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Background/purpose: Previous epidemiological studies have associated
interstitial lung disease (ILD) with rheumatoid arthritis (RA), yet the causality of
this relationship remains uncertain. This study aimed to investigate the genetic
causal link between ILD and RA.

Methods: Genome-wide association study (GWAS) statistics for ILD and RA were
collected from public datasets. Relevant single-nucleotide polymorphisms
(SNPs) were selected by executing quality control steps from the GWAS
summary results. A two-sample bidirectional Mendelian randomization (MR)
analysis was performed to assess the causal relationship between the two
conditions. The MR analysis primarily used the inverse variance weighting
(IVW), weighted median (WM), and MR-Egger regression methods. Sensitivity
analyses, including MR-Egger, leave-one-out, and MR Pleiotropy RESidual Sum
and Outlier (MR-PRESSO), were conducted to evaluate the heterogeneity and
pleiotropy. Replication analyses using Asian datasets were also conducted to
enhance the robustness of our findings.

Results: In the European population, RA was found to increase the risk of ILD by
9.6% (OR: 1.096, 95% CI: 1.023–1.174, p = 0.009). Conversely, ILD was associated
with a 12.8% increased risk of RA (OR: 1.128, 95% CI: 1.013–1.256, p = 0.029).
Replication analyses from Asian GWAS further supported these findings,
particularly the increased risk of ILD attributable to RA (OR: 1.33, 95% CI:
1.18–1.49, p-value <0.001).

Conclusion:Our findings underscore the clinical importance of screening for ILD
in RA patients and suggest that effective management of RA could significantly
benefit ILD patients. The potential applicability of novel RA treatments to ILD
warrants further exploration. Additionally, racial disparities in the manifestation of
these diseases should not be overlooked, as they may offer new perspectives for
targeted therapies in diverse populations.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune
disease whose main characteristic is persistent joint inflammation
that can lead to lifelong damage and loss of function (Cojocaru et al.,
2010). It affects approximately 1% of the world’s population and
0.32%–0.36% in China (Chen et al., 2015). The exact etiology of RA
is unknown, but it has been established that its chronic course could
be correlated with genetic factors, and the heritability of RA was
estimated to be 60% (Yarwood et al., 2016). So far, using genome-
wide association studies (GWAS), research studies have revealed
that several genetic susceptibility loci play a vital role in RA, such as
the human leukocyte antigen D-related B1 gene (HLA-DRB1) and
protein tyrosine phosphatase non-receptor type 22 (PTPN22)
(Tanaka, 2020).

Interstitial lung disease (ILD) is a large heterogeneous group of
diseases affecting the lung parenchyma through inflammation and
fibrosis, characterized by symptoms of cough, shortness of breath,
and hypoxia (Newton et al., 2016; Rivera-Ortega and Molina-
Molina, 2019). Epidemiological surveys estimate the prevalence of
IDL to be as high as 24.9% (Fazeli et al., 2021). Genetic factors are
considered important risk factors for ILD (García-Sancho et al.,
2011; Rivera-Ortega and Molina-Molina, 2019). Currently, many
alleles strongly associated with ILD risk have been identified by
GWAS, such as MUC5B (Newton et al., 2018), HLA-DRB1
(McDermott et al., 2021), and the gene encoding surface active
protein C (SFTPC) (Kropski, 2020).

The association between RA and ILD has been extensively
discussed. In some studies, ILD was identified as a severe extra-
articular manifestation of RA (Esposito et al., 2019; England and
Hershberger, 2020). A prospective registry study noted that
patients with a combination of rheumatoid factor (RF) or
anti-citrullinated protein antibody (ACPA) seropositivity had
a higher prevalence of ILD when compared to seronegative
subjects (Natalini et al., 2021; Holers et al., 2022). In addition,
studies have also shown that significant lung inflammation may
be associated with higher local and systemic ACPA
concentrations (Natalini et al., 2021). Gregory C McDermott
et al. reported that a substantial proportion of patients usually
develop ILD prior to the manifestation of arthritis, suggesting a
role for the lungs in the progression of RA disease (McDermott
et al., 2021). Similarly, studies have shown that 10%–17% of
patients were diagnosed with ILD before they were diagnosed
with RA (Hyldgaard et al., 2017). However, the causal
relationship between the two conditions still needs to be fully
understood. Therefore, it is of great interest to establish their
association with more basic evidence and elucidate the
mechanisms underlying the association between RA and ILD.

