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Objective: Disulfidptosis is a newly recognized form of regulated cell death that
has been linked to cancer progression and prognosis. Despite this association, the
prognostic significance, immunological characteristics and treatment response
of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been
elucidated.

Methods: The lncRNA data and clinical information for ovarian cancer and normal
samples were obtained from the UCSC XENA. Differential expression analysis and
Pearson analysis were utilized to identify core DRLs, followed by LASSO
algorithm. Random Survival Forest was used to construct a prognostic model.
The relationships between risk scores, RNA methylation, immune cell infiltration,
mutation, responses to immunotherapy and drug sensitivity analysis were further
examined. Additionally, qRT-PCR experiments were conducted to validate the
expression of the core DRLs in human ovarian cancer cells and normal ovarian
cells and the scRNA-seq data of the core DRLs were obtained from the GEO
dataset, available in the TISCH database.

Results: A total of 8 core DRLs were obtained to construct a prognosticmodel for
ovarian cancer, categorizing all patients into low-risk and high-risk groups using
an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the
TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong
predictive capability of the model. The model revealed the high-risk group
patients exhibited lower overall survival rates, higher TIDE scores and lower
TMB levels compared to the low-risk group. Variations in immune cell infiltration
and responses to therapeutic drugs were observed between the high-risk and
low-risk groups. Besides, our study verified the correlations between the DRLs
and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA
sequencing data analysis were conducted to confirm the significance of the core
DRLs at both cellular and scRNA-seq levels.

Conclusion: We constructed a reliable and novel prognostic model with a DRLs
cluster for ovarian cancer, providing a foundation for further researches in the
management of this disease.
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Introduction

Ovarian cancer is recognized as the most lethal gynecological
cancer, with 90% of cases being epithelial ovarian cancers. These are
typically diagnosed at an advanced stage and carry a poor prognosis
(Armstrong et al., 2021; Chen Z et al., 2023). Global statistics from
2020 reported 313,959 new cases of ovarian cancer and 207,252 new
deaths worldwide (Bukłaho et al., 2023). In 2024, 19,680 new cases
and 12,740 new deaths of ovarian cancer are projected to occur in
the United States (Siegel et al., 2024). It is projected that the number
of women affected by ovarian cancer will surpass 445,000 by 2040
(Zoń and Bednarek, 2023). Due to the atypical clinical
manifestations of early-stage ovarian cancer, over 60% of patients
are diagnosed at an advanced stage (Yang S. et al., 2023).
Additionally, platinum-resistant recurrence is also a major
contributing factor to the poor prognosis and high mortality
rates associated with ovarian cancer (Shoji et al., 2022). The 5-
year survival rate for ovarian cancer is less than 50%, with patients in
advanced stages having a survival rate of about 20%–30% (Jazwinska
et al., 2023; Liu et al., 2023a; Liu et al., 2023b). Therefore, it is crucial
to select novel and efficient prognostic biomarkers for ovarian
cancer patients.

In the era of precision oncology, there is a growing focus on the
molecular characteristics and heterogeneity involved in tumor
development (Yang Z. et al., 2023). Multiple studies have shown
that cancer cells frequently undergo metabolic reprogramming to
facilitate their rapid growth and combat the oxidative stress caused
by metabolic disruptions during tumor progression and spread
(Zheng et al., 2023). Disulfidptosis represents a newly identified
form of controlled cell death triggered by disulfide stress (Zhang D.
et al., 2023). SLC7A11, a cystine transporter commonly upregulated
in cancer cells, has been found to increase reliance on glucose for
energy production (Xia et al., 2023). In situations where glucose is
limited and SLC7A11 levels are high, depletion of NADPH can
result in disulfide bond stress, causing abnormal accumulation of
disulfide bonds in actin, alterations in protein function, and
ultimately cell death (Liu et al., 2024). This significant discovery
is anticipated to improve the identification of new prognostic
markers (Xue et al., 2023). The involvement of disulfidptosis in
tumorigenesis across various cancer types suggests its potential as a
diagnostic and therapeutic indicator (Machesky, 2023). Xu et al. (Xu
et al., 2024) demonstrated that disulfidptosis-related lncRNA could
act as a prognostic biomarker and therapeutic target for
hepatocellular carcinoma. Additionally, Xiao et al. (Xiao et al.,
2024) created a prognostic signature linked todisulfidptosis
prolapse that correlated with response to immunotherapy in
colorectal cancer. Xie et al. (Xie et al., 2024) quantified the
disulfidptosis activity score in pan-cancer cells and found that
lower grade glioma had the highest average score, while
lymphoblastic acute myeloid leukemia had the lowest
disulfidptosis activity score. They also observed that mutations in
disulfide-related genes were consistently present in cervical cancer
samples, but no mutations were detected in ocular melanomas.
However, there is currently a lack of information on disulfidptosis
specifically in ovarian cancer.

