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DNA methylation indicates the individual’s aging, so-called Epigenetic clocks,
which will improve the research and diagnosis of aging diseases by investigating
the correlation between methylation loci and human aging. Although this
discovery has inspired many researchers to develop traditional computational
methods to quantify the correlation and predict the chronological age, the
performance bottleneck delayed access to the practical application. Since
artificial intelligence technology brought great opportunities in research, we
proposed a perceptron model integrating a channel attention mechanism
named PerSEClock. The model was trained on 24,516 CpG loci that can
utilize the samples from all types of methylation identification platforms and
tested on 15 independent datasets against seven methylation-based age
prediction methods. PerSEClock demonstrated the ability to assign varying
weights to different CpG loci. This feature allows the model to enhance the
weight of age-related loci while reducing the weight of irrelevant loci. The
method is free to use for academics at www.dnamclock.com/#/original.
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1 Introduction

Methylation occurs mainly at the 5th carbon atom of cytosine in CpG dinucleotides,
and changes in methylation are directly correlated with changes in gene expression (Sun
et al., 2011). Recently, there has been an increasing interest in the relationship between aging
andmethylation (Tang et al., 2018; Luo et al., 2023; Sinha et al., 2023). Many literatures have
proposed that age increase is displayed by DNA methylation changes (Fraga et al., 2007;
Christensen et al., 2009; Horvath et al., 2012). Since DNAmethylation levels at specific sites
could be variable over time, the DNA methylation-based epigenetic clocks could be used to
effectively quantify biological aging, which can be widely used in anti-aging applications.

Genome-wide DNA methylation is widely measured using microarray-based
technology, including Illumina HumanMethylation27 (27 K), HumanMethylation450
(450 K) and HumanMethylationEPIC (850 K) (Moran et al., 2016). By calculating the
beta value of DNA methylation for each specific cytosine locus (Levy et al., 2020), the
methylation level of each CpG can be quantified. Most of the emerging age prediction
methods have been developed based on the transformed data from these techniques.
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Machine learning methods have been relatively well
developed in the field (Wang et al., 2023a; Lv et al., 2023). In
2013, Horvath (2013) developed a 353-locus age prediction
model using data from 51 different tissues, and the difference
between their model predicted age and chronological age was
around 3.6 years. Although the error rate was high in some
tissues, such as the breast, it is still considered the most
accurate pan-tissue epigenetic clock by far (Chen et al., 2019;
Fahy et al., 2019; Fitzgerald et al., 2021). Hannum et al. (2013)
developed an age prediction model using 71 CpG loci with blood
data. It firstly revealed that factors such as sex and weight affect
the prediction of methylation age. Most published methods used
linear regression (Zou and Hastie, 2005) for age prediction (Lin
et al., 2016; Shireby et al., 2020; Zhang et al., 2019). They collected
loci with a high impact on predicting age to form an epigenetic
clock for methylation age prediction. The linear regression
method is computationally simple and can predict age using
fewer loci, but the method ignores the effect of the remaining loci
on the predicted age. The linear regression method also has some
limitations in predicting age at methylation, which can lead to
high prediction errors.

During the past few years, deep learning was introduced to
address this challenge. Compared to machine learning methods,
deep learning technology is emerging as a promising approach to
improving this area since it is more inclusive for multi-feature tasks
to achieve higher accuracy (Wang et al., 2023b; Ispano et al., 2023; Qi
and Zou, 2023; Sreeraman et al., 2023). Thong et al. (2021)
demonstrated an artificial neural network model which model
using three genes that outperformed linear regression models.
Levy et al. (2020) used the MethylNet deep learning model to
predict the age of DNA methylation and demonstrated its
significant advantage over machine learning models. Li et al.
(2021) used correlated pre-filtered neural networks (CPFNN) for
age prediction and found that appropriately weighting features
highly correlated with prediction results is a critical factor in
improving prediction accuracy. de Lima Camillo et al. (2022)
propose a model AltumAge using deep neural networks by
referring to DeepMAge, a model trained on blood samples by
Galkin et al. (2021). They reduce the prediction error to
2.153 and the correlation between relevant CpG loci in issues
discussed in some detail. However, in the experiments, it was
found that the deep learning models that have emerged so far
have poor generalization ability in independent datasets and poor
prediction accuracy for independent samples. So, there is still room
for further optimization in the prediction of methylation age using
deep learning models.