Mendelian randomization (MR) is an epidemiological method
that can infer causality between the exposure and outcome by using
single-nucleotide polymorphisms (SNPs) as an instrumental
variable (IV) (Burgess et al., 2013). This method is not prone to
reverse causation since disease states usually do not change the
germline DNA sequences. Moreover, MR can limit confounding
since genotypes are randomly assorted at meiosis (Manousaki et al.,
2021). Though well-designed randomized controlled trials (RCTs)
are usually the best approach to estimating a causal relationship
between a risk factor and a disease, their implementation is limited

by the small sample size, limited external validity, short duration of
an intervention, and ethical concerns that limit the implementation
of RCTs. Thus, MR has specific advantages that can complement
another study (Li et al., 2017). This study took advantage of MR and
investigated the causal relationship between RA and ILD using
genetic determinants estimated from GWAS summary statistics
of different populations.

2 Materials and methods

2.1 Study design

MR analysis was performed to investigate the causal
relationship between RA and ILD. Relevant SNPs were
selected as IVs by executing quality control steps from the
GWAS summary results, which need to meet three basic
assumptions (Figure 1): (i) SNPs were strongly associated with
exposure (correlation hypothesis); (ii) SNPs were not associated
with confounding factors, meaning that the results were not
affected by confounding factors (independence assumption);
and (iii) SNPs were not associated with the outcome or did
not directly affect the outcome (exclusivity hypothesis). Based on
the previous research, we have listed the STROBE-MR checklist
of MR studies to ensure the integrity of our processes, as shown in
Supplementary Table S1 (Skrivankova et al., 2021a; Skrivankova
et al., 2021b).

2.2 Data sources

2.2.1 Genetic datasets associated with
rheumatoid arthritis

The RA-related outcome dataset of Europeans, derived from a
summary of the GWAS previously communicated by Okada et al.,
included 14,361 cases and 43,923 healthy controls of European
descent, totaling 8,747,963 RA-related SNPs (Okada et al., 2014).
Genetic datasets associated with RA in the East Asian population are
derived from an OpenGWAS project previously compiled by Sakaue
Scott et al. (2013), containing 1,046 cases and 176,974 healthy
controls, and the number of SNPs is 12,454,608. All RA cases
met the 1987 RA diagnostic criteria of the American College of
Rheumatology (Arnett et al., 1988) or were diagnosed with RA by a
specialist rheumatologist.

2.2.2 Genetic datasets for interstitial lung disease
Genetic prediction of the ILD-related gene GWAS data was

obtained from the available meta-analysis of published GWASs.
The European dataset contains 1,969 cases and 196,986 healthy
controls, covering 16,380,417 genotyped SNPs. Genetic datasets
for ILD contain 806 cases and 211,647 healthy controls from
Ishigaki K et al., covering 8,885,805 SNPs from East Asia (Sakaue
et al., 2021). All cases were diagnosed according to the American
Thoracic Society and the European Respiratory Society
guidelines.

Since this MR study was conducted using publicly available
GWAS summary data, ethical approval and informed consent given
all subjects could be found in the original publications.
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2.3 Selection of instrumental variables

Strict filtering was performed to control SNP quality before MR
analysis. First, we extracted SNPs associated with the genome-wide
significance threshold of exposure (p < 1 × 10−5). Second, for the
condition of independence from exposure, we selected SNPs with
independent inheritance (r2 < 0.001) and no linkage disequilibrium
(LD, clump distance >10,000 kb) in the summary statistics. Then, to
avoid possible statistical bias from the original GWAS, we excluded
IVs with minor allele frequency (MAF) less than the threshold of
0.01. Finally, the strongly correlated IVs were obtained by the F
statistic >10 (Burgess et al., 2011; Pierce and Burgess, 2013).