Long non-coding RNAs (lncRNAs) are transcripts that
exceed 200 nucleotides in length and do not encode proteins
They are involved in chromatin remodeling, transcriptional and

post-transcriptional regulation, and have significant implications
in the development of different types of cancers (Fang and
Fullwood, 2016). Previous studies have reported that lncRNAs
play crucial roles in various biological processes such as cell
migration, invasion, proliferation, and apoptosis (Xia et al.,
2023). Dysregulated expression of lncRNAs has been observed
in different cancer types, suggesting their significance in
tumorigenesis (Liu Y. et al., 2023). Variations in disulfidptosis
activity scores have been noted among different cell types,
including malignant cells, myeloid cells, parietal cells,
endothelial cells, and cancer-associated fibroblasts (Xie et al.,
2024). There is currently no literature on the relationship
between disulfidptosis-related lncRNAs (DRLs) and ovarian
cancer. This study aimed to develop a prognostic model for
ovarian cancer patients using DRLs and conducted immune-
related analyses to provide new insights for ovarian
cancer research.

Materials and methods

Data collection

The lncRNA data and related clinical information of 418 TCGA-
ovarian cancer specimens and 88 GTEx-normal samples were
obtained from the UCSC XENA (https://xenabrowser.net/
datapages/), which have been removed from batch effects (Vivian
et al., 2017). The gene expression profile information and clinical
data are easily accessible and publicly available, eliminating any
ethical concerns. GTF files (GRCH38) were obtained from The
Encyclopedia of DNA Elements (https://www.gencodegenes.org/#).

Differential expressed analysis and the core
DRLs acquirement

Differential expression lncRNAs (DELs) were identified using
FDR <0.05 and |log2fold change (FC) > 1| as the criteria (Xia et al.,
2023). The analysis of DELs between ovarian cancer patients and
normal samples was conducted using the R package ‘limma’. A
total of 15 disulfidptosis-related genes (FLNA, FLNB, MYH9,
TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1,
ACTN4, PDLIM1, CD2AP, INF2, SLC7A11) were compiled
from previously published studies (Wang T. et al., 2023). The
correlation between DELs and disulfidptosis-related genes was
then evaluated through Pearson analysis., with a significant
correlation defined as having an absolute correlation coefficient
(|R|) ≥ 0.3 and p < 0.001. Besides, the least absolute shrinkage and
selection operator (LASSO) regression with 5-fold cross-validation
was utilized to identify the core DRLs.

Construction of a prognostic model and
survival analysis

Random Survival Forest (RSF) is a machine learning method
that extends the random forest method to survival data. RSF
captures the interplay of nonlinear effects and variables,
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computes the cumulative risk function for each sample, and
aggregates it by survival time to predict comprehensive mortality
outcomes, making it well-suited for survival data analysis (Wang
et al.,202b). In this study, RSF was used to analyze the core DRLs and
develop a prognostic model for ovarian cancer patients. The ‘predict
function’ in R was employed to calculate risk scores for each patient.
In this study, we utilized the surv_cutpoint function from the R
package to determine the optimal cutoff value for 8 core DRLs in
predicting the prognostic risk of ovarian cancer. Patients were then
categorized into low-risk and high-risk groups based on this cutoff
value, and the stability of these groups was assessed using principal
component analysis (PCA). Finally, survival curves between the two
groups were compared.

Functional enrichment analysis and RNA
methylation associated with the core DRLs

To investigate the biological functions and pathways associated
with DRLs, Gene Set Enrichment Analysis (GSEA) was utilized for
assessing differences in enrichment (Zhang C. et al., 2023). RNA
methylation can impact RNA processing, translation, and
degradation, thereby regulating cellular processes such as cell
self-renewal, apoptosis, differentiation, tumorigenesis, and
immune cell infiltration in the tumor microenvironment, thereby
influencing the physiological and pathological processes of cancer
cells (Chen J et al., 2023). A total of 23 m6A modification genes,
12 m5C modification genes, and 10 m1A modification genes were
identified from the literature (Xia et al., 2023). The correlation
between the core DRLs and RNA methylation genes was then
calculated to explore their potential relationship.

