initiative correlating genetic variation with
health data to understand disease mechanisms and
predispositions by analyzing over 500,000 Finnish biobank
samples. The project is a joint venture between Finnish research
organizations, biobanks, and international industry partners. We
extracted relevant tumor phenotypes from the FinnGen R10 data
using “cancer” as the keyword. FinnGen R10 contains the genetic
data for 412,181 samples and 2,408 phenotypes.

Screening of instrumental variables (IVs)

The criteria for screening IVs followed the three assumptions of
MR analysis. The three assumptions of MR are correlation,
exclusivity, and independence. To ensure that the selected IVs
were highly correlated with exposure, the p-value was defined
as < 5e−08. Among outcomes, p values for IVs were defined as <
5e−06 (Korologou-Linden et al., 2022). In addition, linkage
disequilibrium is not allowed in MR analysis, which will
challenge the reliability of the results. Therefore, we also screened
for IVs by setting r2 = 0.001 and kb = 10,000 (Zhang et al., 2023). We
also used the Steiger test to remove the IVs with reverse causality.
Finally, an F-test was conducted to determine the strength of the IVs.
This study defined IVs with F > 10 as strong instrumental variables.
The formula of the F-test was as follows: F = (Beta/Se)̂ 2 (Bowden
et al., 2019).

In general, the exclusivity and independence assumptions
require that IVs only affect outcomes through exposure and
cannot be confounded with other factors that affect outcomes.
IVs with horizontal pleiotropy are prohibited in MR analysis as
they typically indicate that the IVs have more than one genetic
function, violating the assumptions of MR analysis. Therefore, we
used MR-Egger and Presso methods to test the screened IVs
(Bowden et al., 2015; Verbanck et al., 2018). Only the IVs that
met both tests were proven to have no horizontal pleiotropy.
Otherwise, the IVs with horizontal pleiotropy were eliminated.

Tumor-associated phenome-wide
Mendelian randomization analysis in the
training cohort

The two-sample MR (TSMR) method analyzed the causal
relationship between metformin and tumor-associated phenome-
wide. In the TSMR analysis, we used four methods simultaneously:
inverse-variance weighted(IVW), MR-Egger, weighted median
model, and weighted model. Among these, the IVW method is
the primary method used for causal relationship analysis. A p-value
of < 0.05 for the IVWmethod was considered to be suggested. IVW
is crucial for evaluating causal relationships in MR analysis (Burgess
et al., 2015). A distinguishing feature of this method is the exclusion
of the intercept term in the regression analysis and the use of the
inverse of the outcome variance as a weight for fitting purposes. Like
the IVW method, MR-Egger uses the reciprocal of the outcome
variance as a weighting factor for regression fitting (Bowden et al.,
2015). However, a notable distinction lies in including the intercept
term during regression, enabling the concurrent evaluation of
pleiotropy within MR-Egger’s framework.

Furthermore, multiple testing corrections are essential steps in
statistical hypothesis testing. We usually consider p < 0.05 as a
threshold to determine the significance. However, simultaneous
comparisons of multiple data sets in a study may introduce
random effects that cause some data to exceed the threshold,
resulting in false-positive results. The greater the number of tests,
the greater the probability of false positives. Therefore, we used the
False Discovery Rate(FDR) to perform multiple corrections on the
p-value of IVW (Benjamini and Hochberg, 1995). The p-value of
FDR < 0.05 was considered to be statistically significant.

Sensitivity analysis and heterogeneity testing

The stability of IVs is an important factor in MR analysis,
which usually requires that all IVs equally contribute to the
outcome, ensuring that the results are not dominated by a
single IV. Therefore, a leave-one-out sensitivity analysis was
performed on all IVs in the MR analysis. The leave-one-out
sensitivity analysis evaluates the effect size of the remaining IVs
on the outcome by eliminating certain IVs individually.
Additionally, we tested for heterogeneity using Cochran’s Q
statistic for all IVs (Burgess et al., 2013). A random effects
model was used for IVs with significant heterogeneity;
otherwise, a fixed effects model was used.

Verification based on testing cohort

Another cohort was selected to verify the reliability of the MR
analysis results. The testing cohort was analyzed as described for the
training cohort.

Meta-analysis based on IVW method of
training cohort and testing cohort

To further consolidate the reliability of the MR analysis results,
we conducted a meta-analysis to integrate the findings of the IVW
method based on training and testing cohorts. I2 was used to detect
heterogeneity in the meta-analysis. A fixed effects model was used
for I2 ≤ 50% and p ≥ 0.05, whereas a random effect model was used
for I2 > 50% and p < 0.05 (Higgins et al., 2003).