Furthermore, it is confirmed that BMI, smoking, and alcohol
consumption were implemented with a varying degree of effects on
RA and ILD in previous studies (Baka et al., 2009; Maxwell et al.,
2010; Chang et al., 2014; George and Baker, 2016; Poudel et al.,
2020). Based on this, the PhenoScanner (http://phenoscanner.
medschl.cam.ac.uk) search was applied to remove these variants,
which are associated with confounding factors. At the same time, the
SNPs selected from the exposure and outcome datasets were
harmonized, removing the palindromic SNPs using intermediate
allele frequencies. Finally, the remaining IVs were used as tools for
further MR analysis.

2.4 Mendelian randomization analyses

The preliminary analysis of this study used inverse variance
weighting (IVW), weighted median (WM), and MR-Egger
regression to estimate the causal relationship between the
exposure and outcome. The IVW approach calculated the Wald
ratio for each SNP on the outcome and obtained a pooled causal
estimate, and this method allows for overdispersion. WM estimates
were used to complement the IVW approach for reliable estimation

and accounted for at least 50% of the analysis weight provided by the
validation IV. The MR-Egger method was used to test for bias in the
results of analyses that result from influencing the results through
pathways other than exposure. Of these methods, IVWwas the most
crucial method for estimating causality between the exposure and
outcome, which provides an accurate estimate of the causal effect of
the outcome risk. These MR methods are detailed in published
studies (Didelez and Sheehan, 2007; Davey Smith and
Hemani, 2014).

2.5 Sensitivity analysis

To assess the robustness of these results and prevent potential
pleiotropy and heterogeneity, a series of sensitivity analyses were
conducted. Cochran’s Q test was applied to quantify the
heterogeneity between SNPs and was visualized with funnel plots.
The intercept term of MR-Egger regression and the MR-PRESSO
global test was used to assess whether horizontal pleiotropy affected
the results of MR analysis (Egger et al., 1997). In addition, leave-one-
out analysis was performed to determine whether any single SNP
drove the causal estimates. Results were examined as statistically
significant at p < 0.05. All analyses mentioned above were
implemented in R V4.1.0 using the “TwoSampleMR” package
(Hemani et al., 2018).

3 Results

3.1 Causal effects of RA on ILD

We incorporated 104 SNPs with a p-value less than 1 × 10−5 as
IV SNPs. All SNPs were consistent with the F statistic >10. Twelve
SNPs related to RA were removed for being palindromic with

FIGURE 1
Study design of the bidirectional Mendelian randomization between RA and ILD. The forward MR analysis evaluating the causal effects of RA on ILD
was indicated with yellow solid line arrows. In contrast, the reverse MR analysis assessing the causal impact of ILD on RAwas indicated with blue solid line
arrows. Dashed lines represented irrelevant links, while the cross showed an impassable association between SNPs and confounders or the outcome.
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TABLE 1 Causal effects of RA on ILD in European population.

Exposure Outcome SNP MR method OR 95% CI p-val Q_p-val

RA ILD 84 IVW 1.096 (1.023, 1.174) 0.009* 0.029*

MR-Egger 1.079 (0.947, 1.228) 0.258 0.025*

WM 1.097 (0.979, 1.229) 0.100 -

ILD RA 8 IVW 1.128 (1.013, 1.256) 0.029* 0.170

MR-Egger 0.661 (0.445, 0.982) 0.086 0.812

WM 1.144 (1.012, 1.293) 0.040* -

Odds ratio (OR) values, confidence interval (CI), p-val and Q_p-val of MR results were obtained by IVW, MR-Egger, and weighted median in the group of European population. *p < 0.05.

FIGURE 2
Forest plots of MR results by IVW, MR-Egger, and weighted median in the group of European population.

