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Introduction: Circulating metabolites act as biomarkers of dysregulated
metabolism and may inform disease pathophysiology. A portion of the inter-
individual variability in circulating metabolites is influenced by common genetic
variation. We evaluated whether a genetics-based “virtual” metabolomics
approach can identify novel metabolite-disease associations.

Methods: We examined the association between polygenic scores for 724
metabolites with 1,247 clinical phenotypes in the BioVU DNA biobank,
comprising 57,735 European ancestry and 15,754 African ancestry participants.
We applied Mendelian randomization (MR) to probe significant relationships and
validated significant MR associations using independent GWAS of candidate
phenotypes.

Results and Discussion: We found significant associations between 336
metabolites and 168 phenotypes in European ancestry and 107 metabolites
and 56 phenotypes in African ancestry. Of these metabolite-disease pairs, MR
analyses confirmed associations between 73 metabolites and 53 phenotypes in
European ancestry. Of 22 metabolitephenotype pairs evaluated for replication in
independent GWAS, 16 were significant (false discovery rate p < 0.05). These
included associations between bilirubin and X–21796 with cholelithiasis,
phosphatidylcholine (16:0/22:5n3,18:1/20:4) and arachidonate with
inflammatory bowel disease and Crohn’s disease, and campesterol with
coronary artery disease and myocardial infarction. These associations may
represent biomarkers or potentially targetable mediators of disease risk.
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Introduction

Dysregulated metabolism underlies many of the leading causes
of morbidity and mortality, causing considerable human suffering,
and high healthcare costs (American Diabetes Association, 2013;
Mozaffarian et al., 2016; National Diabetes Statistics Report, 2017).
The adverse clinical consequences of extreme disruptions of
metabolite homeostasis caused by inborn errors of metabolism
are well recognized (Mootha and Hirschhorn, 2010). However,
modest, long-term perturbations of metabolites attributable to
common genetic variation also may contribute to disease risk.
The clinical consequences of these perturbations remains
incompletely defined. Many complex diseases have residual risk
that is not explained by our current knowledge of disease biology
and mechanisms (Lieb et al., 2018). Identifying associations between
circulating metabolites and diseases has the potential to identify
biomarkers that can be used to risk-stratify individuals, and provide
insight into disease mechanisms and enable targeted therapies.

Genome wide association studies (GWAS) for circulating
metabolites measured by broad metabolomic profiling have
identified numerous associated single nucleotide polymorphisms
(SNPs) (Rhee et al., 2013; Shin et al., 2014; Demirkan et al., 2015;
Kettunen et al., 2016; Rhee et al., 2016). These data can be repurposed to
develop genetic instruments of individualmetabolite levels which can be
used to test for associations between metabolites and disease (Davey
Smith and Ebrahim, 2003; Maher, 2015; Pasaniuc and Price, 2017).
High throughput methodologies, such as Phenome-Wide Association
Studies (PheWAS), test associations between genetic instruments and
large number of clinical phenotypes using Electronic Health Record
(EHR)-linked DNA biobanks (Denny et al., 2010; Karnes et al., 2017).
These approaches can have significant advantages over traditional
epidemiological approaches, allowing for highly-powered analyses
which would otherwise be unfeasible due to cost or logistics. In this
context, a ‘virtual’ metabolomics approach provides a powerful tool to
identify candidate disease pathways, and to advance risk prediction
beyond standard genetic models.

To define the broader phenome associated with circulating
metabolites, we applied a virtual metabolomics approach that
leveraged a large collection of clinical phenotypes derived from
Vanderbilt’s BioVU EHR-linked DNA biobank. We constructed
virtual metabolomes based on metabolite polygenic scores (PGS), to
identify clinical diagnoses that shared genetic modulators with
metabolites. Mendelian randomization approaches were then
used to better define the relationship between candidate
metabolite-phenotype pairs. Significant associations were further
validated using external data sets. Our data shed light on multiple
metabolite-disease relationships and highlight novel pathways for
potential therapeutic intervention.

Material and methods

Vanderbilt BioVU study population

Genetic and phenotypic data were obtained from BioVU,
Vanderbilt University Medical Center’s (VUMC) DNA Biobank
linked to a de-identified electronic health record (Roden et al.,
2008). The study population comprised individuals of genetic white

European (n = 57,735) andAfrican (n = 15,754) ancestries, 18 years and
older who had existing SNP genotyping. Genetic ancestry of individuals
was determined using principal component analysis in conjunction
with HAPMAP reference sets (Gibbs et al., 2003; Roden et al., 2008).
This study was reviewed by the VUMC Institutional Review Board
(IRB) in accordance with the informed consent guidelines and was
determined to be non-human subjects research.

Genetic data and quality control

BioVU participants were genotyped on the Illumina Infinium
Multi-Ethnic Genotyping Array (MEGAEX) platform. Quality
control procedures for this population have been described
previously (Ruderfer et al., 2019). Individuals with a biological
sex discrepancy or who were related (one participant from each
related pair [pi-hat > 0.2] was randomly excluded) were excluded.
Analyses used PLINK v1.9 (Purcell et al., 2007). Genotype
imputation was performed using IMPUTE4 (Howie et al., 2009)
version 2.3.0 (University of Oxford), using the 10/2014 release of the
1,000 Genomes cosmopolitan reference haplotypes. Genetic variants
with imputation quality scores less than 0.3 were excluded. Principal
components (PCs) to adjust for residual population stratification
were generated using SmartPCA (Price et al., 2006).

Phenotype data

For the BioVU population, the primary analyses examined clinical
diagnoses based on PheCodes (v1.2), which are derived from
International Classification of Disease (ICD) billing codes (ICD-9-
CM and ICD-10 diagnosis codes) (Denny et al., 2010; Denny et al.,
2013). Validated EHR algorithms were used to define phenotypes.46 For
each phenotype, cases were defined as participants with at least two
PheCode instances in their medical record. Individuals without any
closely related PheWAS codes and who fell within the observed age of
the cases were used as controls. We analyzed associations for 1,247 and
600 PheCodes with ≥100 cases in the European and African ancestry
population, respectively.

Specification of a virtual metabolome via
human genetics

Discovery: Validated PGSs for 724 metabolites were obtained from
the OMICSPRED resource (www.omicspred.org). (Xu et al., 2022)
These PGS were developed using SNPs that significantly (p < 5 ×
10−8) associated with concentrations of human blood metabolites in the
INTERVAL cohort (n = 8,153 healthy individuals in England) (Xu et al.,
2023). Briefly, metabolites were measured in plasma by an untargeted
mass spectrometry metabolomics platform (Metabolon HD4), and
participants were genotyped using the Affymetrix Biobank Axiom
array (Shin et al., 2014). Bayesian ridge regression was used to
develop genetic scores for each metabolite, and scores were validated
(Spearman correlation) using an independent validation INTERVAL
subset (n = 8,114 non-overlapping participants, 527 validated
metabolites) and an external validation cohort (ORCADES, n =
1,007 European participants, 455 validated metabolites).
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Validation: SNP instruments used for validation of predicted
metabolite-disease associations by Mendelian randomization (MR)
analyses were derived from the independent METSIM Finnish
population study using publicly available GWAS summary
statistics for metabolites (Yin et al., 2022). This study included
1,391 metabolites quantified in 6,136 non-diabetic male participants
of Finnish ancestry. Summary statistics were obtained from the
METSIM Metabolomics PheWeb server (https://pheweb.org/
metsim-metab).

