
CD-Loop: a chromatin loop
detection method based on the
diffusion model

Jiquan Shen, Yang Wang and Junwei Luo*

School of Software, Henan Polytechnic University, Jiaozuo, China

Motivation: In recent years, there have been significant advances in various
chromatin conformation capture techniques, and annotating the topological
structure from Hi-C contact maps has become crucial for studying the three-
dimensional structure of chromosomes. However, the structure and function of
chromatin loops are highly dynamic and diverse, influenced by multiple factors.
Therefore, obtaining the three-dimensional structure of the genome remains a
challenging task. Among many chromatin loop prediction methods, it is difficult
to fully extract features from the contact map and make accurate predictions at
low sequencing depths.

Results: In this study, we put forward a deep learning framework based on the
diffusionmodel called CD-Loop for predicting accurate chromatin loops. First, by
pre-training the input data, we obtain prior probabilities for predicting the
classification of the Hi-C contact map. Then, by combining the denoising
process based on the diffusion model and the prior probability obtained by
pre-training, candidate loops were predicted from the input Hi-C contact
map. Finally, CD-Loop uses a density-based clustering algorithm to cluster the
candidate chromatin loops and predict the final chromatin loops. We compared
CD-Loop with the currently popular methods, such as Peakachu, Chromosight,
and Mustache, and found that in different cell types, species, and sequencing
depths, CD-Loop outperforms other methods in loop annotation. We conclude
that CD-Loop can accurately predict chromatin loops and reveal cell-type
specificity. The code is available at https://github.com/wangyang199897/
CD-Loop.
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1 Introduction

The genome of eukaryotic organisms exists in the form of nuclear chromatin, and the
function of chromatin is closely related to its three-dimensional structure. For example,
biological functions such as genome replication, transcription, regulation, DNA mutation,
the spread of long non-coding RNA, and embryonic development all are completed in the
three-dimensional space of the cell nucleus (Bonev and Cavali, 2016). In recent years, with
the development of high-throughput chromosome conformation capture (Hi-C)
(Lieberman-Aiden et al., 2009) and chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) technologies (Fullwood et al., 2009), researchers have
discovered that chromosomes can be categorized into chromatin compartments (A/B
compartments), topologically associated domains (TADs), and chromatin loops.
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Chromatin loops, such as enhancer-promoter loops, explain the
regulatory mechanism of enhancers on target genes. Despite the
enhancer being far away from the target gene in linear distance, the
enhancers and target gene promoters are located on the same
chromatin loop in close spatial proximity, regulating the target
gene by binding to the promoter (Dekker et al., 2013; Dixon
et al., 2015; Gorkin et al., 2014; Rao et al., 2014; Dixon et al., 2012).

The chromatin loop is an advanced structural form of chromatin
in eukaryotic organisms. In previous studies, chromatin loops could
not be observed, but with the emergence of three-dimensional
structures, it is now possible to clearly observe various
organizations of genes. Experiments have shown that the
chromatin loops are linked to proteins such as CTCF and
cohesin. Two genes may be linearly distant from each other, but
their spatial arrangement is not linear, and their spatial distance may
be very close. Therefore, the two genes may interact with each other.
They may be close in spatial proximity, potentially allowing for
interactions between the two genes. We call the loop-like structure
formed by two genes that are close together and the chromatin
segment between them a chromatin loop. During the formation of
cancer, the structure of chromatin loops may also undergo changes,
leading to alterations in cancer-related genes (Wang et al., 2022). In
genome-wide association studies (GWAS), it has been discovered
that certain immune-related genetic variations are concentrated in
chromatin loops specific to blood cells rather than embryonic cells,
indicating that these chromatin loops can help us further
understand certain disease variations (Buenrostro et al., 2013;
Tang et al., 2015; Szabo et al., 2019; Grubert et al., 2020;
Kloetgen et al., 2020).

Although some important progress has been made in the study
of chromatin loops, the structure and function of chromatin loops
are highly dynamic and diverse and are influenced by various
factors. Currently, our comprehension of the structure and role
of chromatin loops in the three-dimensional space of the cell nucleus
remains limited, rendering it challenging to anticipate the
consequences of alterations in the chromatin loop structure on
gene mutations. Therefore, it remains a challenging problem to
acquire the correlation between the three-dimensional architecture
and functionality of the genome and use experimental techniques to
detect chromatin loops in cell types or species with unknown 3D
structures. At low coverage, due to the limited amount of data and
the presence of random noise and biases, the detection of loops will
be more challenging. Therefore, more accurate and efficient
computational models and methods are needed to address these
issues. This will help us better understand the organization,
function, and gene regulation mechanisms of chromatin loops.