Mediational MR analysis

To further explore the potential mechanisms by which
metformin affects tumor risk, we performed mediated MR
analysis. First, we performed pairwise TSMR analysis between
metformin, intestinal flora, lipid metabolism, immune cells, and
positive tumor phenotypes. The data on intestinal flora come from
Kurilshikov A, published in Nature Genetics in 2021 (Kurilshikov
et al., 2021). Our previously published article describes the data and
screening thresholds (Zhang et al., 2023). The data on lipid
metabolism come from Ottensmann L, published in Nature
Communications in 2023 (Ottensmann et al., 2023). Data on
immune cells come from Orrù V, published in Nature Genetics
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in 2020 (Orrù et al., 2020). Phenotypes with significant differences in
pairwise TSMR analyses were retained for further studies.

A test for mediation MR analysis was conducted using the
coefficient product method. In the mediation MR analysis, the
effect size of metformin on gut microbiota, lipid metabolism, and
immune cells was recorded as a, the effect size of gut microbiota,
lipid metabolism, and immune cells on the positive tumor
phenotype was recorded as b, and the effect size of metformin
on the positive tumor phenotype was recorded as c’. The effect
size of the mediator was obtained by calculating a × b. A direct
effect was obtained using c’—a × b. The proportion of the
mediating effect to the total effect was obtained using a × b/c’.
The Sobel test was used to determine whether there was a
significant difference in the mediation effect (http://quantpsy.
org/sobel/sobel.htm).

Results

Data sources and acquirement

Two metformin queues were obtained from the GWAS
summary data, and their IDs were ukb-a-159 and ukb-b-14609.
Among these, ukb-a-159 was used as the training cohort, and ukb-b-
14609 was used as the testing cohort. ukb-a-159 contained
10,894,596 SNPs and 337,159 samples, including 8,392 cases and
328,767 controls. ukb-b-14609 comprised 9,851,867 SNPs and
462,933 samples, including 11,552 cases and 451,381 controls.
The two cohorts were from Europe and included both males
and females.

A total of 129 tumor-associated phenotypes were obtained from
2,408 phenotype data from the FinnGen R10 dataset. These
phenotypes summarize the different types of tumors, including
malignant neoplasms of the adrenal gland, acute lymphocytic
leukemia, malignant neoplasm of the anus, brain astrocytoma,
and basal cell carcinoma.

Screening of IVs

A total of 26 SNPs were extracted from ukb-a-159 and used as
exposed IVs. Finally, 13 phenotypic SNPs were extracted from the
129 tumor-associated phenotypes. Among them, brain astrocytoma
contained 24 SNPs, HER-positive malignant neoplasm of the breast
contained 23 SNPs, malignant neoplasm of the breast contained
22 SNPs, malignant neoplasm of bronchus and lung contained
23 SNPs, colon adenocarcinoma contained 24 SNPs, malignant
neoplasm of colon contained 24 SNPs, colorectal
adenocarcinoma contained 24 SNPs, colorectal cancer contained
24 SNPs, non-small cell lung cancer contained 24 SNPs, brain
meningioma contained 24 SNPs, malignant neoplasm of oral
cavity contained 24 SNPs, a cancer of tonsil and base of tongue
contained 24 SNPs and carcinoma in situ of the vulva contained
24 SNPs. In this study, the F values of all the IVs were >10, and there
were no weak IVs. The details of the IVs are presented in
Supplementary Table S1. The Steiger test did not identify any
IVs with reverse causality. The MR-Egger and Presso test
removed rs34872471 in the malignant neoplasm of the breast

and rs4932264 in the malignant neoplasm of the bronchus and
lung with horizontal pleiotropy.

Tumor-associated phenome-wide MR
analysis in the training cohort

TSMR analysis based on 129 tumor-associated phenotypes
revealed that 13 phenotypes exhibited a potential causal
relationship with metformin (p-value of IVW < 0.05; Figure 1;
Supplementary Table S2). Notably, the OR values between
metformin and the 13 tumor-associated phenotypes were < 1,
suggesting that metformin may reduce the risk of tumor
development. Metformin exerted a protective effect on HER-
positive malignant neoplasm of the breast (IVW OR: 0.054, 95%
CI: 0.006–0.515, p-value: 0.011, P FDR: 0.305), brain meningioma
(IVW OR: 0.00, 95% CI: 0.00–0.049, p-value: 0.002, P FDR: 0.249),
malignant neoplasm of oral cavity (IVWOR: 0.00, 95% CI: 0.00–0.19,
p-value: 0.014, P FDR: 0.305), and cancer of tonsil and base of tongue
(IVW OR: 0.00, 95% CI: 0.00–0.105, p-value: 0.014, P FDR: 0.305).
TheMR analysis results visually illustrated the contribution of each IV
to the outcome in the forest plot (Supplementary Figure S1). They
provided evidence of a relationship between exposure and outcome in
the scatter plot (Supplementary Figure S2). Surprisingly, this
relationship was significant after FDR correction in malignant
neoplasms of the breast (IVW OR: 0.023, 95% CI: 0.003–0.170,
p-value: 0.000, P FDR: 0.028).