Polygenic score analysis

SNPs associated with each of the 724 OMICSPRED metabolites
were used to calculate PGSs as a weighted sum of trait-associated alleles
for BioVU subjects described above, with PLINK v2.00a3LM (Purcell
et al., 2007). Briefly, to construct PGS, we obtained SNPs related to each
metabolite (p < 5 × 10−8) according to the OMICSPRED data, and used
PLINK2 to compute polygenic scores using a list of SNPs and their
scores (coefficient). Of the 724 metabolites, 102 had PGS that had no
overlapping SNPs with other metabolites, while 622 comprised at least
one SNP that was also part of the PGS for another metabolite. The
association between metabolite PGS and each PheCode phenotype was
tested using a multivariable logistic regression model, adjusting for sex
and age. All analyses were stratified by genetic ancestry. Within each
phenotype, association p-values were adjusted for multiple testing using
a Benjamini–Hochberg false discovery rate (FDR) correction, (rstatix
v0.7.0 R package).

Mendelian randomization analysis to
validate PGS associations

Phenotype and metabolite pairs that were significantly associated
(FDR p < 0.05) with PGS through PheWAS in BioVU, were selected for
MR analysis. MR tests for associations under three assumptions: (1) the
SNPs are associated with the exposure; (2) the SNPs are not associated
with confounders; and (3) the SNPs affect the outcome only through the
exposure (Emdin et al., 2017).We usedmetaboliteGWASdata from the
independent METSIM study. Genetic instruments for each metabolite
were selected based on suggestive significant associations (p < 5 × 10−6)
in METSIM. We selected the p < 5 × 10−6 threshold, rather than a
standard p < 5 × 10−8 threshold, as a pragmatic strategy to increase the
number of SNPs included in the MR analysis. This allowed for greater
inclusion of SNPs with potential biological relevance, but may decrease
power or increase the chances of horizontal pleiotropy. We considered
that the benefits of more expansive instruments outweighed these risks
within the context of our robust multi-stage validation strategy. We
applied a clumping algorithm to select an LD-reduced (r2 < 0.05 with
physical distance threshold of 1,000 kb) set of SNPs associated with
metabolites. This resulted in 85,723 unique SNPs in European ancestry
and 31,897 SNPs in the African ancestry population being included in
the exposure instrumental variables. The association between
metabolite-associated SNPs and the BioVU clinical phenotype of
interest was computed using an additive logistic regression genetic
model that adjusted for age, sex and 10 principal components (PLINK
v2.00a3LM software). The inverse-variance weighted (random-effects
the inverse-variance weighted (IVW)), MR-Egger (corrected for

pleiotropy by setting the intercept to be non-zero) and weighted
median (providing a consistent estimate of the causal effect with
50% of the information coming from valid instrument) methods,
(Bowden et al., 2016), as implemented in the
MendelianRandomization R package (Mahajan et al., 2018) were
used to perform the analyses. Horizontal pleiotropy was determined
by a low heterogeneity p-value (p < 0.05) based on the Cochran’s Q
statistic. p-values were adjusted for multiple testing using a
Benjamini–Hochberg FDR correction, per tested phenotype. For
non-pleiotropic associations (heterogeneity p > 0.05), we selected
significant (FDR p < 0.05) metabolite-phenotype pairs based on the
IVW model, that showed consistent findings across the other MR
methods. For associations with evidence of pleiotropy, we used MR-
PRESSO to identify and evaluate the contributions of pleiotropic SNPs.
TheMR-PRESSO workflow consistent of three analyses: 1) a global test
which assessed the existence of horizontal pleiotropic variants and a
pglobal-test<0.05 was considered suggestive of pleiotropic effects; 2) an
outlier test which identified pleiotropic variants, and SNPs with a p <
0.05 were identified as outliers; and 3) a distortion test which compared
causal estimates pre and post removal of outlying variants, and a p <
0.05 was considered indicative that association estimates were biased
due to outlying SNPs (Zhu, 2021).

MR validation in independent disease-
specific GWAS datasets

We validated significant MR associations using summary
statistics from published GWAS datasets, where available.
Because MR that uses only 1 or 2 SNPs may be driven by
pleiotropy that cannot be easily detected, we selected only
metabolites with instruments comprising three or more
independent SNPs (p < 5 × 10−6 and LD r2 < 0.05) for
independent validation. We further excluded associations with
horizontal pleiotropy which was identified by a low p-value (p <
0.05) in the Cochran’s Q statistic. GWAS summary statistics for
Inflammatory Bowel Disease (IBD) and Crohn’s disease were
obtained from a meta-analysis of 59,957 individuals of European
ancestry (de Lange et al., 2017). Summary statistics for cholelithiasis
were obtained from FinnGen (19,023 cases, 195,144 controls;
FinnGen Consortium Release 5) and UK Biobank (11,632 cases,
289,159 controls) (https://ctg.cncr.nl/software/summary_statistics)
(Mi et al., 2022) For Atopic dermatitis, GWAS summary statistics
were obtained from a multi-ancestry GWAS of 21,399 cases and
95,464 controls from populations of European, African, Japanese
and Latino ancestries (Paternoster et al., 2015). Summary statistics
for AD were obtained from a meta-analysis of 1,126,563 individuals
of European ancestry (Wightman et al., 2021). GWAS summary
statistics for CAD and myocardial infarction (MI) were downloaded
from www.cardiogramplusc4d.org (Nikpay et al., 2015) which
included a GWAS meta-analysis of ~185,000 CAD cases and
controls with a subgroup analysis in cases with a reported history
of myocardial infarction (around 70% of the total number of cases).
Summary statistics for neutrophil counts were obtained from a
trans-ethnic GWAS meta-analyses of 746,667 participants,
including 184,535 non-European individuals (Chen et al., 2020).
High-density lipoprotein (HDL), low-density lipoprotein (LDL),
total cholesterol and triglycerides (TG) were obtained from the
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Global lipids consortium phenotypes (http://lipidgenetics.org/)
(Willer et al., 2013) including 188,577 European, East Asian,
South Asian and African ancestry individuals. All statistical tests
were two-sided and analyses used R v.4.0.2. The circlize package was
used to create the circular plots.

