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Background: Hepatocellular carcinoma (HCC) is a malignant tumor with high
morbidity and mortality rate that seriously threatens human health. We aimed to
investigate the expression, prognostic value, and immune cell infiltration of lactic
acid metabolism-related genes (LAMRGs) in HCC using bioinformatics.

Methods: The HCC database (The Cancer Genome Atlas–Liver Hepatocellular
Carcinoma) was downloaded from the Cancer Genome Atlas (TCGA).
Differentially expressed genes (DEGs) between normal and tumor groups were
identified. The LAMRGs were obtained from literature and GeneCards and
MSigDB databases. Lactic acid metabolism-related differentially expressed
genes (LAMRDEGs) in HCC were screened from the DEGs and LAMRGs.
Functional enrichment analyses of the screened LAMRDEGs were further
conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). The
genes were used in multivariate Cox regression and least absolute shrinkage and
selection operator (LASSO) analyses to construct a prognostic model. Then, a
protein-protein interaction network was constructed using STRING and CTD
databases. Furthermore, the CIBERSORTx online database was used to assess the
relationship between immune cell infiltration and hub genes.

Results: Twenty-eight lactic acid metabolism-related differentially expressed
genes (LAMRDEGs) were identified. The GO and KEGG analyses showed that
the LAMRDEGs were related to the prognosis of HCC. The GSEA indicated that
the LAMRDEGs were significantly enriched in tumor related pathways. In the
multivariate Cox regression analysis, 14 key genes (E2F1, SERPINE1, GYS2, SPP1,
PCK1, CCNB1, CYP2C9, IGFBP3, KDM8, RCAN1, ALPL, FBP1, NQO1, and LCAT)
were found to be independent prognostic factors of HCC. Finally, the LASSO and
Cox regression analyses showed that six key genes (SERPINE1, SPP1, CCNB1,
CYP2C9, NQO1, and LCAT) were associated with HCC prognosis. Moreover, the
correlation analyses revealed that the expression of the six key genes were
associated with immune infiltrates of HCC.
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Conclusion: The LAMRDEGs can predict the prognosis andmay be associated with
immune cells infiltration in patients with HCC. These genes might be the promising
biomarkers for the prognosis and treatment of HCC.
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Introduction

Liver cancer is the sixth most prevalent cancer and the third
leading cause (8.3%) of cancer-related deaths worldwide (Arnold
et al., 2020). Hepatocellular carcinoma (HCC) is the most common
liver cancer with a high mortality rate (Liver, 2018; Ding et al.,
2019). Although progress in the diagnosis and treatment of HCC
has improved the survival rate of patients with HCC, poor
prognosis remains a challenge because most patients are
diagnosed with HCC at an advanced stage due to a lack of early
diagnostic and robust prognostic biomarkers (Yang et al., 2019).
Therefore, there is an urgent need to identify new prognostic
biomarkers to prolong the survival time of patients with HCC and

explore the underlying molecular mechanisms of HCC to develop
novel therapeutic targets.

Metabolic alterations are closely related to the occurrence,
development, and high invasiveness of tumors (Somarribas Patterson
and Vardhana, 2021). Increased lactic acid levels in the tumor
microenvironment (TME) play a vital role in oncogenesis. Lactic
acids not only a byproduct of glycolysis but also a critical modulator
of normal and malignant cell signaling pathways (Vinasco et al., 2019;
Brown et al., 2020). In an anaerobic environment, the production of high
levels of lactic acid by tumor cells serves as a signal that promotes cancer
cell proliferation, invasion, metastasis, and immune evasion and
contributes to carcinogenesis (Brown and Ganapathy, 2020; Bergers
and Fendt, 2021). Furthermore, lactic acid can establish metabolic

FIGURE 1
Workflow chart regarding the analyses in this study TCGA, the Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; DEGs, differentially
expressed genes; LAMRDEGs, lactic acidmetabolism-related differentially expressed genes; PPI, protein-protein interaction; GO, GeneOntology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis.
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coupling between cancer and adjacent cells to maintain tumor growth,
andincrease the malignant phenotypes of tumors (Locasale, 2012).
Tumor cells may metabolize lactic acid or transfer it to surrounding
cancer, immune, and vascular endothelial cells, affecting the biological
characteristics of the surrounding cells and resulting in metabolic
reconfiguration (Hayes et al., 2021).