The methods for predicting chromatin loops are diverse, mainly
encompassing the following aspects: (1) prediction of chromatin
loops based on statistical methods. For high-throughput
chromosome conformation capture (Hi-C), it focuses on the
entire cell nucleus, studies the spatial relationships of the entire
chromatin across the whole genome, and achieves the capture of
interactions between chromatin segments across the entire genome.
The corresponding tools are as follows: HiCCUPS (Rao et al., 2014;
Durand et al., 2016) integrates nearby background information into
its framework and employs a Poisson test in conjunction with an
adapted Benjamini–Hochberg procedure to assess the significance of
chromatin interactions. The HiCExplorer method (Wolff et al.,

2022) uses ongoing negative binomial distribution and the
Wilcoxon rank-sum test to ascertain the enrichment of Hi-C
interactions by considering the neighborhood of candidate
elements and distinguishing significant peaks from background
noise. For ChIA-PET technology, using PET sequencing
technology to study DNA fragments with nearby connections
after immunoprecipitation allows researchers to obtain chromatin
interactions; this fundamentally investigates the interactions
between DNA fragments. The difference between Hi-C and
ChIA-PET lies in the fact that data generated by Hi-C reflect
chromatin interactions, including all proteins, while the ChIA-
PET technology enrichment of specific protein factors results in
data that represent chromatin interactions of a particular protein.
Using ChIA-PET technology to develop tools includes the ChIA-
PET tool (Li et al., 2010), which employs the hypergeometric
distribution to filter noise. Mango software (Phanstiel et al.,
2015) establishes a null model by merging the genomic distances
and read depths for each anchor point. For the capture Hi-C
technique (Mifsud et al., 2015), an additional capture step is
introduced on top of the traditional Hi-C library preparation
process to capture target fragments for subsequent sequencing.
CHiCAGO (Cairns et al., 2016) employs an innovative
background correction technique and a two-component
convolution background model while addressing multiple testing
through a p-value weighting approach. The ChiCMaxima method
(Ben Zouari et al., 2019) applies loess smoothing to the captured Hi-
C reads and transforms the detection of chromatin loops into the
search for peaks from the loess-smoothed profiles. HiChIP
(Mumbach et al., 2016) is a protein-centric approach for
studying chromatin conformation, which synergistically combines
Hi-C technology and ChIA-PET technology to extract more detailed
three-dimensional chromatin structure information using a reduced
dataset. Related tools include HiChIP-Peaks (Shi et al., 2020), which
models the background signal as a negative binomial to simulate
excessive dispersion and identify enriched signal regions. It also
corrects HiChIP specific biases caused by the uneven distribution of
restriction enzyme sites. (2) Prediction of chromatin loops based on
traditional methods. Lollipop (Kai et al., 2018) is a machine learning
framework based on the random forest classifier, which uses
genomic and epigenomic features to predict CTCF-mediated
interactions. CTCF-MP (Zhang et al., 2018), based on word2vec
and boosted trees, accurately predicts loops formed by convergent
CTCF motifs using sequence features, CTCF ChIP-seq and DNase-
seq. C-Loops (Cao et al., 2020) relies on the clustering algorithm
cDBSCAN, which directly examines paired-end tags (PET) to detect
potential loops and employs permuted local backgrounds to
estimate their significance. However, one of the recent trends in
research is to apply computer vision and machine learning
techniques to the annotation of topological structures. For
example, the SIP method (Rowley et al., 2020) applies Gaussian
smoothing, contrast adjustment, morphological white top-hat
transformation, and a maximum–minimum filter to an image.
After these steps, the corrected image of the interaction is
provided, which is used in conjunction with the regional maxima
detection algorithm to detect loops. Peakachu (Salameh et al., 2020)
uses a classification framework to forecast chromatin loops based on
the Hi-C contact map, capable of identifying a unique set of short-
range interactions. Chromosight (Matthey-Doret et al., 2020) is a
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computer vision-based algorithm that takes whole-genome contact
matrices as the input and uses a balancing normalization procedure
to mitigate experimental biases. The Mustache method (Roayaei
Ardakany et al., 2020) represents the interaction matrix using scale-
space theory, and we consider the identification of chromatin loops
as a problem of detecting spot-like objects. Both of these pattern-
based general methods work well with a sufficient number of contact
pairs but perform poorly at low sequencing depths. Due to the swift
advancement and widespread utilization of deep learning
technology, significant progress has been made in bioinformatics.
It is not surprising that some work has been achieved in the field of
genomics. For example, DeepLUCIA (Yang et al., 2022), a deep
learning-based chromatin interaction model, utilizes epigenomic
information to forecast chromatin loops in various tissues. The
predicted chromatin loops can help enhance our understanding of
the genomic structure of human tissues. DeepMILO (Trieu et al.,
2020) uses a deep learning framework to anticipate the impacts of
mutations on CTCF-mediated insulator loops. DeepLoop (Zhang
et al., 2022) discovers noteworthy interactions from Hi-C contact
maps using neural networks to denoise and enhance loop signals.
RefHiC (Zhang and Blanchette, 2022) is a deep learning method that
uses high-quality Hi-C datasets with different cell types to study the
topological structure annotation of samples. GILoop (Wang et al.,
2022) is a twin-branch neural network that utilizes the image view
and graph view to identify interactions in the entire genome. Be-
1DCNN (Wu et al., 2023) utilizes a bagging ensemble learning
strategy and one-dimensional convolutional neural network
(1DCNN) to improve the accuracy and reliability of predictions
by integrating multiple 1DCNN models.