Results

Predicted circulating levels of metabolites
associate with a broad range of clinical
phenotypes

We tested for associations among PGS for 724 metabolites
and up to 1,247 clinical phenotypes in BioVU. There were
336 metabolites significantly associated with 168 phenotypes
in European ancestry (Supplementary Table S1) and
107 metabolites that were significantly (FDR p < 0.05)
associated with 56 phenotypes in the African ancestry
individuals (Supplementary Table S2). 78 metabolites,

11 phenotypes and 104 associations overlapped between
European and African ancestry individuals. Clinical
phenotypes with the highest number of significant metabolite
associations included regional enteritis (n = 63), inflammatory
bowel disease (n = 59), disorders of lipid metabolism (n = 56),
gout (n = 34), and chronic ischemic heart disease (n = 22) in the
European ancestry population [Figure 1A]. Within African
ancestry, there were multiple associations between metabolites
and methicillin resistant Staphylococcus aureus (n = 32; one
amino acid, one unknown metabolite and 30 lipids), adult
failure to thrive (n = 29), and urinary tract infection (n =
28) [Figure 1B].

Metabolites with the highest number of significant associations
with phenotypes in European ancestry included galactonate (n =
36), N-palmitoyl-sphingosine (d18:1/16:0) (n = 25), 1-palmitoyl-2-
stearoyl-GPC (16:0/18:0) (n = 17), and cholesterol (n = 16)
[Figure 1A]. In African ancestry, phosphatidylcholine (18:0/20:5
16:0/22:5n6) (n = 8), 1-stearoyl-2-meadoyl-GPC (18:0/20:
3n9) (n = 8), 1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5)
(n = 8), 1-arachidonoyl-GPC (20:4n6) (n = 8), and

FIGURE 1
Overview of the study design and findings in (A) European and (B) African ancestry BioVU participants.
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1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4) (n = 7) associated with
multiple phenotypes [Figure 1B].

Mendelian randomization highlights
relationships between circulating lipids and
multiple disease phenotypes

For significant metabolite and phenotype pairs from PheWAS of
metabolite PGS, we further characterized the associations under a MR

framework. In European ancestry, of the 336 significant metabolites,
GWAS summary statistics were available for 280matchedmetabolites
in the METSIM study. Of the study metabolites with no
corresponding match in METSIM, 45 of 56 were unknown/
unidentified metabolites. We identified 159 significant associations
(FDR<0.05) among 73 metabolites and 53 phenotypes by IVW
method (Figure 1A; Supplementary Table S3). Among these
associations were several distinct phenotype groups with a high
number of significant associations with metabolites including those
related to dyslipidemia (hyperlipidemia [n = 13]; disorders of lipid

FIGURE 2
Circular plot summarizing significant associations between circulating metabolites and phenotypes identified by inverse-variance weighted (IVW)
Mendelian randomization analysis (FDR p < 0.05). Metabolites are shown in bottom half of the figure with super-pathways depicted on the outer track
(with colors and numbers) and sub-pathways shown as the color of each line (i.e., lines with the same color belong to the same sub pathway). Each color
of the outer top track and the inner bottom track corresponds to a specific phenotype.
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metabolism [n = 11]; hyperglyceridemia [n = 8]; hypercholesterolemia
[n = 8]), gastrointestinal disorders (inflammatory bowel disease [n =
8]; regional enteritis [n = 7]), metabolic disorders (disorders of
bilirubin excretion [n = 8]; cholelithiasis and cholecystitis [n = 6],
gout and other crystal arthropathies [n = 5]), decreased white blood
cell count (n = 5), and nasal polyps (n = 2). The corresponding
metabolites were predominately lipids, including 1-palmitoyl-2-
palmitoleoyl-GPC (16:0/16:1) (n = 9), palmitoyl-linoleoyl-glycerol
(16:0/18:2) (n = 8), palmitoyl sphingomyelin (d18:1/16:0) (n = 8),
campesterol (n = 7), cholesterol (n = 6), 2-hydroxybutyrate/2-
hydroxyisobutyrate (n = 5) and 1-(1-enyl-palmitoyl)-2-linoleoyl-
GPC (P-16:0/18:2) (n = 5).

Many of these associations were driven by instruments
composed of only one or two SNPs, increasing the likelihood of

associations due to SNPs with pleiotropic effects. We thus selected
only metabolites with genetic instruments composed of three or
more independent SNPs for further validation. Similarly, to avoid
spurious associations driven by pleiotropy, we excluded associations
with significant heterogeneity (p < 0.05). After applying these
exclusion criteria, 47 significant associations (FDR<0.05) among
32 metabolites and 34 phenotypes remained. A summary of the
retained metabolite pairs is presented in Figure 2; Supplementary
Table S3. These metabolites map to four super-pathways, with the
majority mapping to lipid pathways. Distinct phenotypes with a
high number of significant associations with metabolites included
cholecystitis [n = 5], hypercholesterolemia [n = 3] and IBD [n = 2].
Metabolites with a high number of significant associations with
phenotypes included campesterol [n = 7], phosphatidylcholine (16:

FIGURE 3
(Continued).
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0/22:5n3, 18:1/20:4) [n = 3], bilirubin (E,E) [n = 2], methylsuccinate
[n = 2] and X–21,796 [n = 2].

In the African ancestry population, of 107 metabolites with
significant associations in the PGS analysis, 85 had available
summary statistics in the METSIM study and among unmatched
metabolites, 14 were unknown. The IVW method identified
22 significant (FDR<0.05) associations comprising of
15 metabolites and 13 phenotypes (Figure 1B; Supplementary
Table S4). These included several associations between lipids and
infectious or acute inflammatory diseases, including urinary tract
infections, sepsis, and fever.

A summary of the associations between the individual SNPs
used in the genetic instrument for each metabolite and the
clinical phenotypes is presented for European (Supplementary
Table S5) and African (Supplementary Table S6) ancestry
individuals.

Validation of the significant association

To validate the significant findings fromMR, we tested associations
between the metabolite genetic instruments and phenotypes with
available external GWAS summary statistics. After excluding
associations with significant heterogeneity, <3 SNPs and non-specific
phenotypes (e.g., “Other mental disorder”), there were 15 phenotypes
(with 12 associated metabolites) taken forward for further validation
from European ancestry (Figure 3A). There were no suitable external
GWAS datasets available to evaluate the significant associations in
African ancestry.

Of 22 metabolite-phenotype pairs evaluated, 16 were significant
(FDR p < 0.05), with the same direction of effect (Figure 3B;
Supplementary Table S7). Among the disease associations were
bilirubin (E,E) and X–21,796 associated with cholelithiasis,
phosphatidylcholine (16:0/22:5n3, 18:1/20:4) and arachidonate

FIGURE 3
(Continued). Summary of association from MR analyses between genetic instruments for metabolites in in METSIM and genetic predisposition of
phenotypes derived from (A) BioVU (all significant at false discovery rate (FDR) p-value <0.05) and (B) validation phenotypes (The effect size and 95%
confidence interval (CI) are based on raw p-value. However, the significant results are considered at FDR p-value <0.05).
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(20:4n6) inversely associated with inflammatory bowel disease and
Crohn’s disease, and campesterol with coronary artery disease
(CAD) and MI. Phosphatidylcholine (16:0/22:5n3, 18:1/20:4) was
associated with low neutrophil count (neutropenia). The significant
associations of phosphatidylcholine (16:0/22:5n3, 18:1/20:4) with
low neutrophil count (neutropenia) and lipid diagnosis related to
hypercholesteremia (total cholesterol) with 1-(1-enyl-palmitoyl)-2-
oleoyl-GPC (P-16:0/18:1) were not consistent among the MR
methods, suggesting that they may represent pleiotropy or
are spurious.