In recent years, the inhibition of lactic acid metabolism has proven to
be a potential therapeutic approach for cancer (Doherty and Cleveland,
2013; Zeng et al., 2020). Previous studies have shown that lactic acid
metabolism-related genes (LAMRGs) and lncRNAs play critical role in
HCC (Li et al., 2021; Guan et al., 2022). However, the clinical significance
and underlyingmechanisms of lactic acidmetabolism related differentially
expressed genes (LAMRDEGs) in HCC remain poorly understood.

In this study, we aimed to screen LAMRDEGs in The Cancer
Genome Atlas–Liver HCC (TCGA-LIHC) cohort from TCGA
database and validated these genes using datasets from the
Gene Expression Omnibus (GEO). We also investigated the
functional enrichment of LAMRDEGs and visualized their
signaling pathways. Furthermore, Cox regression and least
absolute shrinkage and selection operator (LASSO) regression
analyses were performed to explore potential prognostic
biomarkers of HCC. Moreover, correlation between the
LAMRDEGs and immune-cell infiltration, and chemotherapy
drug sensitivity were further investigated. The current findings
may provide novel insights into improve diagnosis, treatment,
prognosis for HCC.

FIGURE 2
Differential gene analysis of TCGA-LIHC dataset (A). Differential gene volcano plot of the LIHC and normal groups in TCGA-LIHC dataset. (B). Rank of
differential genes of the LIHC and normal groups in TCGA-LIHC dataset. (C). Venn diagram regarding the upregulated DEGs in TCGA-LIHC dataset and LAMRGs.
(D). Heatmap regarding the LAMRDEGs between the LIHC and normal groups in TCGA-LIHC dataset. (E). Venn diagram regarding the downregulated DEGs in
TCGA-LIHC dataset and LAMRGs. LAMRDEGs, lactic acidmetabolism-related differentially expressed genes; DEGs, differentially expressed genes; LAMRGs,
lactic acid metabolism-related genes; DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma.
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Materials and methods

Dataset download and candidate
differentially expressed genes
(DEGs) screening

Data regarding TCGA-LIHC cohort from TCGA (https://portal.
gdc.cancer.gov/) was downloaded using the TCGAbiolinks package
(Colaprico et al., 2016). The RNA-seq data (normal: 50, tumor: 374) of

HCC patients were obtained. The expression profiles were
standardized in fragments per kilobase per million (FPKM) format
and log2-transformed, while corresponding clinical and survival
information of the HCC patients were collected from the UCSC
Xena browser (http://genome.ucsc.edu) (Goldman et al., 2020). In this
study, the TCGA-LIHC dataset was severed as the training set.

Additionally, we downloaded HCC related microarray data of
GSE25097 (Ivanovska et al., 2011) (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE25097) and GSE54236 (Zubiete-Franco

FIGURE 3
GO and KEGG enrichment analysis of the LAMRDEGs (A). Histogram of the GO and KEGG analyses results regarding the LAMRDEGs. (B). Network
map of the GO and KEGG analyses results regarding the LAMRDEGs. (C). Cyclic graph of the combined logFC values and GO and KEGG analyses results
regarding the LAMRDEGs. (D). Chord plot of the combined logFC and GO and KEGG analyses results regarding the LAMRDEGs. LAMRDEGs, lactic acid
metabolism-related differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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et al., 2019) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE54236) datasets from the GEO (https://www.ncbi.nlm.nih.gov/
geo/) database using the GEOquery (Davis and Meltzer, 2007)
package. The microarray platform for the GSE25097 dataset was
GPL10687. This datasets included transcriptome profiles of
268 HCC tumor tissue samples. The microarray platform for the
GSE54236 dataset was GPL6480. This datasets included gene
expression of 81 HCC tumor tissue samples. The GSE25097 and
GSE54236 datasets were served as the verification datasets
for analysis.