FIGURE 3
Scatter plots, funnel plots, and leave-one-out analysis were used for forward MR analysis in the group of European population. (A) Scatter plots for
two-sample Mendelian randomization analysis of the effect of RA on ILD using the IVW, in conjunction with MR-Egger andWMmethods. (B) Funnel plots
of the SNPs enrolled in the causality estimates of RA effects on genetically predicted ILD. The funnel plot displayed a symmetric pattern of effect size
variation around the point estimate. IVW and MR-Egger regression slopes were used to explore asymmetry as a sign of pleiotropy. (C) Leave-one-
out analysis was performed to evaluate whether every single IV drove the causal association of RA on ILD disproportionately.
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intermediate allele frequencies, and the potential confounding
factors found in the PhenoScanner including rs10774624
(associated with smoking), rs34695944 (associated with alcohol
consumption), and rs4272, rs34431565, rs773125, rs10857135,
rs2736337, and rs9275183 (associated with body mass index,
BMI) were removed. Then, the remaining 84 SNPs were used as
IVs for subsequent MR analysis. Detailed information of IVs for RA
is presented in Supplementary Table S2.

When setting ILD as the outcome, RA was causally associated
with ILD, as shown in Table 1 and Figures 2, 3A. According to the
IVW analysis, the presence of RA may increase 9.6% risk of ILD
(OR: 1.096, 95% CI: 1.023–1.174, p = 0.009). Sensitivity analysis
shows that there was heterogeneity among the IVs (Q = 109.17, PQ =
0.029, Figure 3B), while the MR-Egger intercept analysis suggested
no evidence of horizontal pleiotropy (p = 0.772). Furthermore,
leave-one-out plots suggested that the causal estimates were
unlikely to be influenced by certain SNPs. This suggested that the
findings were stable and reliable (Figure 3C).

3.2 Causal effects of ILD on RA

There were 25 SNPs that were significantly associated with ILD
(p < 1 × 10−5) and were incorporated as IVs. Similarly, the F-statistic
values of these IVs were all more than 10. The palindromic alleles
were then removed and synergized with RA-associated SNPs, and
the remaining eight SNPs were used as IVs for subsequent MR
analysis. Detailed information of IVs for ILD is presented in
Supplementary Table S3.

When setting RA as the outcome, ILD was also causally
associated with RA (Table 1; Figures 2, 4A). The existence of
ILD may increase the risk of RA by 12.8% (OR: 1.128, 95% CI:
1.013–1.256, PQ = 0.029). Results of the weighted median method
also support our findings (OR: 1.144, 95% CI: 1.012–1.293, p = 0.04).
In the analysis of sensitivity, Cochran’s Q test (Q = 2.97, p = 0.812,
Figure 4B) indicated no heterogeneity in the causal effect between
ILD and RA. No significant directional horizontal pleiotropy

between RA and ILD was presented in the MR-Egger regression
analysis. In the leave-one-out sensitivity analysis, no single SNP
significantly biased the causal effect of ILD on RA (Figure 4C).

3.3 Replication analyses in East Asian
population

3.3.1 Causal effects of RA on ILD
There were 46 SNPs that were significantly associated with ILD

without linkage disequilibrium (r2 < 0.001, p < 1 × 10−5). The
confounding factors such as rs10821944, rs111335405, rs2069235,
rs2647192, rs4728142, rs7732397, and rs2618476 (all associated with
the body mass index) found in the PhenoScanner were removed.
Then, the palindromic alleles were removed and synergized with
ILD-associated SNPs. The remaining 36 SNPs were used as IVs for
subsequent MR analysis. Details of IVs are presented in
Supplementary Table S4.

The MR estimates of different methods are presented in Table 2
and Figures 5, 6A. Notably, the results showed a strong causal
relationship between RA and ILD (OR: 1.33, 95% CI: 1.18–1.49, p <
0.001). The result of weighted median methods further endorsed the
causal effect (OR: 1.27, 95% CI: 1.11–1.46, p < 0.001). As for
sensitivity analysis, we found that there was heterogeneity among
the IVs (Q = 49.27, PQ = 0.043, Figure 6B). Furthermore, the MR-
Egger intercept analysis shows that there was no evidence of
horizontal pleiotropy (p = 0.144). A leave-one-out analysis was
conducted to avoid horizontal pleiotropy caused by a single
SNP (Figure 6C).

