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Objective: The objective of this study was to pinpoint pathogenic genes and
assess the mutagenic pathogenicity in two pediatric patients with hereditary
spherocytosis.

Methods: We utilized whole-exome sequencing (WES) for individual analysis
(case 1) and family-based trio analysis (case 2). The significance of the intronic
mutation was validated through a Minigene splicing assay and supported by
subsequent in vitro experiments.

Results: Both probands received a diagnosis of hereditary spherocytosis. WES
identified a novel ANK1 c.1504-9G>A mutation in both patients, causing the
retention of seven nucleotides at the 5′ end of intron 13, as substantiated by the
Minigene assay. This variant results in a premature stop codon and the production
of a truncated protein. In vitro studies indicated a reduced expression of
the ANK1 gene.

Conclusion: The novel ANK1 c.1504-9G>A variant is established as the causative
factor for hereditary spherocytosis, with the c.1504-9G site functioning as a
splicing receptor.
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1 Introduction

Hereditary spherocytosis (HS) or spherocytosis type 1 (MIM: # 182900) is an inherited
hemolytic disorder commonly characterized by symptoms of extravascular hemolysis,
including anemia, jaundice, and splenomegaly. HS has a global prevalence, with incidences
reported as high as 1 in 2,000 in European and North American populations (Bolton-Maggs
et al., 2012). In China, a comprehensive review of literature from 1978 to 2013 by Wang
et al. (2015) estimated the overall prevalence of HS at approximately 1.37 per 100,000, with a
slight gender discrepancy of 1.27 cases per 100,000 in males and 1.49 cases per 100,000 in
females, indicating that HS is the most prevalent Mendelian red cell membrane disorder in
the country (Tao et al., 2016). Genetic mutations in the ANK1, SPTB, SPTA1, SLC4A1, and
EPB42 genes lead to defects in the corresponding ankyrin, β-spectrin, α-spectrin, band 3,
and protein 4.2, respectively. These defects result in a decreased erythrocyte membrane
surface area, increased osmotic fragility, and ultimately, the transformation of red blood
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cells from their typical biconcave shape to a spherical morphology.
This morphological change predisposes the red blood cells to
hemolysis within the spleen (Mohandas and Gallagher, 2008).
Currently, China lacks a disease registry system for HS, and there
is a significant need for epidemiological data. Although the
incidence and detection rates of HS have been on the rise in
recent years, misdiagnosis and oversight of the condition remain
prevalent (Chen et al., 2020; Gerard et al., 2020; Zhu et al., 2020). In
this context, we present two cases of HS attributed to the same novel
ANK1 intronic mutation, which we have demonstrated to function
as a splicing receptor.

2 Materials and methods

2.1 Objects

Upon admission, the two unrelated probands displayed varying
degrees of anemia. Comprehensive baseline laboratory evaluations
were conducted, including assessments of ferritin, iron levels,
transferrin, total iron binding capacity, folate, and vitamin B12,
glucose-6-phosphate dehydrogenase (G-6-PD) activity, hemoglobin
electrophoresis, direct antiglobulin test, thalassemia gene screening,
and bone marrow analysis, in accordance with the locally prevalent
anemia etiologies. Both cases were thoroughly investigated to rule
out common anemia causes such as nutritional deficits, G-6-PD
enzyme deficiency, thalassemia, autoimmune hemolytic anemia,
and bone marrow hematopoietic disorders.

2.2 Methods

2.2.1 Sample collection
Following informed consent from the family, 4 mL of EDTA-

anticoagulated peripheral venous blood from each child and 2 mL
from each parent were collected. These samples were then forwarded
to Chigene (Beijing) Translational Medical Research Center Co. Ltd.
(Beijing, China) for trio whole-exome sequencing (trio-WES) and
subsequent bioinformatic analysis.