Sensitivity analysis and heterogeneity testing

Leave-one-out sensitivity analysis was used to evaluate the effect
size of the remaining IVs on the outcome by eliminating individual
SNPs individually. The results indicated that these SNPs contributed
almost equally to the outcome, and no single SNP dominated the
results of the MR analysis (Supplementary Figure S3). Additionally,
the heterogeneity test did not detect obvious heterogeneity
(Supplementary Table S3), further supported by the funnel plot
results, demonstrating that the IVs in the MR analysis were evenly
distributed on both sides (Supplementary Figure S4).

Verification based on testing cohort

A TSMR analysis was performed using the same parameters in
the testing cohort to verify the reliability of the training cohort
results. The findings revealed significant differences among the four
malignancy phenotypes in the testing cohort (p-value of IVW < 0.05;
Figure 2). Similarly, their results suggested that metformin may have
a protective effect, with an OR of < 1. In the testing cohort,
metformin exhibited a protective effect against HER-positive
malignant neoplasms of the breast (IVW OR: 0.065, 95% CI:
0.007–0.625, p-value: 0.018, P FDR: 0.577), brain meningioma
(IVW OR: 0.000, 95% CI: 0.000–0.051, p-value: 0.002, P FDR:
0.194), malignant neoplasm of the oral cavity (IVW OR: 0.000,
95% CI: 0.000–0.099, p-value: 0.007, P FDR: 0.289), and cancer of
the tonsil and base of the tongue (IVW OR: 0.000, 95% CI:
0.000–0.035, p-value: 0.006, P FDR: 0.289). However, similar to
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the training cohort, no significant difference was observed after the
FDR correction. Metformin did not have a causal association with
malignant neoplasm of the breast (IVW OR: 0.142, 95% CI:
0.018–1.133, p-value: 0.065, P FDR: 0.588) in the testing cohort.

Meta-analysis based on IVW method of
training cohort and testing cohort

To further enhance the level of evidence for a causal relationship,
a meta-analysis was conducted by integrating the IVW results from
the training and testing cohorts. All combinations exhibited I2 ≤ 50%
and p-value ≥ 0.05; therefore, a fixed effects model was selected to
combine the IVW results. Although only five types of malignancies
were verified in the testing cohort, surprisingly, in the meta-analysis,
all 12 results were significant (Figure 3). This suggests that
metformin may influence the risk of tumor development,
although this relationship may not be causal.

Mediational MR analysis

Despite our efforts to explore the potential mechanism by which
metformin affects tumor risk using mediated MR analysis, no
variables exhibiting significant differences in pairwise TSMR were
identified in the field of lipid metabolism/immune cells. In intestinal
flora, we identified that the family Oxalobacteraceae may mediate the
effect of metformin on the risk of meningioma. The TSMR analysis
revealed significant differences among the three groups. Metformin
versus brain meningioma (IVW OR: 0.000, 95% CI: 0.000–0.051,
p-value: 0.002), metformin versus family Oxalobacteraceae (IVWOR:
19.016, 95% CI: 1.245–290.35, p-value: 0.034), family
Oxalobacteraceae versus brain meningioma (IVW OR: 1.266, 95%
CI: 1.022–1.569, p-value: 0.031) (Figure 4). However, the family
Oxalobacteraceae seemed to be a mediating factor in attenuating the
anti-tumor effect of metformin, as it accounted for −8.9% of the total
effect. Although all three were found to be significantly different, this
significance no longer existed in the Sobel test (p-value = 0.131).

FIGURE 1
IVW results of metformin against 13 tumor-associated phenotypes in the training cohort. The blue dots represent the OR value, the blue solid line
represents the 95% CI, and the black dotted line represents an OR value of 1.