Discussion

Metabolites are highly relevant integrative markers of health and
disease, that can inform disease prediction and pathophysiology.
However, large datasets are required to robustly interrogate
metabolite-phenotype associations. Measuring metabolites in
large numbers of samples is costly, logistically challenging, and
often unfeasible. In this “virtual” metabolomics study, we leveraged
state-of-the-art genetic methods in conjunction with large,
phenotypically diverse clinical and genetic data sets to interrogate
the metabolome against a broad clinical phenome. Among
724 metabolites analyzed, we found 336 metabolites in European
ancestry and 107 metabolites in African ancestry that showed
significant associations with clinical phenotypes in the BioVU
population. Of these, 159 and 22, in European and African
ancestry respectively, remained significant under a MR
framework. This used genetic instruments for metabolites
constructed in an independent population, and consistent with
the assumptions of MR, suggests they may be mediators of
disease risk. Among associations identified in the European
ancestry population, we independently validated associations for
16 of 22 metabolite-phenotype pairs using phenotypes derived from
independent GWAS studies. Among the validated phenotypes were
IBD, cholelithiasis, CAD, MI, neutropenia and lipid phenotypes.
These analyses highlight the value of applying the “virtual”
metabolomic approach in diverse, phenotype-rich biobanks to
identify novel associations.

It is important to interpret genetically-based associations with
caution, as they are susceptible to a number of biases. Some of these
biases may be attenuated using two-samples approaches, as used here,
which reduces spurious associations that can arise from one-sample
studies (Burgess et al., 2019). Associations based polygenic predictors
may be due to the effects of a single (or a small subset) of SNPs and,
hence, these associations have similar limitations as epidemiological
associations in that the etiological relationship between the expose and
outcome is not clear (Burgess et al., 2019). Associations based on MR
methods (assuming no violations of the key assumptions), can reduce
the likelihood of an association driven by outlying SNPs and can
provide more insights into etiological relationships (Davey Smith and
Hemani, 2014). However, all associations have to be evaluated in the
context of a larger and more robust knowledge base in order to further
determine their validity. Hence, for several associations identified, we
discuss their plausibility in the context of current clinical and
experimental evidence bases.

We found consistent associations between gastrointestinal
disease phenotypes and bioactive lipids, highlighting both

inflammation and resolution of inflammation as important
disease mediators. We found inverse associations between
phosphatidylcholine (PC) (16:0/22:5n3, 18:1/20:4) and
arachidonate (20:4n6) with IBD and Crohn’s disease, both
inflammatory diseases of the gut mucosa (Alhouayek et al.,
2021). Circulating phosphatidylcholines have been reported to be
reduced in inflammatory bowel disease, suggesting that they may
have a protective role in the gut mucosa (Treede et al., 2007;
Stremmel et al., 2021). PCs may have anti-inflammatory effects
and prevent mucosal damage (Treede et al., 2007), with potential
therapeutic application for IBD (Ai et al., 2022). It is important to
identify the specific PC involved in protecting the gut against
disease. One of the abundant main species of
phosphatidylcholines in gut mucus is PC 16:0/18:1 (Treede et al.,
2007). This is consistent with our data indicating that lower
genetically-predicted phosphatidylcholine (16:0/22:5n3, 18:1/20:4)
associates with IBD and Crohn’s disease. The association between
arachidonate (20:4n6) with IBD and Crohn’s disease may have been
biased due to unaccounted pleiotropy; however, as MR-PRESSO can
correct for the contributions of outlying SNPs, the corrected
estimate provided by MR-PRESSO should be considered as a
more reliable estimate (Zhu, 2021). There is biological support
for the association between arachidonate (20:4n6) and IBD in the
literature. Arachidonic acid is a precursor of eicosanoids, with
potential anti-inflammatory activity (Marton et al., 2019), and
has previously been shown to be inversely associated with IBD
including UC and Crohn’s disease (Levy et al., 2000; ROMANATO
et al., 2009; Bugajska et al., 2022).

We observed several other plausible disease specific associations.
There were positive associations between both bilirubin (E,E) and
X–21796 with cholelithiasis (gallstone disease). A causal association
has previously been reported between extreme levels of bilirubin and
increased risk of gallstone disease (Stender et al., 2013). Bilirubin
(E,E) is one of the water soluble isomers of bilirubin that is converted
from unconjugated bilirubin (Z,Z) upon exposure to light (Wang
et al., 2021). The identity of X–21796 is unknown. However, SNPs
associated with X–21796 map to several members of the UGT1A
family of genes, which have also been associated with bilirubin levels
and risk of gallstones (Stender et al., 2013), and SLCO1B, which is
involved in bilirubin transport into the liver (Keppler, 2014). This
suggests that this unknown metabolite may be closely related to
bilirubin, and also highlights the utility of our approach to define the
underlying mechanistic basis of associations with unknown
metabolites using genetic data, which is generally not feasible
using other standard epidemiological approaches.

Interestingly, the “virtual” metabolomics approach provided us
with a considerable opportunity for novel discovery in relation to
cardiovascular disease (CVD). Previously, a meta-analysis found no
association between serum concentrations of two common plant
sterols (sitosterol and campesterol) and risk of CVD (Genser et al.,
2012). However, in our large well-powered study, we found a
positive association between campesterol and risk of CAD and
MI. Campesterol was also strongly associated with most of the
phenotypes categorized in the lipid-related disorders group. Several
factors have been proposed as the potential mechanisms linking
elevated concentration of campesterol and increased CVD risk,
including common pathways influencing the absorption of
cholesterol and plant sterols in the intestines, (Silbernagel et al.,

Frontiers in Genetics frontiersin.org08

Bagheri et al. 10.3389/fgene.2024.1392622

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1392622


2010), shared genetics linking lipoproteins and phytosterols to MI
and atherosclerosis, (Wang et al., 2014; Scholz et al., 2022), poor
nutritional status, (Strandberg and Pitkälä, 2007), and poor
metabolic health (Simonen et al., 2000). We anticipate that future
analyses may validate and explore the mechanistic bases and
underlying pathophysiology of this interesting finding.