In this study, we propose a perceptron prediction model based
on the channel attention mechanism, which is a nonlinear
regression algorithm. This paper uses the 24,516 CpG loci
common to all 3 Illumina platforms for age prediction to ensure
that all CpG loci are able to participate in the task. The model uses a
channel attention module to assign different weights to individual
loci so that the model focuses on task-relevant CPG features and
reduces the weights of irrelevant CpG features to provide more valid
information for the age prediction task. Compared with the simple
perceptronmodel, the inclusion of the channel attentionmechanism
in our method leads to a greater improvement in the generalization
ability and prediction accuracy of the model.

2 Materials and methods

2.1 Datasets

We collected 50 datasets from GEO (Barrett et al., 2012) with a
total of 13,658 health samples respectively from Infinium 27 K,
450 K, and 850 K platforms (Zhang et al., 2019; Qi and Zou, 2023;
Sreeraman et al., 2023), of which 35 datasets were used for model
construction and the remaining 15 datasets were used for
independent testing. The raw data were separately saved to the
clinical data and beta value matrix using the R package GEOquery
(Davis and Meltzer, 2007), Then filtered to remove samples in the
dataset with more than 50% of the beta value missing. Finally, a
method based on simple linear regression (methyLImp) (Di Lena
et al., 2019) was used to fill in some of the missing values in the beta
value matrix. Figure 1 shows an overview of the 35 data sets by
organization.

Different tissues may require different markers to achieve a high
level of accuracy in prediction accuracy. Woźniak et al. (2021)
developed VISAGE enhanced tool and statistical models based on
blood, oral cells and bone. They used three different combinations of
loci to construct models that provide accurate DNAmethylation age
estimates for each tissue separately. The number of CpG loci in 27 K,
450 K, and 850 K data is usually 27,578, 485,577, and 868,564,
respectively. Since many datasets are missing CpG loci, this
paper takes the 24,516 loci common to the three platforms for
model training. The beta value on each CpG locus indicates the
degree of DNA methylation. A beta value of 1 indicates that a CpG
locus is fully methylated on the allele, while a beta value of
0 indicates that the CpG locus is entirely unmethylated.

2.2 Model construction

Figure 2 shows the neuro network structure of the model in this
paper, which mainly consists of a channel attention module and a
perceptron module. The channel attention module assigns different
weights to the data according to the importance of the CPG loci. In

FIGURE 1
Organizational chart of the data sample. The figure divides the
dataset into nine parts according to organization, with blood data and
bucca data accounting for a larger share. Tissue data that account for
less than one percent are summarized in the “Others” set, for a
total of 9%. The remaining 6 tissue data are sorted in order of
their share.
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contrast, the perceptron module uses a 4-layer network for
continuous fitting to accomplish the purpose of age prediction.

The first reshape operation in the attention module is to
transform a column of data into a block structure, and
1,362 denotes the number of channels, each containing 3 ×
6 beta values. The one-dimensional data with 24,516 components
is transformed into three-dimensional data with the structure 3 × 6 ×
1,362 by placing the beta values in the input data in different
channels in order. Global Average Pooling denotes the
calculation of the average of 18 beta values in each channel, and
each channel is calculated to obtain one value for a total of
1,362 values. 2fc (,W) denotes two fully connected. The
1,362 data are updated according to these two fully connected
layers. The updated data are subjected to Scale operation, and the
updated 1,362 values are assigned to the first reshaped post-block
structure, explicitly using the values of each channel multiplied by
18 beta values of different channels respectively. This will result in a
feature value that is weighted by the channel attention module. The
perceptron module feeds the processed eigenvalues into a four-layer
fully connected layer for regression operations and finally outputs a
methylated age prediction.

For the DNAmethylation age prediction task, an exact age value
was required, so a regression model was used to construct the
network. Initially, the model consisted of only a perceptron
network, which was erected by 5 fully connected layers with a
simple model structure. However, it was found in the
experiments that using a simple perceptron model was not
sensitive enough to epigenetic factors (CpG loci), and the model

training was more likely to be overfitted. Since the number of feature
loci used makes network learning more difficult, attention
mechanisms are introduced in the deep learning model,
specifically, combining the perceptron model (MLP) with the
channel attention mechanism SENet. The channel attention
module makes the model pay more attention to those CpG loci
with high correlation with age, automatically adjusts the weights
according to the loss values of model training, and then assigns
the weights to the initial features, thus speeding up the
model fitting.