2.2.2 Whole-exome sequencing (WES)
WES was performed using the xGen Exome Research Panel

v2.0 (Integrated DNA Technologies, United States) to construct
an exome library. High-throughput sequencing was carried out
on the NovaSeq 6000 platform (Illumina, United States). The
sequencing process, including data generation, cleaning, and
quality control, adhered to the manufacturer’s recommended
protocols, achieving an average sequencing depth of 100X and an
exomic coverage of no less than 99%. WES data were subjected to
automated bioinformatics analysis through the Chigene
Comprehensive Genetic Disease Precision Diagnosis Cloud
Platform (https://www.chigene.cn/zaixianfenxipingtai/). This
analysis generated insertions/deletions (indels) and single
nucleotide variant data of ≤50 bp and flagged copy number
variations spanning multiple consecutive exons using
proprietary algorithms developed by Chigene. The variant
database integrated into the Chigene Cloud Platform,
including resources such as dbSNP, ClinVar, HGMD pro,

gnomAD, and OMIM, provided annotations for the detected
gene variants, including minor allele frequency (MAF), reported
pathogenicity cases, literature, and associated diseases of the
variant genes. The pathogenicity of gene variants was
classified according to the clinical practice guidelines of the
American College of Medical Genetics and Genomics
(ACMG), and categorized as pathogenic, likely pathogenic, of
uncertain significance, likely benign, or benign.

2.2.3 Pathogenic variant confirmation
Sanger sequencing was conducted utilizing the ABI3730

(Thermo Fisher Scientific, Waltham, United States) sequencer,
adhering to the manufacturer’s protocols. The reference for the
ANK1 DNA sequence was NCBI transcript version
NM_020475.2.

2.2.4 In vitro analysis of ANK1 c.1504-9G>A
2.2.4.1 Minigene tests the effect of mutations on
gene splicing

Minigene fishing techniques were employed to construct the
recombinant vectors pcMINI-wt/mut and pcDNA3.1-wt/mut,
incorporating restriction sites. These vectors were then
transiently transfected into Hela and 293T cell lines. Total RNA
was extracted from the cell samples, and PCR amplification was
performed using primers flanking the minigene. The transcriptional
band size was evaluated by agarose gel electrophoresis and
confirmed by sequencing.

2.2.4.2 Functional analysis
2.2.4.2.1 Vector engineering. The p3Xflag-CMV-7.1-wt vector
was engineered using the synthesized whole gene ANK1 CDS as a
template, with p3Xflag-CMV-7.1-ANK1-EcoRI-F and p3Xflag-
CMV-7.1-ANK1-KpnI-R as primers. Similarly, the p3Xflag-CMV-
7.1-mut vector was constructed using p3Xflag-CMV-7.1-ANK1-
EcoRI-F and CMV-7.1-ANK1-AfeI-R primers. The integrity of
the constructed vectors was confirmed by sequencing.

2.2.4.2.2 Cell culture and gene delivery. 293T cells were
propagated in DMEM supplemented with 10% fetal bovine
serum. The cells were then transiently transfected with the
constructed wild-type and mutant eukaryotic expression
vectors using Lipo2000 reagent, as per the manufacturer’s
instructions. After 48 h post-transfection, samples were
harvested for quantitative PCR (qPCR) and Western blot
(WB) analyses.

2.2.4.2.3 mRNA expression analysis. Cell samples were collected
48 h post-transfection with the recombinant expression vectors. Total
RNAwas isolated using the Trizol method, followed by DNA digestion
and cDNA synthesis. The qPCR technique was utilized to quantify the
expression levels of the wild-type and mutant genes.

2.2.4.2.4 Protein expression assessment. Cellular precipitates
were obtained 48 h after transfection with the expression vectors.
Total cellular protein was extracted using RIPA buffer, and protein
concentrations were determined using a BSA assay kit. Subsequent
to protein denaturation, Western blot analysis was performed to
compare the expression levels of the wild-type and mutant proteins.

Frontiers in Genetics frontiersin.org02

Xiong et al. 10.3389/fgene.2024.1390924

https://www.chigene.cn/zaixianfenxipingtai/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1390924


3 Results

3.1 Clinical characteristics

The comprehensive clinical features of the probands are
delineated in Supplementary Material S1 [including a case
previously documented by our group (Wu et al., 2021)]. Both
unrelated patients were of Han Chinese descent and exhibited
varying degrees of anemia upon admission. All diagnostic
evaluations were conducted prior to any splenectomy or blood
transfusion procedures.

3.2 Discovery of ANK1 c.1504-9G>A variant

The ANK1 c.1504-9G>A variant was identified in both
individuals, a finding first reported by our team (Wu et al.,
2021). For case 1, genetic co-segregation analysis was not feasible
due to the unavailability of parental samples. In case 2, the mutation
emerged de novo and was classified as likely pathogenic according to
ACMG standards. Sanger sequencing confirmation for case 2 is
depicted in Figure 1.