This unbiased discovery approach allowed us to create and validate
a resource of associations which identified metabolites that are
biomarkers and potential mediators of several other clinical
phenotypes. For instance, we successfully validated an inverse
association between the plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-
GPC (P-16:0/18:1) and hypercholesterolemia. This metabolite was
reported as inversely related to visceral adipose tissue volume and
the percentage of fat in the liver and pancreas (Lind et al., 2021).We also
found associations between 1-palmitoyl-2-stearoyl-GPC (16:0/18:0)
and LDL and total cholesterol; this metabolite has been found to be
positively associated with dyslipidemia (Yousri et al., 2022). Our data
demonstrated that hypertriglyceridemia was positively associated with
oleoyl-linoleoyl-glycerol (18:1/18:2), potentially a novel association. We
also found and validated a significant association between
phosphatidylcholine (16:0/22:5n3, 18:1/20:4) and low blood cell
count (neutropenia). There were other interesting associations we
were unable to validate using external data sets due to lack of
available data. For instance, we observed positive significant
associations between stearidonate (18:4n3) and 1-stearoyl-2-
meadoyl-GPC (18:0/20:3n9) and nasal polyps. Dysregulated lipid
metabolism has been reported in nasal polyps (Miyata et al., 2019).
Thesemetabolites potentially represent new biomarkers of this disorder.
An inverse association between methylsuccinate and Alzheimer’s
disease (AD) was not validated, however given published data
linking methylsuccinate supplementation to improvement in neuron
dysfunction in AD, this may merit further study.

A significant strength of this study was the use of large datasets
which have proven robust for discovery of SNPs associated with
both metabolites and disease. A further strength is that we utilized
genetic approaches that are well-validated for the applications we
propose (Voight et al., 2012; Larsson et al., 2017). We analyzed data
from multiple sources, including multiple non-overlapping
independent cohorts using independent metabolite measurement
platforms, and analysis in both European and African ancestry
populations where possible. This allowed us to maximize
discovery through increased sample sizes and a more diverse
population sample, to ensure generalizability, reproducibility and
rigor of the association (Vsevolozhskaya et al., 2017). Moreover,
validating the observed associations using available external GWAS
additionally strengthened our findings.

Our study also has some limitations. An important limitation of
a genetics-based association approach is that the associationmay not
be consistent when using directly measured levels of the metabolite.
This can be due to pleiotropic associations, such as when a SNP in
the predictor tags a genetic locus that is associated with an outcome
through a mechanism unrelated to the metabolite, or due to weak
instrument bias (Davies et al., 2015; Gianola et al., 2015). When
selecting genetic instruments for metabolites in the MR studies, was
also used a permissive inclusion threshold (an association p < 5 ×
10−6), which can drive weak instrument bias. Further, some
metabolites are heavily modulated by environment and
homeostatic physiology, which may mask an association.

Metabolites are also highly inter-correlated, which was confirmed
by a high level of overlap within SNP predictors. We elected to treat
each metabolite individually, as is standard for metabolomic
association studies, without accounting for the correlation
structure. This may have resulted in overly-stringent correction
for multiple testing. Future focused studies are required to
investigate the relationships between combinations of metabolites
and disease. GWAS data were not available for all the phenotypes
showing a significant association with metabolites. This limited the
number of total novel findings we could evaluate in external data
sets. We were also limited in our ability to detect ancestry-specific
effects. The metabolite predictors were constructed in European
(OMICSPRED) and Finnish (METSIM) ancestry individuals. Thus,
these may not be appropriate instruments for identifying
metabolite-disease associations in individuals of African ancestry.

In summary, we identified novel metabolite-phenotype
associations, and confirmed known relationships between
metabolites and disease. Further studies are needed to replicate
and clinically validate these findings. This study highlights the utility
of a genetics-based “virtual”metabolomics approach in conjunction
with DNA biobanks to link metabolites to clinical diseases and
clinical diagnoses. As genetic biobanks continue to grow, the
potential to discover genetic underpinnings of the metabolome
will also expand. This approach can be used to identify
additional metabolite-disease associations, uncover novel disease
biology and move towards application in clinical populations.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: The complete summary results of all
analyses are presented in the Supplementary Material. Subject-
level access to BioVU clinical and genetic data is controlled by
the BioVU data repository (https://victr.vumc.org/biovu-
description/#). Upon publication, data to replicate the primary
findings presented here for research purposes may be requested
from the repository (biovu@vumc.org). BioVU vetting for use of
individual-level data includes institutional IRB approval, data use
agreements, and administrative and scientific reviews. Requests to
access these datasets should be directed to biovu@vumc.org.

Ethics statement

The studies involving humans were approved by the VUMC
Institutional Review Board (IRB). The studies were conducted in
accordance with the local legislation and institutional requirements.
Written informed consent for participation was not required from
the participants or the participant’ legal guardians/next of kin in
accordance with the national legislation and institutional
requirements.

Author contributions

MB: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Validation,

Frontiers in Genetics frontiersin.org09

Bagheri et al. 10.3389/fgene.2024.1392622

https://victr.vumc.org/biovu-description/
https://victr.vumc.org/biovu-description/
mailto:biovu@vumc.org
mailto:biovu@vumc.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1392622


Visualization, Writing–original draft, Writing–review and editing.
AB: Formal Analysis, Investigation, Methodology, Writing–original
draft. MS: Formal Analysis, Validation, Writing–original draft. VM:
Writing–review and editing. RS: Writing–review and editing. JM:
Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Resources, Supervision,
Validation, Visualization, Writing–original draft, Writing–review
and editing. JF: Conceptualization, Funding acquisition,
Investigation, Methodology, Project administration, Supervision,
Validation, Visualization, Writing–original draft, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
research was supported by the NIH, R01 HL142856 (Ferguson,
Mosley), K01 HL165020-01A1 and T32 HG008341 (Bagheri),
and R01 GM130791 (Mosley). Vanderbilt University Medical
Center’s BioVU resource is supported by numerous sources:
institutional funding, private agencies, and federal grants.
These include the NIH funded Shared Instrumentation Grant
S10RR025141; and CTSA grants UL1TR002243, UL1TR000445,
and UL1RR024975. Genomic data are also supported by
investigator-led projects that include U01HG004798,
R01NS032830, RC2GM092618, P50GM115305, U01HG006378,
U19HL065962, R01HD074711; and additional funding sources
listed at https://victr.vumc.org/biovu-funding/.