FIGURE 2
IVW results of metformin against 13 tumor-associated phenotypes in the testing cohort. The blue dots represent the OR value, the blue solid line
represents the 95% CI, and the black dotted line represents an OR value of 1.
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Discussion

Although metformin has demonstrated potential anti-tumor
activity, this relationship does not seem stable, as numerous
studies have reported inconsistent results. This study investigated
the causal relationship between the two through MR-PheWAS
analysis associated with tumors. Our study identified
13 phenotypes in a training cohort in which metformin
demonstrated a potential causal relationship. Four phenotypes
were verified in the testing cohort, including four different tumor
types: malignant neoplasm of the breast (HER-positive), brain
meningioma, malignant neoplasm of the oral cavity, and cancer
of the tonsil and base of the tongue. Several observational studies in
the Chinese population have reported that metformin has a
protective effect against hepatocellular carcinoma (Tseng, 2018a),
gastric cancer (Tseng, 2016a), and nasopharyngeal cancer (Tseng,
2018b). However, this result was not reflected in the present study
and may have been affected by the population from different
sources. Although no significant difference was observed between

them after FDR correction, it is noteworthy that 12 phenotypes
retained their potential causal relationship with metformin after the
integration of findings through a meta-analysis. These results
indicate that metformin may have potential anti-tumor effects.

In a population-based observational study of 476,282 Asian
women with newly diagnosed T2DM, metformin use was found
to significantly reduce the incidence of breast cancer (Tseng, 2014).
In a retrospective study, the MD Anderson Cancer Center included
1,448 TNBC patients who received adjuvant chemotherapy. It
conducted survival analysis by dividing the patients into groups
based on their diabetes status and metformin use. Although
metformin can potentially reduce the risk of distant metastasis, it
does not affect OS (Bayraktar et al., 2012). Another retrospective
analysis revealed that the 5-year OS of breast cancer patients with
diabetes who used metformin was significantly longer than that of
patients without metformin and diabetes-free breast cancer (Hou
et al., 2013). One of the differences between these two studies was
that they were inconsistent in their consideration of pathological
classification, which suggests that molecular classification may be

FIGURE 3
The meta-analysis integrated the IVW results of metformin against 13 tumor-associated phenotypes in the training and testing cohorts. The gray
rectangle represents the OR value, the black line segment represents the 95% CI, and the black dotted line represents the OR value after integrating the
effect size.

FIGURE 4
Mediating MR analysis amongmetformin, the Oxalobacteraceae family, and brain meningioma. The blue dots represent the OR value, the blue solid
line represents the 95% CI, and the black dotted line represents an OR value of 1.
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necessary to determine whether metformin exerts a better anti-
tumor effect.

Although numerous studies have explored the relationship
between metformin and tumors, there seems to be a scarcity of
research on benign brain tumors such as meningiomas. A
retrospective cohort study investigated the relationship between
metformin and benign brain tumors (BBT) and revealed that
metformin use reduced the risk of BBT, especially meningiomas,
in patients with T2DM (Tseng, 2021). Clinically, there are
significantly more female patients with meningioma than male
patients, with the ratio ranging from 2 to 3:1 (Claus et al., 2005;
Cao et al., 2022). This ratio can be as high as 9:1 in spinal
meningiomas. Hormones are considered risk factors for
meningiomas. A meta-analysis including 1,600 patients with
meningiomas revealed a significant association between prior
hormone therapy and an increased risk of developing
meningioma (RR 1.35, 95% CI 1.2–1.5) (Benson et al., 2015).
Metformin has been shown to regulate hormone levels. In one
study, metformin reduced androgen and estrogen levels in non-
diabetic breast cancer patients (Campagnoli et al., 2013). Notably,
women with breast cancer have a moderately increased risk of
meningioma, and a similar increase in breast cancer rates is
observed in women with a history of meningioma (Custer et al.,
2002; Wiemels et al., 2010). Therefore, the potential protective
effects of metformin against meningiomas may be closely related
to hormonal regulation. A study using UK-based Clinical Practice
Research Datalink (CPRD) data revealed no clear relationship
between metformin use and meningioma risk (Seliger et al.,
2017). However, after adjusting for the duration of diabetes and
HAbc1, short-term use of metformin seemed to have a potential
protective effect (OR: 0.84, 95% CI: 0.43–1.64; p-value for
trend = 0.059).