Immune infiltration analysis

The study utilized the CIBERSORT algorithm to analyze the
composition of tumor-infiltrating immune cells and compare the
differences in immune cell proportions between high-risk and low-
risk groups (Newman et al., 2015). Additionally, the ESTIMATE
algorithm was employed to assess differences in immune, stromal,
and tumor purity scores between the two risk groups (Liao et al.,
2023). Single-Sample Gene Set Enrichment Analysis (ssGSEA) in
the GSVA R package was used to quantify the infiltration levels and
functions of 28 immune cell types based on established gene
signatures (Hänzelmann et al., 2013; Xia et al., 2023). Moreover,
the Tumor Immune Dysfunction and Exclusion (TIDE, https://tide.
dfci.harvard.edu/) was utilized to predict the response to
immunotherapy by evaluating tumor immune dysfunction and
evasion (Wang et al., 2022).

Mutation and drug sensitivity analysis

Tumor mutation burden (TMB) is quantified as the number
of somatic nonsynonymous mutations, or all mutations, per
megabase in the gene region identified through whole exome
sequencing or targeted sequencing in tumor samples (Liang et al.,
2023). Waterfall plots were constructed using the ‘maftools’

package in R to determine the frequency of point mutations in
samples and examine the relationship between TMB and risk
scores (Liu S. et al., 2023). The effectiveness of targeted therapy
was forecasted using the ‘pRRophetic’ package (Liu et al., 2022).
Sensitivity to different drugs was assessed using the semi-
maximum inhibitory concentration index (IC50) to explore
the therapeutic advantages for ovarian cancer patients (Liu S.
et al., 2023).

Cell culture

Human ovarian cancer cell line (A2780) and normal ovarian cell
line (IOSE80) were purchased from BeNa Culture Collection
(Henan, China), and cultured in RPMI 1640 medium
supplemented with 10% of fetal bovine serum, 100 U/mL of
penicillin, and 100 μg/mL of streptomycin (Procell, Wuhan,
China). Human ovarian cancer cell line (OVCAR-3) was
purchased from Wuhan Procell Life Science & Technology Co.,
Ltd. (Wuhan, China), and cultured in RPMI 1640 medium
supplemented with 0.01 mg/mL insulin, 20% of fetal bovine
serum, 1% penicillin/streptomycin (Procell, Wuhan, China). Cells
were cultured at 37°C in a humidified incubator with 5% CO2. Prior
to experimentation, all cell lines underwent testing for mycoplasma
contamination and were identified using short tandem
repeat analysis.

RNA extraction and quantitative real-time
PCR analysis

Total RNA Extraction Kit (Beijing Solebo Technology,
Beijing, China) were used to extract RNA. cDNAs were
synthesized using the RevertAid RT kit (Thermo Fisher
Scientific, Beijing, China). RT-PCR was performed using the
SYBR green assay (Beijing Qihangxing Biotechnology, Beijing,
China) on an AB 7500 machine (Applied Biosystems Inc., USA).
The SYBR primers used in this study were listed (Supplementary
Table S1). GAPDH served as an internal control for
normalization. Relative RNA abundance (fold change) of each
lncRNA was calculated using the standard 2−ΔΔCT. Each sample
was examined in triplicate.

Single-cell RNA sequencing data analysis

To further investigate the expression of the 8 core DRLs cluster
at the single-cell RNA sequencing (scRNA-seq) levels, scRNA-seq
data from ovarian cancer tissues were obtained from the GEO
dataset GSE115007 (Tang-Huau et al., 2018), available in the
public Tumor Immune Single-cell Hub (TISCH) database (http://
tisch.comp-genomics.org/home/) (Sun et al., 2021). The quality
control standards included 500 cells per data set, 1000 UMI
counts per cell, and 800 genes per cell. The standards of quality
control are cell number per dataset >1,000, UMl count per
cell >1,000, and gene number per cell >500. For each collected
dataset, a uniform analysis pipeline -- MAESTRO was adopted to
perform quality control, clustering and cell-type annotation (Liu
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et al., 2023e). The scRNA-seq was conducted by the platform of
10×Genomics.

Statistical analyses

All statistical analyses were conducted using the statistical
programming language R. The RSF model was built using the
‘rfsrc’ function from the ‘randomForestSRC’ R package (He et al.,
2024). Kaplan-Meier (KM) analysis and the area under the curve
(AUC) of the time-dependent receiver operating characteristic
(ROC) were employed to compare the 1-year, 3-year, and 5-year
survival prognoses as well as prognostic risk performance between
the two groups (He et al., 2023). GraphPad Prism V.8 was utilized

for qRT-PCR analysis and graphing. In all analyses, p < 0.05 was
used to indicate statistical differences.