Acknowledgments

Data on coronary artery disease/myocardial infarction have
been contributed by CARDIoGRAMplusC4D investigators and
have been downloaded fromwww.CARDIOGRAMPLUSC4D.ORG.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1392622/
full#supplementary-material

References

Ai, R., Xu, J., Ji, G., and Cui, B. (2022). Exploring the phosphatidylcholine in
inflammatory bowel disease: potential mechanisms and therapeutic interventions.
Curr. Pharm. Des. 28, 3486–3491. doi:10.2174/1381612829666221124112803

Alhouayek, M., Ameraoui, H., and Muccioli, G. G. (2021). Bioactive lipids in
inflammatory bowel diseases - from pathophysiological alterations to therapeutic
opportunities. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 158854. doi:10.
1016/j.bbalip.2020.158854

American Diabetes Association (2013). Economic costs of diabetes in the U.S. in 2012.
Diabetes Care 36, 1033–1046. doi:10.2337/dc12-2625

Bowden, J., Davey Smith, G., Haycock, P. C., and Burgess, S. (2016). Consistent
estimation in mendelian randomization with some invalid instruments using a weighted
median estimator. Genet. Epidemiol. 40, 304–314. doi:10.1002/gepi.21965

Bugajska, J., Berska, J., Zwolińska-Wcisło, M., and Sztefko, K. (2022). The risk of
essential fatty acid insufficiency in patients with inflammatory bowel diseases: fatty acid
profile of phospholipids in serum and in colon biopsy specimen. Arch. Med. Sci. 18,
1103–1107. doi:10.5114/aoms/150041

Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M.,
et al. (2019). Guidelines for performing Mendelian randomization investigations:
update for summer 2023. Wellcome Open Res. 4, 186. doi:10.12688/
wellcomeopenres.15555.2

Chen, M.-H., Raffield, L. M., Mousas, A., Sakaue, S., Huffman, J. E., Moscati, A., et al.
(2020). Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals
from 5 global populations. Cell 182, 1198–1213.e14. doi:10.1016/j.cell.2020.06.045

Davey Smith, G., and Ebrahim, S. (2003). Mendelian randomization’: can genetic
epidemiology contribute to understanding environmental determinants of disease? Int.
J. Epidemiol. 32, 1–22. doi:10.1093/ije/dyg070

Davey Smith, G., and Hemani, G. (2014). Mendelian randomization: genetic anchors
for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98. doi:10.
1093/hmg/ddu328

Davies, N. M., von Hinke Kessler Scholder, S., Farbmacher, H., Burgess, S.,
Windmeijer, F., and Smith, G. D. (2015). The many weak instruments problem and
Mendelian randomization. Stat. Med. 34, 454–468. doi:10.1002/sim.6358

de Lange, K. M., Moutsianas, L., Lee, J. C., Lamb, C. A., Luo, Y., Kennedy, N. A., et al.
(2017). Genome-wide association study implicates immune activation of multiple
integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261. doi:10.1038/
ng.3760

Demirkan, A., Henneman, P., Verhoeven, A., Dharuri, H., Amin, N., van Klinken,
J. B., et al. (2015). Insight in genome-wide association of metabolite quantitative traits by
exome sequence analyses. PLoS Genet. 11, e1004835. doi:10.1371/journal.pgen.1004835

Denny, J. C., Bastarache, L., Ritchie, M. D., Carroll, R. J., Zink, R., Mosley, J. D., et al.
(2013). Systematic comparison of phenome-wide association study of electronic
medical record data and genome-wide association study data. Nat. Biotechnol. 31,
1102–1110. doi:10.1038/nbt.2749

Denny, J. C., Ritchie, M. D., Basford, M. A., Pulley, J. M., Bastarache, L., Brown-
Gentry, K., et al. (2010). PheWAS: demonstrating the feasibility of a phenome-wide scan
to discover gene-disease associations. Bioinforma. Oxf. Engl. 26, 1205–1210. doi:10.
1093/bioinformatics/btq126

Emdin, C. A., Khera, A. V., and Kathiresan, S. (2017). Mendelian randomization.
JAMA - J. Am. Med. Assoc. 318, 1925–1926. doi:10.1001/jama.2017.17219

Genser, B., Silbernagel, G., De Backer, G., Bruckert, E., Carmena, R., Chapman, M. J.,
et al. (2012). Plant sterols and cardiovascular disease: a systematic review and meta-
analysis. Eur. Heart J. 33, 444–451. doi:10.1093/eurheartj/ehr441

Gianola, D., de los Campos, G., Toro, M. A., Naya, H., Schön, C.-C., and Sorensen, D.
(2015). Do molecular markers inform about pleiotropy? Genetics 201, 23–29. doi:10.
1534/genetics.115.179978

Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Yang, H., et al. (2003).
The international HapMap project. Nature 426, 789–796. doi:10.1038/nature02168

Howie, B. N., Donnelly, P., and Marchini, J. (2009). A flexible and accurate Genotype
imputation method for the next generation of genome-wide association studies. PLoS
Genet. 5, e1000529. doi:10.1371/journal.pgen.1000529

Karnes, J. H., Bastarache, L., Shaffer, C. M., Gaudieri, S., Xu, Y., Glazer, A. M., et al.
(2017). Phenome-wide scanning identifies multiple diseases and disease severity
phenotypes associated with HLA variants. Sci. Transl. Med. 9, eaai8708. doi:10.1126/
scitranslmed.aai8708

Frontiers in Genetics frontiersin.org10

Bagheri et al. 10.3389/fgene.2024.1392622

https://victr.vumc.org/biovu-funding/
http://www.CARDIOGRAMPLUSC4D.ORG
https://www.frontiersin.org/articles/10.3389/fgene.2024.1392622/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1392622/full#supplementary-material
https://doi.org/10.2174/1381612829666221124112803
https://doi.org/10.1016/j.bbalip.2020.158854
https://doi.org/10.1016/j.bbalip.2020.158854
https://doi.org/10.2337/dc12-2625
https://doi.org/10.1002/gepi.21965
https://doi.org/10.5114/aoms/150041
https://doi.org/10.12688/wellcomeopenres.15555.2
https://doi.org/10.12688/wellcomeopenres.15555.2
https://doi.org/10.1016/j.cell.2020.06.045
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1002/sim.6358
https://doi.org/10.1038/ng.3760
https://doi.org/10.1038/ng.3760
https://doi.org/10.1371/journal.pgen.1004835
https://doi.org/10.1038/nbt.2749
https://doi.org/10.1093/bioinformatics/btq126
https://doi.org/10.1093/bioinformatics/btq126
https://doi.org/10.1001/jama.2017.17219
https://doi.org/10.1093/eurheartj/ehr441
https://doi.org/10.1534/genetics.115.179978
https://doi.org/10.1534/genetics.115.179978
https://doi.org/10.1038/nature02168
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1126/scitranslmed.aai8708
https://doi.org/10.1126/scitranslmed.aai8708
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1392622


Keppler, D. (2014). The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in
conjugated hyperbilirubinemia. Drug Metab. Dispos. 42, 561–565. doi:10.1124/dmd.
113.055772

Kettunen, J., Demirkan, A., Wurtz, P., Draisma, H. H., Haller, T., Rawal, R., et al.
(2016). Genome-wide study for circulating metabolites identifies 62 loci and reveals
novel systemic effects of LPA. Nat. Commun. 7, 11122. doi:10.1038/ncomms11122