Although some progress has been made with the abovemethods,
it remains a significant challenge to fully extract features from Hi-C
contact maps and identify chromatin loops in different sequencing
depths and cell lines. Recently, the denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020) has had good performance in
image generation and synthesis tasks by progressively enhancing the
quality of the provided image. Furthermore, the diffusion model is
able to simulate the propagation and influence of features in an
image, which helps better capture local and global features, thus
improving classification accuracy (Han et al., 2022). Here, we
propose a method, named CD-Loop, based on the diffusion
model, which combines CTCF ChIA-PET and H3K27ac HiChIP
(Mumbach, 2017) data derived from biologically diverse
experiments to label samples. This approach aims to cover a
wider range of chromatin loops. Using a conditional generative
model based on noise addition and noise reduction, along with a
pre-trained conditional mean estimator, we convert the task of
identifying chromatin loops into a binary classification task. The
results indicate that training the data only on the original sequencing
depth is effective for different cell types, sequencing depths, and
species with high precision and recall. In comparison to existing
methods, our approach successfully identifies a set of distinct
chromatin loops.

2 Materials and methods

CD-Loop takes a Hi-C contact map as the input and predicts
highly reliable chromatin loops. The model can be roughly divided

into two parts, as shown in Figure 1. (1) First, CD-Loop pre-trains
the input data using the LeNet5 model to obtain the prior probability
of predicted classification for the input Hi-C contact map. (2) Then,
by combining the denoising process based on the diffusion model
and the prior probability obtained by pre-training to predict the
candidate chromatin loop, the output includes the probability score,
CI confidence, and two-tailed t-test evaluation metrics for each
candidate chromatin loop. (3) Finally, the low-scoring candidate
chromatin loop is filtered out, and then clustering is performed
based on the density algorithm to select representative
chromatin loops.

2.1 Pretraining phase

The CD-Loop network first applies a pre-trained conditional
mean estimator, utilizing the LeNet5 network, with an input of
dimension of 2w × 2w, where w is the window size (w = 14). This
module consists of two convolutional blocks, three fully connected
layers, and two ReLU layers. Each block includes a convolution
operation, batch normalization, a ReLU activation function, and an
average pooling operation. The input and output of this process are
class labels, which we refer to as prior probabilities.

2.2 Diffusion model

The second part of the model applies the forward and backward
processes of the diffusion model, assuming that the endpoint of our
forward process is

p yT

∣∣∣∣x( ) � N f∅ x( ), I( ),
where f∅(x) is the prior probability with respect to x and y0. The
conditional distribution of the forward process can be defined as
follows for all timesteps including t � 1:

q yt

∣∣∣∣yt−1, f∅ x( )( ) � N yt;
�����
1 − βt

√
yt−1 + 1 −

�����
1 − βt

√( )f∅ x( ), βtI( ),
which enables a closed sampling distribution with arbitrary
timesteps t:

q yt

∣∣∣∣y0, f∅ x( )( ) � N yt;
��
�αt

√
y0 + 1 − ��

�αt
√( )f∅ x( ), 1 − �αt( )I( ),

where αt: � 1 − βt and �αt: � Πtαt. The backward process can be
defined as follows:

p yt−1
∣∣∣∣yt, y0, x( ) � p yt−1

∣∣∣∣yt, y0, f∅ x( )( )
� N yt−1; ~μ yt, y0, f∅ x( )( ), ~βtI( ),

where

~μ: � βt
����
�αt−1

√
1 − �αt︸���︷︷���︸

γ0

y0 + 1 − �αt−1( ) ��
αt

√
1 − �αt︸�����︷︷�����︸

γ1

yt

+ 1 +
��
�αt

√ − 1( ) ��
αt

√ + ����
�αt−1

√( )
1 − �αt

( )︸��������������︷︷��������������︸
γ2

f∅ x( ),

~βt: � 1 − �αt−1
1 − �αt

βt.
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FIGURE 1
CD-Loop architecture. Overview of the CD-Loop neural network for loop.
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After organizing the process, the optimization objective is the
maximization of the likelihood function:

log pθ y0

∣∣∣∣x( ) � log ∫pθ y0: T

∣∣∣∣x( )dy1;T ≥Eq y1: T|y0 ,x( )

log
pθ y0: T

∣∣∣∣x( )
q y1: T

∣∣∣∣y0, x( )⎡⎢⎣ ⎤⎥⎦.
We chose the diffusion model as the second part of our

model because through the iterative process of the diffusion
model, the noise in the Hi-C interaction matrix can be corrected,
and the quality is improved. In addition, the diffusion model can
simulate the spread and influence of features in the image,
helping better capture the local and global features in the Hi-
C interaction matrix, thereby improving the accuracy of the
classification.

This part of the model framework applies an encoder to a
flattened input image to obtain a 2048-dimensional
representation. The encoder consists of three fully connected
layers, with an output size of 2048. Meanwhile, we concatenate yt
and the output f∅(x) from the first part, applying a fully-connected
layer to generate an output vector of 2048 dimensions. To
incorporate the timestep information, we apply a Hadamard
product between the vector and timestep embedding, generating
a response embedding specific to the timestep. Next, we integrate
this response embedding with the image embedding through
another Hadamard product. The resulting vector is then passed
through two additional fully-connected layers. Each layer has
2048 dimensions. Before each layer, a Hadamard product is
performed with timestep embedding. At last, a fully-connected
layer is employed to predict. It is worth noting that, in addition
to the output layer, there is also a batch normalization layer and
Softplus non-linearity after each fully connected layer. The
architecture is shown in Table 1.

The model framework outputs a noise prediction and then
utilizes a denoising process, combined with pre-trained prior
probabilities, to obtain the posterior mean and posterior variance.
Based on the obtained posterior mean and posterior variance, the
predicted label at time T-1 is calculated from time T, and this process
is repeated until time 1.