2.3 Model training

Firstly, the beta values of CpG loci of the training samples are
loaded into the model in batches. The input data in Figure 2 takes
one sample data as an example, and transforms (reshape) the one-
dimensional data with 24,516 components into the three-
dimensional data with the structure 3*6*1,362 (adjacent CpG loci
put into different channels). After the global average pooling
operation, 1*1*1,362 values are calculated to obtain the initial
weights of each channel. Then 1*1*1,362 are fed into the two
fully connected layers, and the weights are updated according to
the loss values of the model training. The updated 1,362 weights are
assigned to the corresponding channels of the original 3D data.
Finally, the data are transformed (reshape) into one-dimensional
data and sent to the four-layer perceptron model for regression
operations. The training is ended when the loss values of the model
training tend to be stable, and then the validation set and test set are
tested and the trained model parameters are saved.

The network model in this paper consists of an input layer,
channel attention module, 4 hidden layers and 1 output layer. Each
hidden layer consists of 32 neurons, LeakyReLU activation function
and BatchNorm1d (32) batch normalization, Dropout (0.1)
regularization, and finally the network is optimized using Adam’s
algorithm. The model training process is monitored using the loss
function of MSELoss. The decreasing trend of the validation loss is
observed at the output training loss, and the training is ended at the

FIGURE 2
Model architecture. Themodel has four components, Input, Channel Attention, MLP, and Output. The CpG loci of a sample are input and reshape as
3D data, where the number of channels is 1,362. Global Average Pooling is calculated as a value on each channel, and the data is fitted in a two-layer
network to scale with the original 3D data, the process is able to continually enhance the features that are relevant to the prediction results. Afterwards,
the 3D data is transformed into one-dimensional data to be fit into a four-layer MLP network to output the predicted age values.

TABLE 1 Metrics results from model training, validation, and testing.

All_data Train_data Val_data Test_data

R2 0.95 0.95 0.94 0.93

MAE 2.28 2.08 3.13 3.10

MSE 10.35 7.92 21.89 19.61

Med 1.65 1.57 2.11 2.04

Frontiers in Genetics frontiersin.org03

Zhao et al. 10.3389/fgene.2024.1393856

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1393856


lowest validation loss value. The final model training parameters
were adjusted as follows: learning_rate = 0.05, batch_size = 512,
num_epochs (training times) = 150.

The model updates the weights based on the loss function. By
weighting the CPG loci with different levels of importance, the
important features on different channels are strengthened and the

invalid features are weakened to enhance the feature
representation of the feature map. Using the changed feature
data for model age prediction reduces the number of model
parameters and computing pressure to a certain extent, thus
enabling the model to perform age prediction more effectively
and improve model accuracy.

FIGURE 3
Model visualisation metric results. The horizontal coordinates in the figure represent the actual age of the samples and the vertical coordinates
represent the model-predicted age. (A) represents the prediction results of all samples, and different colors represent the sample data in different
datasets. (B) represents the prediction results of the samples trained by the model. (C) represents the prediction results of the samples for model
validation. (D) represents the prediction results of the samples for model testing.

TABLE 2 Comparison of the Med of the seven methods on the independent data sets (training set containing the other methods).

Dataset Num Ours Horvath AltumAge BNN Elastic net LinAge PhenoAge CorticalPred

GSE19711 274 5.01 4.23 2.45a 4.15 5.69 14.4 15.1 6

GSE53740 193 6.84 7.61 2.51a 5.36 4.71a 6.66 12.7 19.8

GSE42861 335 3.83 3.73 4.03a 13 9.41 3.63a 5.59 4.27

GSE43414 141 4.8 16.14 18.6 10 16.5 35.3 68.7 3.92a

GSE59685 141 4.48 12.33 20.71 9.88 16.1 31.3 69.1 3.12a

GSE80970 138 4.26 13.67 17.00 10.3 18.6 33.2 70.9 2.16a

GSE38873 51 5.72 4a 1.83a 11.8 16.4 20 56.6 23

aIndicates the presence of this dataset in the training set of the method.

The bolded font is the best predicted result in addition to the set training set results.
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TABLE 3 Comparing the Med of the 7 methods in the independent dataset.

Dataset Num Ours Horvath AltumAge BNN Elastic net LinAge PhenoAge CorticalPred

GSE64495 106 1.73 2.79 1.73 10.0 15.6 6.01 7.54 4.65

GSE50759 48 2.18 3.85 13.38 9.81 38.9 25 11.9 35.9

GSE111223 131 2.44 10.05 7.56 6.16 5.29 19.9 7.91 11.2

GSE61431 46 6.45 11.24 11.18 8.92 14.7 30.7 58.3 6.03

GSE80261 104 1.63 3.01 3.81 12.3 38.4 24 17.1 32.1

GSE74193 450 5.85 4.19 5.80 13.7 29.6 13.2 45.5 11.3

GSE112987 64 1.86 3.13 11.53 10.2 33.3 8.76 12.4 8.55

GSE152026 928 3.52 6.24 10.04 a 30.6 3.96 5.37 33.4

aIndicates that the method cannot be measured due to the lack of CpG sites.