The LAMRGs were collected from the GeneCards (https://www.
genecards.org/) (Stelzer et al., 2016) and MSigDB database (https://
www.genecards.org/) (Liberzon et al., 2015). We used the keyword
“lactic acid metabolism” as the search keyword to obtain
1,986 LAMRGs from the GeneCards database. The same
keyword was used to obtain 194 genes LAMRGs from the
MSigDB database. In addition, 22 LAMRGs were obtained from
literature (Zhao et al., 2022). Finally, we intersected the LAMRGs

from the three sources to obtain 2139 genes related to lactic acid
metabolism (Supplementary Table S1).

The limma package was used to screen the DEGs from
expression profile of TCGA-LIHC dataset. The threshold was set
as | logFC | > 2 and p. adjust <0.05. To obtain the LAMRDEGs, all
DEGs from TCGA-LIHC datasets and LAMRGs were intersected
and displayed using a Venndiagram. Volcano plots of the differences
were generated using the “ggplot2”package. The heatmap regarding
the LAMRDEGs was drawn using R package “pheatmap.”

Function and pathway enrichment for
the DEGs

The R package “clusterProfiler” (Yu et al., 2012) was used to
conduct Gene Ontology (GO) analysis (Mi et al., 2019) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,
2000) enrichment analysis regarding the LAMRDEGs. The selection

TABLE 1 GO and KEGG enrichment analysis results of DEGs.

Ontology ID Description GeneRatio BgRatio p-value P.adj

BP GO,
0009410

response to xenobiotic stimulus 7/27 411/18800 1.38e-06 0.0008

BP GO,
0051384

response to glucocorticoid 5/27 139/18800 1.46e-06 0.0008

BP GO,
0031960

response to corticosteroid 5/27 157/18800 2.65e-06 0.0010

BP GO,
0071466

cellular response to xenobiotic stimulus 5/27 168/18800 3.7e-06 0.0010

BP GO,
0034637

cellular carbohydrate biosynthetic process 4/27 79/18800 4.71e-06 0.0010

CC GO,
0034774

secretory granule lumen 6/28 322/19594 5.22e-06 0.0001

CC GO,
0060205

cytoplasmic vesicle lumen 6/28 325/19594 5.51e-06 0.0001

CC GO,
0031983

vesicle lumen 6/28 327/19594 5.7e-06 0.0001

CC GO,
1904724

tertiary granule lumen 3/28 55/19594 6.52e-05 0.0008

CC GO,
0005788

endoplasmic reticulum lumen 5/28 311/19594 7.1e-05 0.0008

MF GO,
0020037

heme binding 4/28 139/18410 5.53e-05 0.0040

MF GO,
0046906

tetrapyrrole binding 4/28 149/18410 7.25e-05 0.0040

MF GO,
0005178

integrin binding 4/28 156/18410 8.67e-05 0.0040

MF GO,
0016705

oxidoreductase activity, acting on paired donors, with incorporation or reduction
of molecular oxygen

4/28 177/18410 0.0001 0.0049

MF GO,
0016209

antioxidant activity 3/28 85/18410 0.0003 0.0069

KEGG hsa04218 Cellular senescence 4/23 156/8164 0.0009 0.0652

KEGG hsa04115 p53 signaling pathway 3/23 73/8164 0.0011 0.0652

GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes; DEGs, Differentially expressed genes.
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criteria were set as p. adjust< 0.05 and false discovery rate (FDR) <
0.25. The Benjamini-Hochberg method was used for p correction.

Gene set enrichment analysis (GSEA) for
the DEGs

The “c2. cp.all.v2022.1. Hs.symbols.gmt” gene sets were obtained
from the MSigDB database (Liberzon et al., 2015). The “clusterprofiler”
package was used for the GSEA (Subramanian et al., 2005) analysis of
the DEGs obtained from TCGA-LIHC dataset. Furthermore, the
significant enrichment standards were p. adjust< 0.05 and FDR <0.25.