2.3 Detect loops by density-based clustering

For the window centered around each bin pair (i, j) after model
prediction, CD-Loop generates a probability score s (i, j) for each bin
pair. A higher score value indicates a higher likelihood of the bin pair
being a loop. Therefore, we retain bin pairs that are predicted as
loops and have a score greater than 0.5, and these bin pairs (i, j) are
referred to as candidate loops. If there are fewer than 15 candidate
loops within a 5-bin by 5-bin square centered around (i, j), it is
referred to as an isolated prediction. These isolated predictions are
likely to be false positives and are therefore excluded. Then, we use a
density-based clustering algorithm to cluster the remaining
candidate loops. First, we use the nearest neighbors
(Abeywickrama et al., 2016) method to compute the local density
of each candidate (i , j). To achieve a fast nearest neighbor search, we
use the K-D tree data structure, and the distance metric used is
Chebyshev distance. We then calculated and recorded the indices
and distances of the nearest neighbors for each candidate (i, j). By
iterating over the nearest neighbors of each candidate (i, j), find the
nearest neighbor with a higher density than itself. If the nearest
neighbor with a higher density than the current point is found, we
record its index and distance as the delta value. If no such point is
found, meaning that the candidate (i, j) has the highest local density
within the current range, we set the delta value to a distance greater
than that of the neighboring nodes. We repeat this process,
increasing the query radius until the nearest neighbors of all
candidate (i, j) pairs are found. Finally, we discard candidate
loops with delta values less than 5, as they may represent
redundant predictions. The remaining candidate loops after
filtering constitute our final predicted loops. The same
parameters are used in different datasets and different coverages,
and these parameters perform well in the final prediction.

2.4 Composition of training samples

Selection of positive samples: CD-Loop selects the combination
of CTCF ChIA-PET data and H3K27ac HiChIP data and then
removes all interaction pairs outside the range of 30 kb to 3 Mb as
positive sample data. Because in loop annotation, CTCF ChIA-PET
data contain long-range interactions, while H3K27ac HiChIP data
contain shorter-range interactions, combining the two can cover a
wider range of loop types.

Selection of negative samples: Due to a large unbalance in the
number of positive and negative samples, we selected different types
of negative samples three times based on the genomic distance
characteristics of the positive samples, ensuring that the genomic
distance of each negative sample falls within the range of 30 kb to
3 Mb. This can reduce the number of negative samples and consider
all the characteristics of negative samples as much as possible. (1)
For each positive interaction pair, two negative interaction pairs
with the same genomic distance are randomly selected from the
entire genome. (2) For all possible genomic distances of positive
samples, randomly select a genomic distance each time, and then a
negative interaction pair with the same genomic distance is
randomly selected from the entire genome until the number of
generated negative samples equals that of positive samples. (3) For
the largest genomic distance among positive samples, a value greater

TABLE 1 Diffusion model network architecture.

input: x, yt , fφ(x), t

l1,x � σ(BN(g1,x(x)))

l2,x � σ(BN(g2,x(x)))

l3,x � BN(g1,x(x))

l1,y � σ(BN(g1,y(yt ⊕ f∅(x)) ⊙ g1,b(t)))

l1 � l3,x ⊙ l1,y

l2 � σ(BN(g2,a(l1) ⊙ g2,b(t)))

l3 � σ(BN(g3,a(l2) ⊙ g3,b(t)))

output: g4(l3)
⊕: concatenation; ⊙: Hadamard product; σ: Softplus non-linearity; g: a fully-connected layer;
and l: a hidden layer output.
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than that distance is randomly chosen as the genomic distance for
negative samples, and a negative interaction pair is randomly
selected from the entire genome until the number of generated
negative samples equals that of positive samples.

We selected positive and negative samples within the gene
distance range of 30 kb to 3 Mb for the following two reasons:
first, interactions that are far apart in the genome are more likely to
have sequencing errors, resulting in chromatin loops that are
detected in distant genomes having high error rates. Interactions
that are relatively close together are generally caused by physical
interactions rather than true chromatin loops. Second, in other
chromatin loop prediction methods, most of the predicted
chromatin loops are in the range of 30 kb to 3 Mb. So,
considering these two factors, we chose the range of 30 kb to
3 Mb to filter other samples.

Data preprocessing: The input Hi-C contact map is divided into
bins at a resolution of 5 kb. Due to the existing sampling bias and
technical noise, Knight–Ruiz (KR) normalization (Knight and Ruiz,
2013) is used for correction. If a positive sample is represented by two or
more pixels in the contact map, each pixel represents a positive
interaction pair. After obtaining the positive and negative interaction
pairs, in the Hi-C contact map, with each interaction pair as the center,
13 bins are selected upward and to the right, and 14 bins are selected to
the right and downward, forming a 28*28matrix. Thematrices from the
negative sample matrix that consist entirely of zero elements are
removed. The reasons why we delete matrices with all 0 elements in
the negative samplematrix are as follows: first, consider that in theHi-C
interaction matrix, all elements are 0, which means that there is no
interaction between one region of the chromosome and another region.
Such a matrix does not contain any meaningful information. Second,
the model cannot extract effective features from these matrices with all
0 elements. There are too many such matrices in the training set, which
will only increase the training time.