Bolded font is the best performing result among the eight methods.

FIGURE 4
Prediction errors of different methods in eight tissues. Where (A) represents our method (B) represents the AltumAge method (C) represents the
eight different organizations (D) represents the Horvath method, and (E) represents the BNN method. There are eight different colored boxes in each
figure representing data fromdifferent tissues. We calculated themean error between the predicted age and the actual age for the different organizations.
The closer the mean error is to the 0-axis, the better the prediction; the further it is from the 0-axis, the worse the prediction.
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2.4 Experimental platform

Our model is built based on Python 3.7.11. We use Pytorch and
the Sklearn library to build the network for data preprocessing.

The AltumAge method is based on Python 3.8, and the network
is built using the TensorFlow framework for testing. Several other
ways apply R language to reproduce the code. Among them, the
Horvath method uses data normalization operation when predicting
the data, the code prediction time is longer and the effect is not much
different from that without normalization operation, so the data is
not normalized in the comparison experiment.

3 Results and discussions

3.1 Data sample arrangements

We here preprocess the data before loading it into the model.
First, the order of the read-in data is disordered, and then the
disordered data are divided into training set, validation set, and test
set with the number of data samples of 8,577, 953, and 1,059,
respectively. Finally, the data are processed into tensor format and
put into the model for training. Since the beta value (0–1) in the beta
value matrix represents its degree of methylation, which has a special
meaning in DNA methylation age prediction, the data in this paper
were not normalized.

3.2 Evaluation indicators

In order to evaluate the accuracy of the model in predicting age,
four evaluation metrics, correlation coefficient (R-squared), mean
absolute error (MAE), mean squared error (MSE), and median
absolute error (Med) were used. The definition of R-squared is
shown in Eq. 1:

R2 � 1 − SSE/SST (1)

Where SSE is the error sum of squares and SST is the total sum
of squares.

The MAE and MSE are defined as shown in Eqs 2, 3:

MAE � 1
m
∑
m

i�1
preAgei − chrAgei( ) (2)

MSE � 1
m
∑
m

i�1
preAgei − chrAgei( )2 (3)

Where m denotes the number of predicted samples, preAgei
denotes the predicted age of a single sample, and chrAgei denotes the
actual age of a single sample. The definition ofMed is shown in Eq. 4:

Med � median preAge − chrAge
∣∣∣∣

∣∣∣∣( ) (4)

Where preAge indicates the predicted age of all test data, chrAge
indicates the actual age of all test data, and median function
indicates taking the median of a set of numbers.

The evaluation metrics of the model in this paper on the training
set, validation set and test set are shown in Table 1, where the
R-squared is only used to show the correlation between the actual

age and the predicted age, and the other three metrics are used to
evaluate the accuracy of the model in predicting the age of DNAm.
All_data indicates all the data used for development, and Train_
data, Val_data, Test_data represent the data for training, validation
and testing, respectively. Combining the evaluation metrics
commonly used in other literature, Med is finally used as the
evaluation metric to measure the accuracy in this paper.

3.3 Training and testing performance

In order to verify the prediction accuracy of the model, we first
tested the data used for model training. The test results are shown in
Figure 3A shows the prediction results of all samples including the
training set, validation set and test set (age correlation = 0.95,
median absolute error = 1.65). The horizontal axis is the actual
age of the samples, and the vertical axis represents the predicted age
of the model. Samples of different data sets are distinguished
according to different colors, which shows that the model of this
paper performs well on most of the data sets, and only the prediction
results of some samples have significant errors. The Figures 3B–D
plots represent the prediction results of the training, validation, and
testing data in this model, respectively. The actual age and the
predicted age all show a high age correlation in the plots, the Med in
the training set is 1.57, and theMed in the test set is 2.04. Overall, the
model’s prediction accuracy in this paper is high, and the prediction
effect is relatively stable in each data set.

3.4 Performance comparison with
peer methods

To verify the prediction accuracy and generalization ability of
the model, 15 separate datasets with a total of 3,069 healthy samples
are used in this paper, and themodel of this paper is tested separately
with other methods on these datasets. The datasets were divided into
two batches for separate comparisons. Seven datasets in Table 2
contain the training sets of certain other methods, which are
indicated by * in the table; Eight datasets in Table 3 are
independent test sets of these methods and are not in the
training sets of several methods.