Larsson, S. C., Burgess, S., and Michaëlsson, K. (2017). Association of genetic variants
related to serum calcium levels with coronary artery disease and myocardial infarction.
JAMA 318, 371–380. doi:10.1001/jama.2017.8981

Levy, E., Rizwan, Y., Thibault, L., Lepage, G., Brunet, S., Bouthillier, L., et al. (2000).
Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in
pediatric Crohn disease. Am. J. Clin. Nutr. 71, 807–815. doi:10.1093/ajcn/71.3.807

Lieb, W., Enserro, D. M., Larson, M. G., and Vasan, R. S. (2018). Residual
cardiovascular risk in individuals on lipid-lowering treatment: quantifying absolute
and relative risk in the community. Open Heart 5, e000722. doi:10.1136/openhrt-2017-
000722

Lind, L., Salihovic, S., Risérus, U., Kullberg, J., Johansson, L., Ahlström, H., et al.
(2021). The plasma metabolomic profile is differently associated with liver fat, visceral
adipose tissue, and pancreatic fat. J. Clin. Endocrinol. Metabolism 106, e118–e129.
doi:10.1210/clinem/dgaa693

Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W.,
et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-
density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513.
doi:10.1038/s41588-018-0241-6

Maher, B. S. (2015). Polygenic scores in epidemiology: risk prediction, etiology, and
clinical utility. Curr. Epidemiol. Rep. 2, 239–244. doi:10.1007/s40471-015-0055-3

Marton, L. T., Goulart, R. de A., Carvalho, A. C. A. de, and Barbalho, S. M. (2019).
Omega fatty acids and inflammatory bowel diseases: an Overview. Int. J. Mol. Sci. 20,
4851. doi:10.3390/ijms20194851

Mi, J., Jiang, L., Liu, Z., Wu, X., Zhao, N., Wang, Y., et al. (2022). Identification of
blood metabolites linked to the risk of cholelithiasis: a comprehensive Mendelian
randomization study. Hepatol. Int. 16, 1484–1493. doi:10.1007/s12072-022-10360-5

Miyata, J., Fukunaga, K., Kawashima, Y., Watanabe, T., Saitoh, A., Hirosaki, T., et al.
(2019). Dysregulated fatty acid metabolism in nasal polyp-derived eosinophils from
patients with chronic rhinosinusitis. Allergy 74, 1113–1124. doi:10.1111/all.13726

Mootha, V. K., and Hirschhorn, J. N. (2010). Inborn variation in metabolism. Nat.
Genet. 42, 97–98. doi:10.1038/ng0210-97

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M.,
et al. (2016). Heart disease and stroke statistics-2016 update: a Report from the
American heart association. Circulation 133, e38–e360. doi:10.1161/CIR.
0000000000000350

National Diabetes Statistics Report (2017). Estimates of diabetes and its burden in the
United States, 2014. Available at: https://data.globalchange.gov/report/national-
diabetes-statistics-report-estimates-diabetes-its-burden (Accessed September 29, 2017).

Nikpay, M., Goel, A., Won, H.-H., Hall, L. M., Willenborg, C., Kanoni, S., et al. (2015).
A comprehensive 1000 Genomes–based genome-wide association meta-analysis of
coronary artery disease. Nat. Genet. 47, 1121–1130. doi:10.1038/ng.3396

Pasaniuc, B., and Price, A. L. (2017). Dissecting the genetics of complex traits using
summary association statistics. Nat. Rev. Genet. 18, 117–127. doi:10.1038/nrg.2016.142

Paternoster, L., Standl, M., Waage, J., Baurecht, H., Hotze, M., Strachan, D. P., et al.
(2015). Multi-ancestry genome-wide association study of 21,000 cases and
95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47,
1449–1456. doi:10.1038/ng.3424

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich,
D. (2006). Principal components analysis corrects for stratification in genome-wide
association studies. Nat. Genet. 38, 904–909. doi:10.1038/ng1847

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81, 559–575. doi:10.1086/519795

Rhee, E. P., Ho, J. E., Chen, M. H., Shen, D., Cheng, S., Larson, M. G., et al. (2013). A
genome-wide association study of the human metabolome in a community-based
cohort. Cell metab. 18, 130–143. doi:10.1016/j.cmet.2013.06.013

Rhee, E. P., Yang, Q., Yu, B., Liu, X., Cheng, S., Deik, A., et al. (2016). An exome array
study of the plasma metabolome. Nat. Commun. 7, 12360. doi:10.1038/ncomms12360

Roden, D. M., Pulley, J. M., Basford, M. A., Bernard, G. R., Clayton, E.W., Balser, J. R.,
et al. (2008). Development of a large-scale de-identified DNA biobank to enable
personalized medicine. Clin. Pharmacol. Ther. 84, 362–369. doi:10.1038/clpt.2008.89

Romanato, G., Scarpa, M., Angriman, I., Faggian, D., Ruffolo, C., Marin, R., et al.
(2009). Plasma lipids and inflammation in active inflammatory bowel diseases.
Alimentary Pharmacol. Ther. 29, 298–307. doi:10.1111/j.1365-2036.2008.03886.x

Ruderfer, D. M., Walsh, C. G., Aguirre, M. W., Tanigawa, Y., Ribeiro, J. D., Franklin,
J. C., et al. (2019). Significant shared heritability underlies suicide attempt and clinically
predicted probability of attempting suicide.Mol. Psychiatry 25, 2422–2430. doi:10.1038/
s41380-018-0326-8

Scholz, M., Horn, K., Pott, J., Gross, A., Kleber, M. E., Delgado, G. E., et al. (2022).
Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental
effect on coronary atherosclerosis. Nat. Commun. 13, 143. doi:10.1038/s41467-021-
27706-6

Shin, S. Y., Fauman, E. B., Petersen, A. K., Krumsiek, J., Santos, R., Huang, J., et al.
(2014). An atlas of genetic influences on human blood metabolites. Nat. Genet. 46,
543–550. doi:10.1038/ng.2982

Silbernagel, G., Fauler, G., Hoffmann, M. M., Lütjohann, D., Winkelmann, B. R.,
Boehm, B. O., et al. (2010). The associations of cholesterol metabolism and plasma plant
sterols with all-cause and cardiovascular mortality. J. Lipid Res. 51, 2384–2393. doi:10.
1194/jlr.P002899

Simonen, P., Gylling, H., Howard, A. N., and Miettinen, T. A. (2000). Introducing a
new component of the metabolic syndrome: low cholesterol absorption. Am. J. Clin.
Nutr. 72, 82–88. doi:10.1093/ajcn/72.1.82

Stender, S., Frikke-Schmidt, R., Nordestgaard, B. G., and Tybjærg-Hansen, A. (2013).
Extreme bilirubin levels as a causal risk factor for symptomatic gallstone disease. JAMA
Intern. Med. 173, 1222–1228. doi:10.1001/jamainternmed.2013.6465

Strandberg, T. E., and Pitkälä, K. H. (2007). Frailty in elderly people. Lancet 369,
1328–1329. doi:10.1016/S0140-6736(07)60613-8