2.5 Model training and prediction

During the model training and testing process, Hi-C contact
maps from the GM12878 dataset are adopted. For validation, we
used chr11 and chr12, while chr15, chr16, and chr17 were used for
testing and prediction. The remaining chromosomes were used for
training. During the model training process, data augmentation was
performed by flipping the 28*28 matrices generated from the
positive samples horizontally and vertically. In the model
prediction process, since it involves taking every bin pair of an
entire chromosome as the input, the amount of data is very large.
Therefore, we performed the following three preprocessing steps on
the chromosome to be predicted. (1) The genomic distance
threshold between bin pairs: since the distribution of chromatin
loops in the genome ranges from approximately 30 kb to 3 Mb, we
remove the predicted bin pairs with a genomic distance greater than
3 Mb or less than 30 kb. (2) Interaction frequency threshold of bin
pairs: by observing the interaction frequency of each bin pair in the
positive samples, we found that 99% of the positive samples have an
interaction frequency greater than 1. Therefore, we remove the bins
with an interaction frequency less than 1. (3) Threshold of the
number of zero elements in matrices: after counting the number of
zero elements in the 28*28 matrices of positive samples, it was found
that 90% of the positive sample matrices have less than 200 zero
elements. When making predictions for downsampling data, the
same processing is applied.

3 Results

CD-Loop is trained on the original sequencing depth of
GM12878, which is not specific to this sequencing depth or cell
type. Next, we will demonstrate the superiority of this model by

TABLE 2 Different sources of datasets.

Deposited data Source Identifier Link

GM12878 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

K562 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

IMR90 Hi-C GEO GSE63525 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

mESC Hi-C 4D Nucleome 4DNFIU8AF5ZY https://data.4dnucleome.org/experiment-set-replicates/4DNESUCLJAZ8

GM12878 CTCF ChIP-Seq ENCODE ENCFF963PJY https://www.encodeproject.org/files/ENCFF963PJY

K562 CTCF ChIP-Seq ENCODE ENCFF085HTY https://www.encodeproject.org/files/ENCFF085HTY

IMR-90 CTCF ChIP-Seq ENCODE ENCFF453XKM https://www.encodeproject.org/files/ENCFF453XKM

mESC CTCF ChIP-Seq ENCODE ENCFF508CKL https://www.encodeproject.org/files/ENCFF508CKL

K562 CTCF ChIA-PET ENCODE ENCFF001THV https://www.encodeproject.org/files/ENCFF001THV

K562 RAD21 ChIA-PET ENCODE ENCFF002ENT https://www.encodeproject.org/files/ENCFF002ENT

mESC CTCF ChIA-PET ENCODE ENCFF550QMW https://www.encodeproject.org/files/ENCFF550QMW

GM12878 CTCF ChIA-PET Reference (Tang et al., 2015) Tang, Z. et al. (2015) https://doi.org/10.1016/j.cell.2015.11.024

GM12878 RAD21 ChIA-PET Reference (Heidari et al., 2014) Heidari et al. (2014) https://doi.org/10.1101/gr.176586.114

GM12878 H3k27ac HiChIP Reference (Mumbach et al., 2017) Mumbach et al. (2017) https://doi.org/10.1038/ng.3963

GM12878 SMC1 HiCHIP Reference (Mumbach et al., 2016) Mumbach et al. (2016) https://doi.org/10.1038/nmeth.3999
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FIGURE 2
Comparison based on theGM12878 dataset: (A) Venn diagram, (B) aggregated peak analysis, and (C) cumulative distance distribution. The chromatin
loop genome distance distribution predicted by CD-Loop is highly similar to that predicted by Chromosight. (D–G) Supporting loops validated by CTCF
ChIA-PET (D), RAD21 ChIA-PET (E), SMC1 HiChIP (F), and H3k27ac HiChIP (G) enrichment experiments for loops predicted by CD-Loop and other tools.
The loop predictions by CD-Loop align better with these experimental data compared to other tools on the testing chromosomes. (H) Function
depicting the distance from predicted loop anchors to CTCF-binding sites identified by ChIP-seq signals. (I) Visualization example of loop identification.
The upper half of the three diamond plots display green dots, which represent CD-Loop. On the other hand, the lower half of the plots consists of blue
dots, which represent Chromosight, Mustache, and Peakachu, respectively.
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demonstrating the ability of the same model weights to annotate
loops in the same cell type at different sequencing depths.
Meanwhile, we will highlight that the model can accurately
annotate loops in numerous other cell types without requiring
retraining. Furthermore, the same trained model can also be used
to annotate loops in mouse Hi-C contact maps. This demonstrates
that the CD-Loop model has good generalization and adaptability
and is applicable to annotation tasks of different sequencing depths
and cell types. In our experiment, chromosomes 11 and 12 are used
for validation, chromosomes 15–17 are used for testing, and the
remaining chromosomes are used for training. The reported human
gene results only apply to the three test chromosomes, while the
results for mice apply to all chromosomes.

This method is trained and predicted on RTX4090 GPU and
requires at least 15 GB of space to load samples during prediction.

The runtime of chromatin loop identification depends on the
sequencing depth of Hi-C data. For example, prediction can be
completed within 325 min on Hi-C data containing 500 M valid
read pairs. The data used in the experiments of this paper are shown
in Table 2.