Results

Features selection of the core DRLs

The flowchart illustrating the data collection, categorization, and
analysis process is presented in Figure 1. A total of 7,174 DELs were
identified in ovarian cancer patients compared to normal samples, with
3,438 upregulated and 3,736 downregulated (Figure 2A). Subsequently,
2,467 DRLs were identified through Pearson correlation analysis. The
LASSO regression was utilized to identify 8 core DRLs (CTB-171A8.1,
CTD-2371O3.2, LINC00240, RP11-126K1.6, RP11-872J21.3, RP3-
500L14.2, SNHG10, and TLR8-AS1) (Figs. 2B, 2C). The mean
expression levels and calculated difference of these 8 core DRLs
were summarized in Table 1. The positions of the 8 core DRLs on
the chromosome were depicted in Figure 2D. Furthermore, a
correlation chord plot was used to visualize the relationships among
the 8 core DRLs (Figure 2E). Additionally, a sankey diagram was
employed to illustrate the connections between the 8 core DRLs and
disulfidptosis-related genes (Figure 2F).

Evaluation of the 8 core DRLs at the
cellular level

To further investigate the expression of the 8 coreDRLs cluster at the
cellular level, we conducted qRT-PCR analysis tomeasure the expression
levels of the cluster in human ovarian cancer cell lines (A2780 and
OVCAR-3) and a normal ovarian cell line (IOSE80).Our results revealed
that CTB-171A8.1, RP11-126K1.6, RP11-872J21.3, and RP3-
500L14.2 were upregulated in the human ovarian cancer cell lines
(A2780 and OVCAR-3), consistent with our model results.
Conversely, CTD-2371O3.2 and SNHG10 showed downregulated
expression, also in accordance with the model results.
LINC00240 exhibited varying expression patterns in human ovarian
cancer cell lines A2780 and OVCAR-3, while TRL8 was found to be
downregulated in these cell lines, contrary to the model predictions.
These inconsistencies could be due to the small sample size in our study,
potentially introducing bias (Figures 3A–H).

Evaluation of the 8 core DRLs at the single-
cell RNA sequencing level

To further investigate the prognostic values and unique distribution
of the 8 core DRLs cluster, our study aimed to explore the specific cell
types in which they are enriched using scRNA-seq. Subsequently, we
identified the expression of 5 lncRNAs (CTB-171A8.1, CTD-2371O3.2,
RP11-126K1.6, RP11-872J21.3, and SNHG10) at the single-cell
sequencing level. Analysis of the scRNA-seq data in the
GSE115007 dataset showed that 12 cell clusters and 5 cell types are
identified in CRC tissues (Figure 4A, B). Our analysis revealed that CTB-
171A8.1 is notably enriched in the cDC2, while CTD-2371O3.2 shows
significant enrichment in both cDC1, cDC2, and plasma cells.
Additionally, RP11-126K1.6 exhibits significant enrichment in cDC1,

FIGURE 1
Flowchart of study design.
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cDC2, and monocytes, whereas RP11-872J21.3 is notably enriched in
cDC1 and cDC2 subsets. Furthermore, SNHG10 displays significant
enrichment in cDC1, cDC2, and monocytes (Figure 4C-G).

Prognosis prediction abilities of the
core DRLs

The study incorporated the 8 core DRLs into the Random
Survival Forest (RSF) to develop a prognostic model, as
illustrated in Figure 5A, and the model achieved a C-index of

0.753 with a 95% confidence interval of 0.672–0.820.
Subsequently, individual risk scores were computed for each
patient. In this study, we utilized the surv_cutpoint function
from the R package to determine the optimal cutoff value for
8 core DRLs in predicting the prognostic risk of ovarian cancer.
Then patients were divided into low-risk and high-risk groups based
on this threshold (Figure 5B). Notably, the high-risk group
comprised 297 patients, while the low-risk group consisted of
121 patients. As shown in Figure 5C, PCA illustrated the model’s
effective discriminatory capabilities between these two groups.
Survival analysis revealed a significant reduction in overall

FIGURE 2
Features selection of the core DRLs. (A) Volcano plot of the differential expression lncRNAs. The red dots represented differentially expressed
lncRNAs. (B) The minimum criteria and (C) coefficients were counted by the LASSO Cox regression with 5-fold cross-validation to construct a
disulfidptosis-related lncRNAs (DRLs) cluster to forecast the prognosis of ovarian cancer patients. (D) The positions of the 8 core DRLs on the
chromosome. (E) The correlation chord plot showed the correlation of the 8 core DRLs. Red represented positive correlation. The darker the color
and the thicker the line represented the higher the correlation strength. (F) The sankey diagram demonstrated the relation between the 8 core DRLs and
disulfidptosis-related genes.