3.3.2 Causal effects of ILD on RA
There were 14 SNPs that were significantly associated with ILD

without linkage disequilibrium (r2 < 0.001, p < 1 × 10−5). The
confounder rs3129960 (associated with the body mass index) found
in the PhenoScanner was removed. Then, the remaining 12 SNPs
were used as IVs for subsequent MR analysis. Details of IVs are
presented in Supplementary Table S5. Horizontal pleiotropy was

FIGURE 4
Scatter plots, funnel plots, and leave-one-out analysis were conducted for the reverse MR analysis in the group of European population. (A) Scatter
plots for IVW, MR-Egger, andWM analysis methods highlighted the effect of ILD on RA. (B) Funnel plots of ILD genetic liability effects on RA. IVW andMR-
Egger regression slopes were used to explore asymmetry as a sign of pleiotropy, with the vertical line in the middle indicating the sum of different effect
sizes. (C) Leave-one-out analysis was used to determine whether any single SNP drove the causal association of ILD on RA, which repeated the IVW
analysis by discarding each exposure-related SNP.
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TABLE 2 Causal effects of RA on ILD in East Asian population.

Exposure Outcome SNP MR method OR 95% CI p-val Q_p-val

RA ILD 36 IVW 1.328 (1.182, 1.491) <0.001* 0.029*

MR-Egger 1.162 (0.943, 1.432) 0.167 0.044*

WM 1.272 (1.107, 1.462) 0.001* -

ILD RA 12 IVW 1.040 (0.988, 1.096) 0.134 0.457

MR-Egger 1.231 (1.061, 1.429) 0.021* 0.873

WM 1.017 (0.945, 1.095) 0.646 -

Odds ratio (OR) values, confidence interval (CI), p-val and Q_p-val of MR results were obtained by IVW, MR-Egger, and weighted median in the group of East Asian population. *p < 0.05.

FIGURE 5
Forest plots of MR results by IVW, MR-Egger, and weighted median in the group of East Asian population.

FIGURE 6
Scatter plots, funnel plots, and leave-one-out analysis were conducted for forward MR analysis in the group of East Asian population. (A) Scatter
plots for two-sample Mendelian randomization analysis of the effect of RA on ILD using the IVW, in conjunction with MR-Egger and WM methods. (B)
Funnel plot of the SNPs enrolled in the causality estimates of RA effects on genetically predicted ILD. The funnel plot displayed a symmetric pattern of
effect size variation around the point estimate. IVW and MR-Egger regression slopes were used to explore asymmetry as a sign of pleiotropy. (C)
Leave-one-out analysis was conducted to evaluate whether every single IV drove the causal association of RA on ILD disproportionately.
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unlikely to skew the causality of ILD with RA, according to the
results of the MR-PRESSO global test (p = 0.542). However, results
of IVW showed that an increase in the risk of having ILD was not
statistically related to an increased risk of having RA (RA: OR =
1.040, 95% CI: 0.997–1.10, p = 0.13). The detailed information is
presented in Table 2 and Figures 5, 7A). Furthermore, no significant
evidence of horizontal pleiotropy was observed for IVs (Q = 5.27,
PQ = 0.873) (Figure 7B), and leave-one-out plots suggested that the
causal estimates were unlikely to be influenced by a single
SNP (Figure 7C).

4 Discussion

Our study suggested that the inflammatory process of RA had a
positive causal effect on the presence of ILD and vice versa in the
European population. However, in the Asian population, we only
found that the presence of RA caused an increased risk of ILD. This
is the first study to explore the bidirectional causal relationship
between RA and ILD through a two-sample MR approach based on
GWAS summary statistics, providing evidence of a genetic link
between RA and ILD. Our findings indicated that these two
common autoimmune diseases may share similar underlying
pathophysiological mechanisms, but racial differences cannot
be ignored.