3.1 GM12878 experimental results

We first evaluated the prediction accuracy of chromatin loops by
CD-Loop on the original sequencing depth Hi-C dataset (2600 M
valid read pairs) from the human GM12878 cell line.
Simultaneously, we compared it with several popular methods,
including Chromosight, Peakachu, and Mustache. To ensure a
fair comparison, we evaluated the chromatin loops at a 5 kb

FIGURE 3
Comparison based on Hi-C data from human K562, IMR90, and mouse ESC. (A) The number of loops present. (B–C) Overlap between the
chromatin loops predicted by CD-Loop and other tools on the K562 Hi-C contact map with CTCF ChIA-PET (B) and RAD21 ChIA-PET (C) enrichment
experiments on testing chromosomes chr15-17. (D) Function depicting the distance from predicted loop anchors to CTCF-binding sites in K562 cells
identified by ChIP-seq signals. (E) Function depicting the distance from predicted loop anchors to CTCF-binding sites in IMR90 cells identified by
ChIP-seq signals. (F) Venn diagram showing the chromatin loops identified by CD-Loop across three cell lines: GM12878, IMR90, and K562. (G)Overlap
between the chromatin loops predicted by CD-Loop and other tools on the mESC with CTCF ChIA-PET. (H) Function depicting the distance from
predicted loop anchors to CTCF-binding sites in mESC cells identified by ChIP-seq signals.
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resolution and annotated them from the same dataset using default
parameters. Additionally, we applied a consistent 5% FDR cutoff for
all tools.

3.1.1 Quantitative analysis
Loops predicted by different tools vary significantly. First,

among the four methods, we controlled the genomic distance of
all predicted chromatin loops between 30 kb and 3 Mb. To compare
the performance with all methods, we ensured that the anchoring
points of two chromatin loops fully matched and overlapped. As
shown in Figure 2A, we found that CD-Loop identified almost as
many chromatin loops as Chromosight and Peakachu. For the
results, 89% of CD-Loop, 87% of Chromosight, 85% of Peakachu,
and 54% of Mustache were unique.

3.1.2 Aggregation peak analysis
The aggregation peak analysis of the four methods in the

GM12878 cell line is shown in Figure 2B. The APA score quantifies
the loop pattern of detected peaks by comparing the number of reads in
the center point bin to the average number of reads in the lower left
corner of the matrix. We only consider the top 2,000 loops with high
scores. Compared with Peakachu, the loops detected by Chromosight,
CD-Loop, and Mustache have more dispersed loop centers, and the
three methods have a similar APA score. Since we split the chromatin
loop spanningmultiple pixel points intomultiple chromatin loops, each
pixel is regarded as a single chromatin loop, and themost representative
pixel among them is not selected as a positive sample. So, the boundary
range of chromatin loops is expanded, and the detected chromatin
loops have dispersed loop centers. Next, we compared the genomic
distances of loop anchors predicted by the four methods. As shown in
Figure 2C, the distance distributions between chromatin loop anchors
predicted by CD-Loop and Chromosight are similar and have larger
genetic distances, while Peakachu and Mustache predict more short-
range interactions.

3.1.3 Enrichment experimental analysis
Then, we compared the chromatin loops predicted by

different methods on different datasets. Different enrichment
experimental data include CTCF ChIA-PET, RAD21 ChIA-PET,
SMC1 HiChIP, and H3k27ac HiChIP. We make predictions for
the three chromosomes chr15, chr16, and chr17 of the test set and
compare them with three other methods to evaluate these loops
(allowing an error of 5 kb). As shown in Figures 2D–G, among
the four methods, Mustache predicts the smallest number of
loops and the least number of overlaps with enrichment
experiments. The remaining three methods predict almost the
same number of loops, but CD-Loop has the largest number of
correct predictions across different enrichment experiments and
has the highest recall rates. CD-Loop predicted a total of
7,980 loops, with 3,821 correctly predicted loops in the CTCF
dataset, yielding an accuracy of 48%. Peakachu predicted
6,978 loops, with 2,351 correctly predicted loops in the CTCF
dataset, resulting in an accuracy of 33%. Chromosight predicted
8,993 loops, with 1,676 correctly predicted loops in the CTCF
dataset, giving an accuracy of 20%. Mustache predicted
2,158 loops, with 1,293 correctly predicted loops in the CTCF
dataset, achieving the highest accuracy of 59%. CD-Loop had the
highest number of successfully predicted loops, ranking second

in accuracy, while Mustache, with the highest accuracy, had the
fewest successfully predicted loops, only one-third of CD-Loop’s
count. The specific data for RAD21, SMC1, and H3K27ac can be
found in Figures 2E–G, where CD-Loop demonstrates good
performance in both accuracy and recall.

3.1.4 CTCF-binding site analysis
We next performed this by visualizing the CTCF ChIP-Seq and

H3k27ac HiChIP-binding signals on the flanking regions around the
loop anchors. As shown in Figure 2H, the predicted loop anchors
detected by CD-Loop showed a clear enrichment effect in CTCF,
and the H3k27ac-binding motif proves that CD-Loop can not only
identify loops related to CTCF but also loops related to H3k27ac.