TABLE 1 Mean expression and calculated difference value of the 8 core DRLs.

lncRNA logFC t P.adj CaseMean ControlMean

CTB-171A8.1 3.44 15.30 1.25E-42 0.55 −2.89

CTD-2371O3.2 −2.63 −7.18 8.50E-12 −5.76 −3.13

LINC00240 1.73 12.29 1.05E-29 3.07 1.33

RP11-126K1.6 4.33 22.57 6.65E-77 1.51 −2.82

RP11-872J21.3 2.90 19.48 4.78E-62 −0.02 −2.91

RP3-500L14.2 2.12 11.00 1.31E-24 −0.69 −2.80

SNHG10 −1.19 −9.75 5.27E-20 2.88 4.08

TLR8-AS1 7.29 23.95 1.62E-83 −2.14 −9.42

CaseMean: The average expression value of the case group. ControlMean: The average expression value of the control group.
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survival (OS) within the high-risk group (Figure 5D). Our study
compared the testing performance of three distinct ovarian cancer
prognosis prediction models developed using the RSF, LASSO
regression, and other clinical features including age, tumor grade,
pathological type, and tumor stage. The findings revealed that in the
RSF prediction model, the AUCs for 1-year, 3-year, and 5-year OS in
the TCGA cohort were 0.785, 0.810, and 0.863, respectively

(Figure 5E). For the LASSO regression prediction model, the
AUC values for 1-year, 3-year, and 5-year OS in the TCGA
cohort were 0.699, 0.749, and 0.731, respectively (Figure 5F).
Lastly, in the clinical features prediction model, the AUC values
for 1-year, 3-year, and 5-year OS in the TCGA cohort were 0.721,
0.633, and 0.620, respectively (Figure 5G). Our results indicated that
the RSF prediction model demonstrated superior prediction

FIGURE 3
Evaluation of the 8 core DRLs at the cellular level (A–H) The expression of CTB-171A8.1, CTD-2371O3.2, LINC00240, RP11-126K1.6, RP11-872J21.3,
RP3-500L14.2, SNHG10 and TLR8-AS1 in human ovarian cancer cell lines (A2780 and OVCAR-3) and a normal ovarian cell line (IOSE80). *p < 0.05; **p <
0.01; ***p < 0.001.

FIGURE 4
Evaluation of the 8 core DRLs at the scRNA-seq level (A) The identified cell clusters in ovarian cancer tissues based on theGSE115007 dataset. (B) The
identified cell types in ovarian cancer tissues based on the GSE115007 dataset. (C–G) The expression levels of CTB-171A8.1, CTD-2371O3.2, RP11-
126K1.6, RP11-872J21.3, and SNHG10 in the identified cell types in ovarian cancer tissues based on the GSE115007 dataset.
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performance for prognostic evaluation of disulfidptosis-related
ovarian cancer compared to the other two methods in this study.

Functional enrichment analysis

The GSEA functional enrichment analysis identified significant
enrichment of pathways related to ‘ECM-receptor interaction’ and
‘regulation of lipolysis in adipocytes’ in the high-risk
group. Conversely, the low-risk group exhibited enrichment in
pathways including ‘base excision repair’, ‘alpha-Linolenic acid
metabolism’, ‘primary immunodeficiency’, ‘mismatch repair’,
‘homologous recombination’, and ‘DNA replication’ (Figure 6A).

RNA methylation of the core DRLs

The study utilized Pearson analysis to examine the associations
between the 8 core DRLs and RNAmethylation genes. Bubble charts
were employed to visually represent these correlations, with bubble

size indicating the strength of the relationship. Larger bubbles
denote stronger correlations between DRLs and RNA
methylation genes. The significance of the correlation is depicted
by different bubble colors, with brown and dark-cyan indicating
statistical significance. In Figures 5B–D, the results demonstrated
robust correlations (|r| > 0.5) between LINC00240, RP11-126K1.6,
RP11-872J21.3, and SNHG10 with RNA m6A, m1A, and m5C
modification genes, suggesting potential links between
disulfidptosis and RNA methylation. The methylation levels of
disulfidptosis regulators may play a role in tumor progression.