Many studies have found that RA increases the risk of
developing ILD. For example, in a longitudinal study, 51% of
patients were diagnosed with RA–ILD more than 5 years after
diagnosing RA (Mohning et al., 2021). In an incident cohort of
RA patients in the UK, 4% developed clinically significant RA–ILD
on high-resolution CT (HR-CT) imaging during 15 years of follow-
up (Duarte et al., 2019). In a smaller study of RA–ILD patients in
China, ILD was diagnosed after RA in 69% of cases, and the median
time between RA and RA–ILD diagnosis was 60 months (Chen et al.,
2021). However, not every study has reached the same conclusion
about the association between RA and ILD. In contrast, some studies

have concluded that the lungs may be a mucosal (and potentially an
initiating) site for generating RA-related autoimmunity (Gizinski
et al., 2009; Demoruelle et al., 2012). A study predominantly about
middle-aged women of European ancestry showed that pulmonary
involvement was present early in the disease course in RA (Wilsher
et al., 2012). Moreover, in a survey conducted on 10%–20% of RA
cases, respiratory symptoms may precede the onset of articular
symptoms (Kadura and Raghu, 2021). Similarly, studies of
RA–ILD patients from Denmark, the United States, and China
showed that 10%–17% of patients were diagnosed with ILD
before the articular diagnosis of RA (Hyldgaard et al., 2017). Due
to their mechanistic complexity and proximity, it can be seen that
there is a debate about the cause and the effect of the relationship
between RA and ILD. Our bi-directional MR study synthesized the
two-sided stance, further complementing previous studies that the
two conditions may share similar underlying pathophysiological
mechanisms.

There are several possible reasons why RA can increase the risk
of developing ILD. Ayodeji Adegunsoye et al. generalized that under
the regulation of some harmful environmental factors such as
smoking, diet, viral infection, and ambient air pollutants,
individuals with genetic variation are more susceptible to
pulmonary fibrosis (PF) through epigenetic modifications such as
DNA methylation, which is referred to as the gene–environment
interaction. Among them, the variations of the MUC5B promoter
are one of the most common genetic risk factors of early and
established PF (Adegunsoye et al., 2024). Similarly, a seminal
study by Juge et al. in France showed that the MUC5B promoter
variant is associated with an increased risk of developing ILD in
patients with RA (Juge et al., 2018). Building on this finding, a
Finnish study, by combining large-scale genotype data with clinical
data from a national healthcare registry, found that among RA
patients, the lifetime risk of developing ILD was 16.8% for MUC5B
carriers and 6.1% forMUC5B non-carriers (Palomaki et al., 2021). In
addition, the role of MUC5B SNPs in the developing RA–ILD may
be associated with age factor. It significantly increased the risk of

FIGURE 7
Scatter plots, funnel plots, and leave-one-out analysis were conducted for the reverse MR analysis in the group of East Asian population. (A) Scatter
plots for IVW, MR-Egger, and WM analysis methods highlighted the effect of ILD on RA. (B) Funnel plot of ILD genetic liability effects on RA. IVW and MR-
Egger regression slopes were used to explore asymmetry as a sign of pleiotropy, with the vertical line in the middle indicating the sum of different effect
sizes. (C) Leave-one-out analysis was used to determine whether any single SNP drove the causal association of ILD on RA, which repeated the IVW
analysis by discarding each exposure-related SNP.
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RA–ILD early in the RA course (before or within 2 years of RA
diagnosis) and after 55 years of age (McDermott et al., 2022). In
particular, in a large real-life European multicenter idiopathic
pulmonary fibrosis (IPF) study, van der Vis JJ et al. showed that
MUC5B minor allele carriers were significantly older at diagnosis
(p = 0.001), and among patients ≥56 years of age at diagnosis, the 3-
year cumulative incidence of death was lower amongMUC5Bminor
allele carriers (39%) than among non-carriers (57%) (van der Vis
et al., 2023).

In addition, several studies suggested that ILD exacerbation was
due to the inflammatory process of RA. For example, high titers of
rheumatoid factor [RF] and anti-cyclic citrullinated peptide [CCP]
antibodies are specifically associated with the development of ILD in
patients with RA (Inui et al., 2008; Giles et al., 2014; Kelly et al., 2014;
Akiyama and Kaneko, 2022), in which theHLA-DRB1*15 allele may
confer a specific susceptibility to the production of anti-citrullinated
fibrinogen antibodies (Gyetvai et al., 2010). More specifically, the
combination of matrix metalloproteinase-7 (MMP-7), pulmonary
and activation-regulated chemokine, and surfactant protein D
enhances the above association (Doyle et al., 2015). Among
them, MMP-7 was identified as a potential biomarker for
RA–ILD and was significantly elevated in the serum of RA
patients with clinical and subclinical ILD (Chen et al., 2015). A
prospective cohort study evaluated the association of plasma matrix
metalloproteinases (MMPs) with the incidence of interstitial lung
disease in patients with rheumatoid arthritis in a large multicenter
RA cohort, further supporting the potential pathogenic role of
MMP-7 and MMP-9 for RA–ILD (Luedders et al., 2024). The
association of RA-induced pulmonary fibrosis also involves MHC
gene loci on chromosome 6, such as HLA-B54, HLA-DQ1B*0601,
HLA-B40, and sites encoding a-1 protease inhibitors, which are
associated with increased ILD risk in patients with RA (Spagnolo
et al., 2014).