3.1.5 Hi-C heat map analysis
The genome-wide analysis described above demonstrates the

good ability of CD-Loop to identify loops in Hi-C contact maps.
We used the Juicebox tool (Durand et al., 2016) to visualize
chromatin loops for the purpose of visual representation,
demonstrating that CD-Loop can detect more chromatin loops
and unique chromatin loops undetectable by other methods. As
shown in Figure 2I, the upper part is the visual representation of
chromatin loops detected by CD-Loop in the Hi-C interaction
matrix, and the lower part is the detection of the remaining three
methods (Peakachu, Chromosight, and Mustache) for the visual
representation of chromatin loops in the Hi-C interaction matrix.
The green dots represent the position of the chromatin loop
detected by CD-Loop in the Hi-C interaction matrix, and the blue
dots represent the position of the chromatin loop detected by
Peakachu, Chromosight, and Mustache in the Hi-C interaction
matrix. We can find that the results of CD-Loop mostly overlap
with the results of other methods, but some are unique.

Taken together, these results show that CD-Loop has better
overall prediction accuracy for GM12878 data (2600 M read pairs)
than other methods.

3.2 Experimental results on other cells
and species

Our method was trained on the original test depth data of the
human GM12878 cell line, but our findings reveal that the trained
model demonstrates better performance across various cell types. To
further verify the performance of CD-Loop, we compared CD-Loop
and other methods using K562 and IMR90 cell lines from humans
(only chromosomes 15–17 test) and mouse embryonic stem cells
(mESCs) (all chromosomes).

3.2.1 Number analysis
As shown in Figure 3A, in different cell lines of both humans and

mice, CD-Loop and Peakachu predicted the most loops, indicating
that the CD-Loop method is more reliable for predicting chromatin
loops, regardless of sequencing coverage. When applied to the
complete set of autosomes with 124 M read pairs from mESC
data, the CD-Loop model trained with the GM12878 original
sequencing depth was used to predict mouse cell lines. CD-Loop
identified a higher number of loops compared to other tools in low-
coverage data.
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3.2.2 K562 and IMR90 cell line enrichment
experiments and CTCF-binding site analysis

Different enrichment experiments were used to reveal loops and
evaluate the accuracy of these tools. Like GM12878 before, we
controlled the FDR of other methods to 5%. For K562 data, as
shown in Figure 3B, CD-Loop predicted a total of 3,704 loops in
the K562 cell line, with 1,169 correctly predicted loops in the CTCF
dataset, yielding an accuracy of 32%. Peakachu predicted 3,785 loops,
with 830 correctly predicted loops in the CTCF dataset, resulting in an
accuracy of 22%. Chromosight predicted 3,089 loops, with 665 correctly
predicted loops in the CTCF dataset, achieving an accuracy of 22%.
Mustache predicted 939 loops, with 543 correctly predicted loops in the
CTCF dataset, attaining the highest accuracy of 58%. CD-Loop had the
highest number of successfully predicted loops and ranked second in
accuracy, while Mustache, with the highest accuracy, had the fewest
successfully predicted loops, only half of CD-Loop’s count. Specific data
for RAD21 can be found in Figure 3C. CD-Loop has advantages over
other tools, being able to identify more loops supported by CTCF and
RAD21, demonstrating good performance in both precision and recall.

Stacking analysis of surrounding CTCF-binding sites at predicted
chromatin loop anchor locations is shown in Figure 3D, indicating that
the chromatin loops predicted by these four methods are rich in CTCF-
binding motifs and have little difference, indicating that the same
training model can not only identify CTCF motifs in GM12878 cell
lines but also be applicable in K562 cell lines. Similar results were
obtained on IMR90 data (Figure 3E). Whether it is the K562 cell line or
IMR90 cell line, the number of CTCF-binding sites at the left and right
anchor points of the chromatin loop detected by CD-Loop is less than
that of the other three methods. However, the number of CTCF-
binding sites present was higher than other methods, within a 50-Kb
range of the left and right anchor points of the chromatin loop. The
reason may be that we represent a chromatin loop connected by
multiple pixels as a single pixel as a single chromatin loop. Due to
the expansion of the range of the anchor point of the chromatin loop,
the CTCF-binding sites present on the anchor point are also within a
certain range float.

3.2.3 Specificity analysis
In addition, to further illustrate the differences between cell

lines, we conducted a comparison of chromatin loop overlap among
three cell lines; to enhance fault tolerance, we allowed partial
matches (±5 kb) between any anchors in two bins. As shown in
Figure 3F, even when the overlap range was increased, the extent of
the chromatin loop overlap was relatively low among the three cell
lines, suggesting that the chromatin loops are specific to
each cell type.

3.2.4 mESC cell line enrichment experiments and
CTCF-binding site analysis

Enrichment experiments and CTCF ChIP-Seq signal analysis for
mESC data are shown in Figure 3G, H. In the CTCF ChIA-PET
enrichment experiment, CD-Loop predicted the most loops among
the four methods, and the number of overlaps increased linearly
with the increasing number of predicted loops. The number of
perfectly matched CTCF-binding sites is slightly lower compared
with the other three methods, but the number of CTCF-binding sites
around the anchor fluctuation range was higher than the other
three methods.

In conclusion, the research results show that CD-Loop has
achieved superior performance in human K562 and IMR90 cell
lines and mouse cell types.