In addition to meningiomas, we observed that metformin
potentially exhibited anti-tumor effects against malignant
neoplasms of the oral cavity, tonsil, and tongue base.
Intriguingly, most of the four positive phenotypes in this study
were located in the head and neck regions. In oral squamous cell
carcinoma (OSCC), the transcription factor LSF (Late SV40 Factor)
binds to the promoter region of Aurora-A to induce carcinogenesis.
Metformin inhibits the LSF/Aurora-A signaling pathway in vitro
and in xenograft models, thereby mitigating tumor risk (Chen et al.,
2017). However, in a 4-NQO rat oral cancer model, using low and
high doses of metformin had no significant effect on the invasion
score of OSCC and could not change the occurrence of precancerous
lesions (Thompson et al., 2017). An observational study in Taiwan
identified a reduced risk of oral cancer associated with metformin
use (Tseng, 2016b). The patients’ pathology was significantly
alleviated in a single-arm IIa clinical trial. Metformin was
administered to 23 patients with oral precancerous lesions
without T2DM, which is closely related to the inhibition of the
mTOR signaling pathway by metformin (Gutkind et al., 2021). In
the study of metformin and tongue cancer, only one study showed
that doxorubicin combined with metformin can inhibit the growth,
invasion, and migration of SSC-15 cells and promote SSC-15 cell
apoptosis (Zhang, 2019).

Although metformin has been reported to have multiple
biological functions and anti-tumor effects, this mechanism has
rarely been clinically studied. This study explored the causal

relationship between metformin and four positive tumor
phenotypes. Unfortunately, TSMR analysis does not identify any
factors that differ significantly among the three in lipid metabolism
and immune cells. Notably, metformin, the family Oxalobacteraceae,
and brain meningiomas have significant differences simultaneously
within intestinal flora. The Oxalobacteraceae family appears to be a
blocking factor that causes metformin to reduce the risk of brain
meningioma, accounting for −8.9% of the total effect. The
Oxalobacteraceae family is closely related to the risk of T2DM.
One study used a high-fat and high-fructose diet to feed mice as a
T2DM animal model. The findings revealed that the intestinal family
Oxalobacteraceae significantly increased compared with the control
group (Costabile et al., 2022). AnotherMR analysis demonstrated that
an increased presence of the family Oxalobacteraceae was associated
with the risk of T2DM (Zeng et al., 2024). Studies have shown that the
therapeutic effects and side effects of metformin are closely related to
changes in intestinal flora (Forslund et al., 2017; Wu et al., 2017).
Although the p-value of the Sobel test ultimately lacked significance, it
is worth noting that modulating the intestinal flora to alleviate the
adverse effects of metformin was essential for improving its efficacy in
treating tumors.

Our study identified the potential of metformin in reducing the
risk of four specific types of tumors. Furthermore, we observed that
the Oxalobacteraceae family may attenuate this effect in
meningiomas. This suggests that the side effects of metformin
can further improve its ability to reduce the risk of cancer.
Variations in the sample size and population structure were
observed despite all populations being European owing to
different database sources. Therefore, this study established a
training group and a testing group to balance the limitations of a
single dataset and bias, further providing relatively reliable results.
To further consolidate the reliability of the conclusions, we also
integrated these two cohorts for the meta-analysis. Although our
study revealed this possibility, there are still some limitations. First,
the database and ethnic sources were limited to the European
population, which is not conducive to generalizing the
conclusions to the Asian population or even wider areas. Second,
although MR analysis has become an important method for causal
assessment, it is only based on statistical analysis. The actual clinical
situation is very complex, and there are many factors to consider;
therefore, randomization of large samples is still needed for analysis
and verification.

Conclusion

The present study demonstrated that metformin may reduce the
risk of four different malignancies. However, there was no clear
causal relationship between metformin use alone and cancer risk.
Large randomized controlled trials are required to validate
these findings.
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SUPPLEMENTARY FIGURE S1
Forest plot of the MR effect size of metformin against 13 tumor-associated
phenotypes in the training cohort. The black dots represent the OR value of
each SNP, the black line segment represents the 95% CI of each SNP, the
red dots represent theOR value calculated byMR-Egger and IVW, and the red
line segment represents the final 95% CI calculated by MR-Egger and IVW.

SUPPLEMENTARY FIGURE S2
Scatter plot of the effect distribution of all SNPs in the training cohort. The
black dots represent the effects of each SNP, and the trend lines of different
colors represent different statistical methods.

SUPPLEMENTARY FIGURE S3
Leave-one-out sensitivity analysis revealed that no single SNP significantly
affected the outcome in the training cohort. The black dots represent the
beta value of the remaining SNP after each SNP was eliminated, the black
line segment represents the 95% CI, the red dot represents the beta value of
all SNPs integrated by leave-one-out sensitivity analysis, and the red line
segment represents the 95% CI.

SUPPLEMENTARY FIGURE S4
Funnel plot of the distribution of all SNPs in the training cohort.
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