Although the exact mechanism of how ILD increases the risk
of RA is unknown, several possible explanations exist for the
results of reverse MR analysis. According to the “mucosal origins
hypothesis,” RA-related autoimmunity disorder is initiated at a
mucosal site, including the lungs, and then transitions to involve
the synovial joints (Holers et al., 2018; Lucchino et al., 2019). In a
genetically susceptible individual, injury to the alveoli, airway
epithelium, and mucosa caused by smoking, microbial dysbiosis,
or other inhalant exposures can lead to citrullination of protein,
production of neutrophil extracellular traps, generation of local
pulmonary mucosal RA-associated autoantibodies, and
establishing of systemic autoimmunity ultimately (Catrina
et al., 2014; Valesini et al., 2015; Scher et al., 2016;
Friedlander et al., 2020; Prisco et al., 2020). Specifically, in
genetically susceptible individuals, the formation rate of the
citrullinated protein is high in lung tissues, and citrullination
can trigger an immune response leading to the production of
ACPA, resulting in an increased risk of RA in patients (Bongartz
et al., 2010; Paulin et al., 2015). Another possible explanation is
that the elevated cytokines and chemokines caused by the chronic
inflammatory state in lung mucosal sites also affect lymphocyte
subsets such as T cells, B cells, and macrophages, which
recirculate and populate other sites and, in the process,
influence the immune status in other tissues participating in
the autoimmune response (Rangel-Moreno et al., 2006; Holers

et al., 2018; Lucchino et al., 2019). However, findings about ILD
increasing the risk of RA were not so consistent in patients with
different races in our study. McFarlane et al. mentioned in their
study that conflicting reports exist regarding the racial
distribution of RA–ILD (McFarlane et al., 2019). Furthermore,
disease activity of RA remained significantly different across the
Asian groups versus European groups in the research of
Greenberg et al. (2013). These factors may have a substantial
effect on the results, so further studies are needed to identify the
genetic differences.

This study has several strengths. First, it is the first
bidirectional two-sample MR analysis to reveal a causal
relationship between RA and ILD. Second, the screening of
instrumental variables set stringent conditions and therefore
had high statistical power, allowing for a more robust analysis
of possible causal relationships. Finally, in contrast to
randomized controlled trials, MR uses an index of genetic
variation to measure the causality of disease-related risk
factors, overcoming the bias caused by confounding or reverse
causality inherent in observational studies.

At the same time, this study has some limitations. First, the study
population included in the MR analysis was of European and East
Asian origin, and it remains to be verified whether the results
represent the whole population. In addition, the minority
differences associated with race cannot be ignored in the two
diseases, which is worthy of further analysis. Second, though we
have taken some steps to exclude heterogeneity and horizontal
pleiotropy, the influence on the results is undetermined, and
further analysis and studies are still warranted to understand the
underlying mechanisms. Finally, it was impossible to determine
whether there were overlapping participants in the GWAS data for
the exposures and outcomes involved in this study. Fortunately,
using strong instruments in this study (e.g., an F statistic much
greater than 10) should minimize the potential bias of
sample overlap.

In conclusion, our study suggested a causal relationship between
RA and ILD, but there are minority racial differences. Based on our
findings, it is reasonable to consider promoting a routine screening
of ILD in RA patients. Proper management of inflammation of RA is
essential for downregulating the risk of ILD. This result may
facilitate future insights into the biological relationship between
RA and ILD.
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