Immune landscapes analysis

The study utilized CIBERSORT to analyze the composition
percentages of 22 immune cell types in each sample, visualizing
the results in a heat map (Figure 7A). Additionally, a box plot was
employed to demonstrate differences in immune cell infiltration in
the tumor microenvironment (TME) between the high-risk and
low-risk groups (Figure 7B). The high-risk group exhibited higher

FIGURE 5
Prognosis prediction abilities of the core DRLs. (A) RSF, a machine learning algorithm, was utilized to construct a prognostic model for ovarian
cancer patients. (B) The surv_cutpoint function from the R package was utilized to determine the optimal cutoff value for 8 core DRLs in predicting the
prognostic risk of ovarian cancer. Then patients were divided into low-risk and high-risk groups based on this threshold. Blue represents the low-risk
group and red represents the high-risk group. (C) PCA analysis showed the prognostic model had a good discrimination in two groups. (D) KM curve
of overall survival (OS) for ovarian cancer patients in the high-risk and low-risk groups. (E) In the RSF prediction model, the AUCs of 1-year, 3-year and 5-
year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively. (F) In the LASSO regression prediction model, the AUC values for 1-year, 3-year,
and 5-year OS in the TCGA cohort were 0.699, 0.749, and 0.731, respectively. (G) In the clinical features prediction model, the AUC values for 1-year, 3-
year, and 5-year OS in the TCGA cohort were 0.721, 0.633, and 0.620, respectively.
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expressions of T cells CD4 memory resting, monocytes, and
macrophages M2, whereas the low-risk group showed higher
proportions of T cells follicular helper, T cells regulatory, and
macrophages M0/1. The results of ssGSEA indicated elevated
neutrophil and type 1 T helper cell expressions in the high-risk
group compared to the low-risk group (Figure 7C). Furthermore,
ESTIMATE analysis revealed a higher stromal score in the high-risk
group and increased tumor purity in the low-risk group (Figures
7D–G). Previous studies have indicated that low tumor purity is
linked to unfavorable prognosis and immune evasion characteristics
(Gong et al., 2020; Zhang et al., 2017). These findings indicate
notable differences in immune function between the two risk groups,

which could potentially affect survival outcomes. The TIDE score
was significantly higher in the high-risk group, suggesting a higher
probability of tumor cells evading immune surveillance and showing
a limited response to immunotherapy (Figures 7H–J).

TMB analysis

TMB, a measure of mutations associated with T cell recognition,
has potential as a prognostic factor in anti-tumor immunotherapy (Liu
S. et al., 2023). In Figure 8A, missense mutations were predominant,
with C>T point mutations being most common, particularly in

FIGURE 6
Functional enrichment analysis and RNA methylation. (A) GSEA enrichment analysis revealed the biological functions and pathways in the high-risk
and low-risk groups. (B–D) The correlations between the 8 core DRLs and RNA methylation genes, including m6A modification-related genes (B), m1A
modification-related genes (C) and m5C modification-related genes (D), respectively.
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TP53 and TTN genes. The gene’s variant allele frequencies (VAF) box
plot illustrated gene cloning status (Figure 8B). The somaticInteractions
function in R was utilized to analyze genetic mutations for mutual
exclusion or co-occurrence (Figure 8C). Waterfall charts depicted
somatic mutation status in high-risk and low-risk groups
(Figures 8D, E). Notably, TP53, TTN, and CSMD3 were the top
3 genes with highest mutation probability in the high-risk group,
while TP53, TTN, and FLG2 showed highest mutation probability
in the low-risk group. Violin plots indicated a lower somatic mutation
rate in the high-risk group compared to the low-risk group (Figure 8F).
Furthermore, a survival rate difference was observed between patients
with high and low TMB (Figure 8G). Utilizing TMB and risk scores for
predicting ovarian cancer patients’ prognosis provided a more
comprehensive and precise predictive effect (Figure 8H).

Drug sensitivity analysis

A sensitivity analysis of chemotherapy drugs was carried out using
the GDSC database to compare the half-maximal inhibitory

concentration (IC50) values between high-risk and low-risk groups.
The study revealed that bleomycin had a lower IC50 value in the high-
risk group, whereas GSK1904529A, vorinostat, phenformin, ZM-
447439, rapamycin, OSI-930, NG-25, vinorelbine, and
EHT1864 exhibited higher IC50 values in the high-risk
group. Conversely, cisplatin, paclitaxel, and docetaxel did not exhibit
a statistically significant difference in IC50 values between the low- and
high-risk groups (Supplementary Figure S1A-M). These findings may
provide new insights into the treatment of ovarian cancer, but further
validation is needed.