Horvath method, LinAge method, and PhenoAge method
(Levine et al., 2018) use traditional elastic net method for age
prediction by combination of different CpG sites. Zhang et al.
(2019) used elastic net model to screen 514 CpG sites for
prediction in order to improve prediction accuracy. The Cortical
Pred method is Shireby et al. (2020) developed a methylation age
prediction clock for brain tissue, which performed well in other
tissues, so it was compared with this paper’s model. AltumAge and
BNN methods are methods that use neural network prediction. In
this paper, comparison experiments are conducted with the above
seven methods. Since the experimental code is not given in
DeepMAge by Galkin et al. (2021) and the 71CpG clock of
Hannum et al. (2013) is only developed for the 450 K blood
dataset, it cannot be tested for datasets with missing loci.
Therefore, it was not compared with these two methods.

The comparison results with the seven different prediction
methods are shown in Tables 2, 3. Column one in the table is
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the name of the dataset, columns two and three indicate the number
of samples and sample organization of the dataset, and the last
eight columns are the Med values of each method on the test
dataset. The bolded font in Table 2 is the best predicted result in
addition to the set training set results, and the bolded font in
Table 3 is the best performing result among the eight methods.
From the tested Med results, the model in this paper outperformed
other models in 10 datasets, and although it performed slightly
worse in three datasets, GSE19711, GSE42861, and GSE61431, it
was not much different from the best model in terms of Med
results. Due to the small number of samples of brain tissues in the
training dataset of the model in this paper, the Med tested in the
dataset of brain tissues is slightly larger. To ensure that the test data
has a small effect on the test results, an 850 K data was used for
testing, and the test results are shown in the row of GSE152026 in
Table 3. The BNN method cannot be predicted due to the missing
CpG sites, so the # sign is used. Overall, the model in this paper has
a low Med and a relatively stable prediction ability tested in each
dataset, while confirming this in the 850 K dataset (Hannon
et al., 2021).

3.5 Differences among multiple
organizations

To test the prediction accuracy of the model in different
tissues, the model was compared with four methods, and
Figure 4 shows the prediction error of each model in eight
tissues respectively. The horizontal coordinates in the figure
represent eight different tissues, and the vertical coordinates
indicate the error between the predicted age and the actual age,
which is calculated by subtracting the actual age from the predicted
age. The comparison results of our model in different tissues
showed that the prediction error in entorhinal cortex and
dorsolateral prefrontal cortex was slightly larger, but the
average error in other tissues was around 0 and the error span
was relatively small. Combining the error results of each method,
we found that whole blood samples performed relatively stablely in
each technique, while entorhinal cortex and dorsolateral prefrontal
cortex had more significant errors in each method. This also
confirms the significant differences in the epigenomes of
different tissue types as suggested by previous researchers
(Illingworth et al., 2008; Li et al., 2010).

4 Conclusion

Accurate age prediction can help clinicians determine whether the
body’s tissues are normal or not. By identifying changes in the genetic
characteristics of human tissues, individual disease risk can be effectively
reduced. We discuss the usability, accuracy, and the advantages and
significance of multi-tissue methylation age prediction methods based
on deep learning compared to other methods. Although the prediction
has been very accurate using the elastic net method in human aging
prediction methods, its exploration of the correlation between CpG loci
is not detailed. Deep learning models can not only outperform linear
regression models in terms of accuracy, but are also more helpful in
investigating the linkages between loci.

In this paper, we propose a perceptron prediction model based
on the channel attention mechanism, which has a better learning
ability and can improve the accuracy of the model prediction
compared with the simple perceptron model. It can be seen from
theMed of the test dataset that the model in this paper predicts more
accurately than most of the current methods. After experimental
validation, this model outperforms other methods on most data sets.
Although the error of testing the model in this paper is slightly larger
in frontal cortex, it performs well in the test results in various tissues
such as blood and saliva. Therefore, compared with other methods,
the model in this paper has better predictive power and model
generalization ability.

In future works, the changes of CpG loci after adding the
attention mechanism and the interconnection between CpG loci
need to be further explored. The CpG loci in different tissue
samples have different degrees of influence on the prediction
results, and comparing them will help to improve the accuracy
in different tissues. In the future, the self-attentive mechanism
module will be used to update the model parameters, which will
make it easier and more explanatory to explore the changes of CpG
locus coefficients.
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