3.3 Experimental results at different
sequencing depths

3.3.1 Quantity, F1-score, and enrichment
experimental analysis

To evaluate the ability of CD-Loop at different sequencing depths,
we conducted downsampling experiments using the FAN-C method
(Kruse et al., 2020)on the original sequencing depth of 2,600 M valid
read pairs. We performed downsampling at various percentages,
including 90%, 70%, 50%, 20%, and 10%. The corresponding
effective read pairs for each downsampling were 2,300M, 1,800M,
1,200M, 500M, and 250M.Using default parameters for different loop
prediction tools, we observed a decrease in predicted chromatin loops as
the sequencing depth decreased, as shown in Figure 4A. CD-Loop and
Peakachu predicted the highest number of chromatin loops. However,
in enrichment experiments (Figures 4C–F), CD-Loop consistently
achieved the highest F1-score among the four methods. The F1-
score decreased with decreasing sequencing depth but remained at
its highest level. The enrichment experiments for different methods at
different sequencing depths are shown in Supplementary Figure S1 in
Supplementary Material.

3.3.2 Robustness analysis
We assessed the overlap between the loops predicted by CD-Loop

at different sequencing depths and the loops present in the original
sequencing depth matrix. As depicted in Figure 4B, the overlap rates
were 76%, 68%, 66%, 54%, and 51% for downsampling matrices with
2,300M, 1,800 M, 1,200M, 500M, and 250M valid read pairs,
respectively. This high overlap rate indicates that CD-Loop not only
predicts a significant number of chromatin loops but also detects more
loops at low sequencing depth. Moreover, it will not cause more false
positives, highlighting the robustness of CD-Loop.

3.3.3 Sensitivity analysis
CD-Loop efficiently identifies a significant quantity of loop

structures within sparse data without increasing the number of
false positives. As shown in Figures 4G–J, when evaluating loops
mediated by CTCF, RAD21, SMC1, and H3K27ac in low-depth
datasets, CD-Loop maintains a high level of accuracy. This
implies that the predictions made for low-sequencing depth
data are almost as accurate as predictions on complete data,
with lower sensitivity.

Overall, CD-Loop outperforms other tools in terms of accuracy
at all sequencing depths. These results highlight the superior
robustness, accuracy, and reliability of CD-Loop.

3.4 Hyperparameters and resolution analysis

In order to prove the generalization ability of CD-Loop, we
conducted different experiments on the three hyperparameters of
the optimizer, batch size and epoch, and used chromosome 15 as the
test set to verify the optimal hyperparameters of the model. The
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experimental results are shown in Supplementary Tables S1–S3 in
Supplementary Material.

In addition, we used chr15 as the test set and conducted experiments
at three resolutions: 5 KB, 10 KB, and 25 KB. The experimental results
are shown in Supplementary Table S4 in Supplementary Material.

4 Discussion

Here, we propose CD-Loop, a deep learning-based method that
uses diffusion models to predict the chromatin loops from a given
Hi-C contact map. Our extensive evaluations indicate that CD-Loop

FIGURE 4
Evaluation at different sequencing depths. (A) The number of chromatin loops predicted by different methods decreases as the number of effective
chromosome read pairs decreases. (B) Venn diagrams at different sequencing depths. (C–F) F1-scores of different enrichment experiments, including
CTCF ChIA-PET (C), H3k27ac HiChIP (D), RAD21 ChIA-PET (E), and SMC1 HiChIP (F), in GM12878 cells at different sequencing depths. (G–J) Number of
supports on different enrichment data [RAD21 ChIA-PET (G), CTCF ChIA-PET (H), SMC1 HiChIP (I), and H3k27ac HiChIP (J)] for predicted chromatin
loops at different sequencing depths.
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outperforms existing tools in loop annotation for datasets with
various sequencing coverages.

The main contributions of CD-Loop are as follows:
1) the development of a deep learning framework that first
conducts pre-training to obtain prior probabilities and then
utilizes the denoising process of the diffusion model and a
pre-trained estimative model for forecasting chromosomal
loops in Hi-C contact matrices, resulting in
improved accuracy for genome-wide chromatin loop
recognition; 2) the use of data augmentation by flipping the
interested parts of the Hi-C matrices in all four directions, which
increases the diversity of training data and improves the
generalization ability of the model, allowing for the training
of a unified framework designed for processing Hi-C datasets
from different sequencing depths, cell types, and species. A
series of experimental results demonstrate that CD-Loop can
effectively improve chromatin loop recognition accuracy
compared to other methods and identify a range of unique
chromatin loops. The overlap rate between different
sequencing depths within the same cell line is relatively high,
while the overlap rate between different cell lines is relatively
low. Finally, equally important is that CD-Loop exhibits good
robustness and stability on different biological cells and
sequencing depths.

Although CD-Loop has superior performance compared to other
methods, there are still areas that need optimization and improvement:
1) when predicting the entire Hi-Cmatrix, the prediction time is long. It
can be improved by processing the data to reduce the waiting time. 2)
CD-Loop can also be extended to analyze data at a higher resolution,
but this would require optimizing the data processing procedure to
reduce memory usage and IO time.

CD-Loop is a method that implements three-dimensional
genome data analysis based on diffusion model classification. It
enables accurate prediction of Hi-C contact maps at medium
sequencing depth and improves the accuracy of its analysis even
at low sequencing depth. With the continuous increase in high-
quality Hi-C datasets, we expect that the capabilities of CD-Loop will
be further improved and developed.
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