Discussion

Ovarian cancer has the highest mortality rate among gynecological
cancers in women. The standard treatment for ovarian cancer is
standardized surgical staging, followed by postoperative systemic
platinum-based chemotherapy and/or targeted therapy
(Konstantinopoulos and Matulonis, 2023; Salutari et al., 2024).
Advanced stage at diagnosis and platinum-resistant recurrence are the

FIGURE 7
Immune landscapes analysis. (A) The composition percentages of 22 immune cell types in each sample. (B) The box plot illustrated the differences
calculated by CIBERSORT in 22 types of immune infiltration cells between the high-risk and low-risk groups. (C) Comparison of the ssGSEA scores of
immune cells between high-risk and low-risk groups. The statistical differences were shown as follow: ns, not significant; *p < 0.05; **p < 0.01; ***p <
0.001. (D–G) The violin plots showed the differences between high-risk and low-risk groups inestimated score (D), immune score (E), stromal score
(F) and tumor purity (G) calculated using the ESTIMATE algorithm. (H–J) Differences in TIDE between the high-risk and low risk groups. The histogram
showed the TIDE score of each sample (H) and distribution density between two groups (I). The violin plots manifested the differences of TIDE score
between two groups (J).
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primary factors contributing to the poor prognosis of ovarian cancer
(Pavlik et al., 2024). There is an urgent need to identify new targets,
improve early detection and prediction, and develop innovative
treatments for ovarian cancer. Prior studies by Liu and Wang et al.
(Liu L. et al., 2023) constructed a prognostic signature using cuproptosis-
related lncRNAs for ovarian cancer patients and the AUC values for the
testing dataset at 3 and 5 years were reported as 0.627 and 0.633,
respectively. Additionally, Xu et al. (Xu et al., 2023). established a
prognostic signature based on pyroptosis-related lncRNAs for ovarian
cancer and the survival rates at 1-year, 3-year and 5-year were found to be
0.688, 0.703 and 0.742, respectively. In our study, we identified
7,174 DELs between ovarian cancer patients and normal samples, and
2,467DRLs were identified using Pearson correlation analysis. The 8 core
DRLs were selected through LASSO regression. RSF was utilized to
develop an ovarian cancer prognostic model. The AUCs for 1-year, 3-
year, and 5-year OS in the TCGA cohort were 0.785, 0.810, and 0.863,

respectively. Meanwhile, the testing performance of the prognostic
prediction model for disulfidptosis-related ovarian cancer was
compared among RSF, LASSO regression, and other clinical
information. The findings indicated that the prognostic prediction
model developed using RSF demonstrated superior testing
performance. These results suggest that the 8 core DRLs may serve as
potential biomarkers for identifying the prognosis of ovarian
cancer patients.

Alterations in metabolic processes are a distinguishing characteristic
of cancer, providing potential targets for precise intervention in cancer
treatment (Zheng et al., 2023). Disulfidptosis, a novel form of cell death,
has been identified as a significant factor in the development of various
tumors, opening up new possibilities for tumor treatment (Liu et al.,
2023f). Research has indicated that disulfidptosis-related metabolism
plays a significant role in tumor cell metastasis, drug resistance, and
immune evasion (Xie et al., 2024). Tang et al. (Tang et al., 2024)