Stremmel, W., Vural, H., Evliyaoglu, O., and Weiskirchen, R. (2021). Delayed-release
phosphatidylcholine is effective for treatment of ulcerative colitis: a meta-analysis. Dig.
Dis. 39, 508–515. doi:10.1159/000514355

Treede, I., Braun, A., Sparla, R., Kühnel, M., Giese, T., Turner, J. R., et al. (2007). Anti-
inflammatory effects of phosphatidylcholine. J. Biol. Chem. 282, 27155–27164. doi:10.
1074/jbc.M704408200

Voight, B. F., Peloso, G. M., Orho-Melander, M., Frikke-Schmidt, R., Barbalic, M.,
Jensen, M. K., et al. (2012). Plasma HDL cholesterol and risk of myocardial infarction: a
mendelian randomisation study. Lancet 380, 572–580. doi:10.1016/S0140-6736(12)
60312-2

Vsevolozhskaya, O. A., Kuo, C.-L., Ruiz, G., Diatchenko, L., and Zaykin, D. V. (2017).
The more you test, the more you find: the smallest P-values become increasingly
enriched with real findings as more tests are conducted. Genet. Epidemiol. 41, 726–743.
doi:10.1002/gepi.22064

Wang, J., Guo, G., Li, A., Cai, W.-Q., and Wang, X. (2021). Challenges of
phototherapy for neonatal hyperbilirubinemia (Review). Exp. Ther. Med. 21, 231.
doi:10.3892/etm.2021.9662

Wang, Y., Wang, L., Liu, X., Zhang, Y., Yu, L., Zhang, F., et al. (2014). Genetic variants
associated with myocardial infarction and the risk factors in Chinese population. PLoS
One 9, e86332. doi:10.1371/journal.pone.0086332

Wightman, D. P., Jansen, I. E., Savage, J. E., Shadrin, A. A., Bahrami, S., Holland, D.,
et al. (2021). A genome-wide association study with 1,126,563 individuals identifies new
risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282. doi:10.1038/s41588-021-
00921-z

Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S.,
et al. (2013). Discovery and refinement of loci associated with lipid levels.Nat. Genet. 45,
1274–1283. doi:10.1038/ng.2797

Xu, Y., Ritchie, S. C., Liang, Y., Timmers, PRHJ, Pietzner, M., Lannelongue, L., et al.
(2022). An atlas of genetic scores to predict multi-omic traits. Genomics. doi:10.1101/
2022.04.17.488593

Xu, Y., Ritchie, S. C., Liang, Y., Timmers, PRHJ, Pietzner, M., Lannelongue, L., et al.
(2023). An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131.
doi:10.1038/s41586-023-05844-9

Yin, X., Chan, L. S., Bose, D., Jackson, A. U., VandeHaar, P., Locke, A. E., et al. (2022).
Genome-wide association studies of metabolites in Finnish men identify disease-
relevant loci. Nat. Commun. 13, 1644. doi:10.1038/s41467-022-29143-5

Yousri, N. A., Suhre, K., Yassin, E., Al-Shakaki, A., Robay, A., Elshafei, M., et al.
(2022). Metabolic and metabo-clinical signatures of type 2 diabetes, obesity,
retinopathy, and dyslipidemia. Diabetes 71, 184–205. doi:10.2337/db21-0490

Zhu, X. (2021). Mendelian randomization and pleiotropy analysis. Quant. Biol. 9,
122–132. doi:10.1007/s40484-020-0216-3

Frontiers in Genetics frontiersin.org11

Bagheri et al. 10.3389/fgene.2024.1392622

https://doi.org/10.1124/dmd.113.055772
https://doi.org/10.1124/dmd.113.055772
https://doi.org/10.1038/ncomms11122
https://doi.org/10.1001/jama.2017.8981
https://doi.org/10.1093/ajcn/71.3.807
https://doi.org/10.1136/openhrt-2017-000722
https://doi.org/10.1136/openhrt-2017-000722
https://doi.org/10.1210/clinem/dgaa693
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1007/s40471-015-0055-3
https://doi.org/10.3390/ijms20194851
https://doi.org/10.1007/s12072-022-10360-5
https://doi.org/10.1111/all.13726
https://doi.org/10.1038/ng0210-97
https://doi.org/10.1161/CIR.0000000000000350
https://doi.org/10.1161/CIR.0000000000000350
https://data.globalchange.gov/report/national-diabetes-statistics-report-estimates-diabetes-its-burden
https://data.globalchange.gov/report/national-diabetes-statistics-report-estimates-diabetes-its-burden
https://doi.org/10.1038/ng.3396
https://doi.org/10.1038/nrg.2016.142
https://doi.org/10.1038/ng.3424
https://doi.org/10.1038/ng1847
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.cmet.2013.06.013
https://doi.org/10.1038/ncomms12360
https://doi.org/10.1038/clpt.2008.89
https://doi.org/10.1111/j.1365-2036.2008.03886.x
https://doi.org/10.1038/s41380-018-0326-8
https://doi.org/10.1038/s41380-018-0326-8
https://doi.org/10.1038/s41467-021-27706-6
https://doi.org/10.1038/s41467-021-27706-6
https://doi.org/10.1038/ng.2982
https://doi.org/10.1194/jlr.P002899
https://doi.org/10.1194/jlr.P002899
https://doi.org/10.1093/ajcn/72.1.82
https://doi.org/10.1001/jamainternmed.2013.6465
https://doi.org/10.1016/S0140-6736(07)60613-8
https://doi.org/10.1159/000514355
https://doi.org/10.1074/jbc.M704408200
https://doi.org/10.1074/jbc.M704408200
https://doi.org/10.1016/S0140-6736(12)60312-2
https://doi.org/10.1016/S0140-6736(12)60312-2
https://doi.org/10.1002/gepi.22064
https://doi.org/10.3892/etm.2021.9662
https://doi.org/10.1371/journal.pone.0086332
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/ng.2797
https://doi.org/10.1101/2022.04.17.488593
https://doi.org/10.1101/2022.04.17.488593
https://doi.org/10.1038/s41586-023-05844-9
https://doi.org/10.1038/s41467-022-29143-5
https://doi.org/10.2337/db21-0490
https://doi.org/10.1007/s40484-020-0216-3
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1392622

	Genotype-based “virtual” metabolomics in a clinical biobank identifies novel metabolite-disease associations
	Introduction
	Material and methods
	Vanderbilt BioVU study population
	Genetic data and quality control
	Phenotype data
	Specification of a virtual metabolome via human genetics
	Polygenic score analysis
	Mendelian randomization analysis to validate PGS associations
	MR validation in independent disease-specific GWAS datasets

	Results
	Predicted circulating levels of metabolites associate with a broad range of clinical phenotypes
	Mendelian randomization highlights relationships between circulating lipids and multiple disease phenotypes
	Validation of the significant association

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