Construction of the cox regression model
for predicting prognosis

We identified 14 key prognostic-related genes from the LAMRDEGs
using Cox regressionmodel. The expression of the 14 key genes was then
included in the univariate Cox regression model and a forestplot was

drawn. These 14 key genes were included in the multivariate Cox
regression model, and a nomogram model was established to predict
the 1-year survival of patients with HCC. Finally, a calibration curve was
constructed to evaluate the prediction ability of the model. The “rms”
package was used to construct the nomogram and calibration curves.We
used the R package ggDCA (Tataranni and Piccoli, 2019) to conduct
decision curve analysis (DCA) to evaluate the effect of the nomogram
model in predicting 1-, 3-, and 5-year survival outcomes in patients with
HCC. The formula for calculating the prognostic risk scores was:

riskScore � ∑
i

Coefficient genei( )pmRNAExpression genei( )

Gene Set Variation Analysis (GSVA) Based on
the Cox Model

We obtained the gene set “H.A.v7.4. Symbols.gmt” from
the MSigDB database (Liberzon et al., 2015), and conducted
GSVA (Hänzelmann et al., 2013) regardingthe HCC samples in

FIGURE 4
GSEA of the DEGs (A). Ridgeline plot of the four main biological functions of GSEA in TCGA-LIHC dataset. B–E. The DEGs in TCGA-LIHC dataset
were significantly enriched in pathways including (B) oxidative stress-induced senescence, (C) glycolysis gluconeogenesis, (D) fatty acid metabolism, and
(E) the defective intrinsic pathway for apoptosis.
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TCGA-LIHC dataset. We divided the HCC samples into high- and
low-risk groups using a Cox model. The functional differences in the
enrichment pathways between the high- and low-risk groups
were analyzed.

Construction of the LASSO
regression model

To obtain the model of key genes in TCGA-LIHC dataset, we
used the glmnet package (Yang et al., 2022) based on 14 key genes to
conduct a LASSO regression (Cai and van der Laan, 2020). Through
the LASSOmodel, we screened six key genes, visualized the results of
the LASSO regression and presented the expression levels of each
gene between the two groups in the diagnostic model.

Protein-protein interactions
networks analysis

The STRING database (Szklarczyk et al., 2015) was used to
construct a protein-protein interaction (PPI) network using hub
genes. In addition, we used the Comparative Toxicogenomics
Database (CTD) (Davis et al., 2021) (http://ctdbase.org/) to
predict potential drugs or small molecule compounds that could
interact with hub genes. Cytoscape software was used to visualize the
mRNA-drug interaction network.

Analysis of immune cell infiltration

We excluded samples with no prognostic information and
obtained expression profile data from TCGA-LIHC dataset. The
information on the high- and low-risk groups in TCGA-LIHC
dataset was obtained using a risk score model. The gene expression
matrix of the dataset was uploaded to CIBERSORTx (https://
cibersortx.stanford.edu) (Steen et al., 2020). Combined with the
immune cell marker matrix, an immune cell infiltrating matrix was
obtained (filter standard, p < 0.05). We then filtered out the data with
an enrichment score of immune cells >0 and obtained the immune cell
infiltration matrix. Finally, we acquired immune cells with significant
differences in infiltration between the high- and low-risk groups using
the LASSOmodel and plotted a heatmap and accumulation histogram
of the correlation between the six key genes and these immune cells.

Statistics analysis

All data processing and analyses were performed using the R
software (version 4.1.2). To compare two groups of continuous
variables, the independent Student’s t test was used to estimate the
statistical significance of normally distributed variables. The Mann-
Whitney U test (Wilcoxon rank test) was used to analyze the
differences between non-normally distributed variables. The
Kruskal-Wallis test was used to compare three or more groups.
Furthermore, the Chi-square test or Fisher’s exact test was used to
compare the differences between categorical variables. Correlations
between the different genes were assessed using Spearman’sT
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correlation analysis. Kaplan-Meier (K-M) analysis was used to
evaluate the survival value of the key genes. The level of
statistical significance was set at a p-value <0.05.

Results

Identification of the LAMRDEGs

The flow chart of this study is presented in Figure 1. The data from
TCGA-LIHCdatasetwere divided intoHCCandnormal groups. Ninety-
four DEGs between the two groups were identified using the limma
package. The filtering threshold was set at |logFC| > 2 and p. adjust< 0.05.
There were 15 upregulated and 79 downregulated genes (Figures 2A, B).
The LAMRGswere obtained from theGeneCards database and literature.
To obtain LAMRDEGs, we intersected genes from the LAMRGs and the
above DEGs. We then identified five upregulated (CCNB1, E2F1,
NQO1,LCN2,SPP1) and 23 downregulated (ADAMTS13, ALPL,
BCHE, CFP, CXCL12, CYP2A6, CYP2C9, DBH, FBP1, FOS, GPD1,
GYS2, HBB, HP, IGF2, IGFBP3, KDM8, LCAT, PCK1, RCAN1,
SERPINE1, SHBG, and TDO2) LAMRDEGs.