3.3 In vitro assessment of ANK1
c.1504-9G>A

3.3.1 ANK1 c.1504-9G>A induces retention of
7 nucleotides at the 5′ end of intron 13

The pcMINI-ANK1-wt/mut minigene construct was designed to
incorporate a segment of intron 13 (397bp), exon 14 (198bp), and
part of intron 14 (207bp) into the pcMINI vector. Post-transfection

analysis revealed a spliced sequence spanning ANK1 exon A
through exon 14 to exon B. RT-PCR results indicated the
presence of a band of the predicted size (587bp), termed band a,
in the wild type, and an additional band, referred to as band b, in the
mutant type. Sequencing of bands a and b confirmed band a as a
normally spliced sequence, following the pattern exon A-exon 14
(198nt)-exon B. Conversely, band b exhibited a 7 nucleotide
retention on the right side of intron 13, with a splicing pattern of
exon A-▽ intron 13 (7nt)-exon 14 (198nt)-exon B (Figure 2).

3.3.2 Analysis of pcDNA3.1-ANK1-wt/mut
constructs

The pcDNA3.1-ANK1-wt/mut minigene strategy involved
inserting a fragment encompassing exon 13 (99bp), intron 13
(1103bp), and exon 14 (198bp) into the pcDNA3.1 vector.
Transfection was followed by observation of the exon 13-exon
14 splicing pattern for abnormalities. RT-PCR findings revealed a
band corresponding to the expected size (507bp), designated as band
a in the wild type, and a mutant-specific band b. Sequencing of these
bands showed that band a represented a normal splicing sequence,
exon 13 (99nt)-exon 14 (198nt). Band b, however, retained an
additional 7 nucleotides at the right side of intron 13, with a
splicing sequence of exon 13 (99nt)-▽ intron 13 (7nt)-exon 14
(198nt) (Figure 3).

3.3.3 Functional analysis of the ANK1 c.1504-
9G>A variant

The eukaryotic expression vectors p3Xflag-CMV-7.1-ANK1-wt/
mut were transfected into 293T cells, which were subsequently
harvested after 48 h for analysis. Quantitative PCR (qPCR) was
utilized to measure the expression levels of ANK1 in the cells, with
primers ANK1-3xFLAG-QPCR-F and -R specifically designed for
the wild-type and mutant genes. The qPCR data indicated that the
expression of the mutant ANK1 gene was reduced to 67% of that
observed in the wild-type. Western blot analysis confirmed the
presence of proteins at the anticipated molecular weights:
212 kDa for the wild-type construct and 59 kDa for the mutant,
indicating the synthesis of a truncated protein. These findings are
illustrated in Figure 4.

4 Discussion

In this study, both patients exhibited the classic hereditary
spherocytosis (HS), as known as spherocytosis type 1 (MIM: #
182900), phenotypes, as outlined in Supplementary Material S1. The
etiology of HS is linked to defects in erythrocyte membrane proteins,
which lead to a diminished surface area of red blood cells, altered
sphericity, increased membrane fragility, and compromised
elasticity and stability, all of which are associated with genetic
mutations (Manciu et al., 2017). Deficiencies or dysfunctions in
these membrane proteins disrupt the vertical connectivity of the
membrane’s bilayer skeleton. HS is predominantly caused by
mutations in the ANK1, SPTB, SPTA1, SLC4A1, and EPB42
genes, which impact the integrity of ankyrin, β-spectrin, α-
spectrin, band 3, and protein 4.2, respectively. Consequently,
erythrocytes assume an abnormal spherical shape that
predisposes them to hemolysis (Mohandas and Gallagher, 2008).

FIGURE 1
Verification of the ANK1 gene variant c.1504-9G>A in Case 2. The
red arrow highlights the mutation site confirmed by Sanger
sequencing.

Frontiers in Genetics frontiersin.org03

Xiong et al. 10.3389/fgene.2024.1390924

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1390924


HS is characterized by a wide range of phenotypic and genotypic
variability, with distinct prevalence rates and molecular patterns
across various ethnicities and geographic regions. A review byWang

et al. (2021) of the global literature on HS in Chinese patients from
2000 to 2020, which included genetic and clinical data, revealed that
ANK1 (46%) and SPTB (42%) mutations are the most common

FIGURE 2
Results from the pcMINI constructs. (A) Sequencing chromatograms of minigene constructs, with the wild type (WT) on top and the mutant (MUT)
below. (B) Agarose gel electrophoresis of RT-PCR products for transcript analysis. (C) Illustration of the minigene construction strategy and expected
splicing products, with bands observed in Hela and 293T cells denoted as a and b, respectively. (D) The sequencing results corresponding to the spliced
products. Red * indicates mutation location.