FIGURE 8
TMB analysis. (A) The Cohort summary plot showed the variant classification, type, and SNV Class. The lower part describes the mutation load and
variant classification type for each sample. The stacked bar plot diaplayed the top 10 mutated genes. (B) The variant allele frequencies (VAF) box plot
exhibited the cloning status of the gene. (D) The waterfall plot displayed the mutation information of each gene within high-risk group. (C) The heatmap
manifested the genetic mutual exclusion or co-occurrence. (E) The waterfall plot displayed the mutation information of each gene within low-risk
group. (F) The violin plot showed the differences of somatic mutations between the high-risk and low-risk groups. (G) KM curve of OS for ovarian cancer
patients in the high-TMB and low-TMB groups. (H) The relation among OS, risk scores and TMB in ovarian cancer.
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identified five key genes and emphasized the significance of a
disulfidptosis-related gene signature in predicting breast cancer
prognosis. Pu et al. (Pu et al., 2024) utilized machine learning
methods to establish a disulfidptosis-associated lncRNA signature for
forecasting the prognosis and immune response in hepatocellular
carcinoma, yielding promising predictive outcomes. There is
currently a lack of analysis on the correlation between disulfidptosis
and ovarian cancer from the perspective of lncRNA. Our study aims to
address this gap in research. This study is the first to create a new
prognostic risk model for ovarian cancer using the 8 core DRLs, and
investigate the impact of disulfidptosis on ovarian cancer from various
angles including immune infiltration andmethylation. The findings offer
valuable insights for immunotherapy, chemotherapy, and can assist in
predicting prognosis for ovarian cancer. In this study, ovarian cancer
patients were divided into low-risk and high-risk groups, with high-risk
samples exhibiting significantly lower OS compared to low-risk samples.
Furthermore, differences in the immune landscape between high-risk
and low-risk groups were analyzed. The study also identified variances in
immune cell infiltration types, activity, and somatic mutation status
between the two groups. Tumor development and progression involve
intricate interactions among cancer cells, the immune system, and the
tumor microenvironment (TME). These factors regulate the strength
and duration of the anti-cancer response (Chen and Mellman, 2017).
Prior research has indicated that the TME of ovarian cancer is intricate
and dynamic, playing a crucial role in advancing tumor growth,
invasion, and resistance to chemotherapy. Immune cells and
components within the TME have a dual role in both restraining
tumor growth and facilitating immune evasion. These elements
maintain a delicate balance and are vital for processes like
extracellular matrix remodeling, the activation of cancer-related
fibroblasts, and metabolic reprogramming (Blanc-Durand et al.,
2023). RNA methylation is known to play crucial roles in cancer
development (Xia et al., 2023). The most common internal mRNA
modification in eukaryotic cells is RNA m6A modification, which
regulates various RNA processing steps. On the other hand, RNA
m1A modification disrupts base pairing and has the potential to
impact local RNA structure or protein-RNA interactions (Wang
et al., 2017). In our study, we investigated the correlations between
8 core DRLs and RNA methylation genes, uncovering potential links
between disulfidptosis and RNA methylation. While chemotherapy
remains a key strategy for treating ovarian cancer, issues such as
tumor heterogeneity and drug resistance often result in reduced
chemotherapy efficacy (Wang et al., 2024). Chemotherapy resistance
contributes significantly to the high mortality rate of ovarian cancer
(Atallah et al., 2023). In this study, the different responses of patients in
high-risk and low-risk groups to drugs indicate that tailoring treatments
based on patient risk groups may lead to more effective outcomes.
Combining the sensitivity of tumor cells to disulfidptosis with the anti-
cancer effects of other drugs may offer new insights for the development
of innovative and potent cancer therapies, but further experimental
validation is necessary. Studies have reported that disulfidptosis is
associated with immune-related characteristics, and patients with
high disulfidptosis activity have a better prognosis after
immunotherapy compared to patients with low disulfidptosis activity
(Xie et al., 2024). In addition, qRT-PCR was utilized to analyze the
expression of 8 coreDRLs in human ovarian cancer cell lines and normal
ovarian tissues at the cellular level. Previous research has indicated that
decreased expression of SNHG10 is correlated with a poor prognosis in

ovarian cancer patients. The overexpression of SNHG10 has been shown
to suppress the proliferation, colony formation, migration, and invasion
of ovarian cancer cells (Lv et al., 2022). Further exploration was
conducted on the expression of the 5 DRLs at the scRNA-seq levels.
Our findings indicated that these DRLs are predominantly enriched in
DC cells, plasma cells, and monocytes.

Although the predictive performance of the disulfidptosis-
related lncRNAs cluster in forecasting the prognosis and immune
landscapes of ovarian cancer has been validated, there are still some
limitations. Firstly, The data were sourced from a single database,
but additional data from large-scale multicenter cohorts are needed
to assess the predictive signatures effectively. Secondly, further
experiments are required to validate the findings and clarify the
involvement of DRLs in ovarian cancer. It is necessary to delve
deeper into the mechanisms underlying the role of the 8 core DRLs
in ovarian cancer. Thirdly, scRNA-seq expression data for
5 lncRNAs (CTB-171A8.1, CTD-2371O3.2, RP11-126K1.6, RP11-
872J21.3, and SNHG10) was identified in the TISCH database.
However, additional research and exploration is required for the
other 3 lncRNAs (LINC00240, RP3-500L14.2, and TLR8-AS1) in
the future.

Conclusion

Our study developed a prediction model for a cluster of
disulfidptosis-related lncRNAs to predict the prognosis and
immune landscapes of ovarian cancer, yielding positive outcomes.
Building upon prior research findings, we hypothesized that
uncovering the prognostic and therapeutic implications of
lncRNAs associated with disulfidptosis could enhance the
assessment and management of ovarian cancer in patients.
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