FIGURE 3
Results from the pcDNA3.1 constructs. (A) Sequencing chromatograms ofminigene constructs, with thewild type (WT) on top and themutant (MUT)
below. (B) Agarose gel electrophoresis of RT-PCR products for transcript analysis, with bands in Hela and 293T cells labeled as a and b, respectively. (C)
Schematic representation of theminigene construction strategy and expected splicing patterns. (D) The sequencing results corresponding to the spliced
products. Red * indicates mutation location.
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genetic causes of HS, followed by SLC4A1 (11%) and SPTA1 (1%).
Notably, no EPB42 mutations were reported in Han Chinese
individuals. Among ANK1 defects, most mutations previously
identified were frameshift, nonsense, or located at canonical
splicing sites (defined as the two nucleotides at both the 5′ donor
and 3′ acceptor splice sites), with mutations near splice sites being
relatively rare (Aggarwal et al., 2020; Qin et al., 2020; Tole et al.,
2020; Wang et al., 2018; Wang et al., 2020; Xie et al., 2021). The
discovery of the novel c.1504-9G>A mutation in two unrelated HS
patients within this study underscores its pathogenic significance.

The ANK1 gene, comprised of 42 exons and located on
chromosome 8p11.2, encodes the ankyrin protein, which consists
of 1881 amino acids including the N-terminal 89 kD domain, the
central 62 kD domain, and a variable C-terminal regulatory region
(Park et al., 2016). Ankyrin plays a pivotal role in membrane stability
by anchoring the β-spectrin tail at one end and the band 3 protein at
the other, thereby securing the membrane skeleton within the lipid
bilayer (Ipsaro et al., 2009). Alterations in the quantity or quality of
ankyrin can undermine the connection between the membrane
skeleton and the lipid bilayer, causing instability in the lipid
bilayer, vesicle formation and lipid loss, reduction in erythrocyte
membrane surface area, red blood cell sphericity (Barcellini et al.,
2011), and ultimately hemolysis in the spleen.

In our research, we implemented two distinct molecular systems
to validate the impact of intronic mutations on gene splicing,
providing dual confirmation of our findings. The pcMINI-wt/mut
system was utilized to monitor intron retention and exon skipping
phenomena, whereas the pcDNA3.1-wt/mut system was primarily
focused on detecting intron retention. The results from both systems
consistently demonstrated that the ANK1 c.1504-9G>A mutation

leads to the retention of 7 nucleotides downstream of intron
13 during the splicing process. Consequently, we speculated that
this retention of 7 nucleotides may result in either RNA degradation
or the insertion of seven extraneous codons between exons 13 and
14 in the mature mRNA. It is noteworthy that frameshift mutations
occurring between exons 13 and 14 have been known to induce
premature translation termination, thereby producing a truncated
ANK1 protein.

The in vitro experiments conducted as part of this study have
provided further insights into the cellular consequences of this
particular variant. Our observations revealed that the analogous
variant, c.1503_1504insggtccag p.D502Gfs*4, culminates in the
generation of a prematurely truncated protein that terminates
within exon 14, rather than being subjected to degradation. This
truncated protein may potentially possess undefined biological
functions. Additionally, the observed downregulation of ANK1
mRNA expression underscores a deficiency in the production of
the wild-type ANK1 protein, corroborating the pathogenic nature of
the mutation.

5 Conclusion

In summary, our study uncovered a novel ANK1 c.1504-9G>A
variant and established that it leads to the production of a truncated
ANK1 protein. Identifying this intronic mutation in proximity to the
canonical splicing sites of the ANK1 gene enhances our
comprehension of the genotype-phenotype correlations in ANK1-
associated hereditary spherocytosis. These findings pave the way for
future research into the regulatory mechanisms ofANK1 expression.

FIGURE 4
Gene expression analysis using the p3Xflag-CMV-7.1 vector. (A) Sequencing confirmation of the successful construction of the mutant variant:
c.1503_1504insggtccag p.D502Gfs*4. (B) Quantitative PCR (qPCR) detection of mRNA expression levels. (C) Western blot (WB) analysis for the
assessment of protein expression.
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