The venndiagram and heatmap were constructed to illustrate the
LAMRDEGs between the HCC and normal tissues (Figures 2C–E).

Function enrichment analysis of LAMRDEGs

GO and KEGG enrichment analyses of the LAMRDEGs were
conducted. The results are illustrated in Figures 3A, B. Subsequently,
we conducted GO and KEGG enrichment analyses of the LAMRDEGs
combined with the logFC values. The results are presented in Figures

3C, D. As shown in Figure 3A-D, the LAMRDEGs were mainly
enriched in biological processes, including response to xenobiotic
stimulus (GO, 0009410), response to glucocorticoid (GO, 0051384),
response to corticosteroid (GO, 0031960). The LAMRDEGs were
significantly enriched in the secretory granule lumen (GO,
0034774), cytoplasmic vesicle lumen (GO, 0060205), and vesicle
lumen (GO, 0031983) of GO cellular components (CC). The
LAMRDEGs were also enriched in heme binding (GO, 0020037),
tetrapyrrole binding (GO, 0046906), integrin binding (GO, 0005178)
of molecular functions (MF). In addition, the KEGG pathway analysis
showed that the pathways were enriched in cellular senescence
(hsa04218), and the p53 signaling pathway (hsa04115) (Table 1).

GSEA of DEGs

To further elucidate the potential mechanisms of the DEGs in
HCC, we used GSEA to explore prominent KEGG pathways in the
expression of DEGs fromTCGA-LIHCdataset. The enrichment results
are presented as a ridgelineplot (Figure 4A). The results showed that
the DEGs were significantly enriched in different pathways (Table 2),
including oxidative stress induced senescence (Figure 4B), glycolysis
gluconeogenesis (Figure 4C), fatty acid metabolism (Figure 4D), and
the defective intrinsic pathway for apoptosis (Figure 4E).

Cox Model for prognostic prediction

The univariate Cox regression analysis was used to assess the
prognostic value of LAMRDEGs. The screening revealed that 14 key
genes (E2F1, SERPINE1, GYS2, SPP1, PCK1, CCNB1, CYP2C9,

TABLE 3 Cox regression of dataset TCGA-LIHC.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

E2F1 373 1.231 (1.079–1.404) 0.002 0.975 (0.781–1.218) 0.827

SERPINE1 373 1.122 (1.020–1.235) 0.018 1.090 (0.966–1.231) 0.163

GYS2 373 0.558 (0.377–0.826) 0.004 0.877 (0.533–1.444) 0.606

SPP1 373 1.139 (1.079–1.202) <0.001 1.057 (0.986–1.133) 0.119

PCK1 373 0.917 (0.854–0.984) 0.016 1.081 (0.972–1.202) 0.153

CCNB1 373 1.457 (1.250–1.699) <0.001 1.282 (0.989–1.662) 0.061

CYP2C9 373 0.852 (0.793–0.915) <0.001 0.878 (0.794–0.971) 0.011

IGFBP3 373 1.169 (1.034–1.322) 0.013 0.986 (0.848–1.145) 0.848

KDM8 373 0.826 (0.700–0.974) 0.023 0.981 (0.794–1.211) 0.857

RCAN1 373 0.795 (0.642–0.984) 0.035 1.129 (0.865–1.475) 0.371

ALPL 373 0.887 (0.789–0.997) 0.044 0.909 (0.790–1.045) 0.181

FBP1 373 0.881 (0.802–0.967) 0.008 1.003 (0.879–1.145) 0.963

NQO1 373 1.108 (1.041–1.179) 0.001 1.060 (0.983–1.143) 0.128

LCAT 373 0.765 (0.674–0.867) <0.001 0.919 (0.785–1.077) 0.296

TCGA, the cancer genome atlas; LIHC, liver hepatocellular carcinoma.

The meaning of bold value was that multivariate analysis showed P <0.05.
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FIGURE 5
Constructionof the Cox regressionmodel (A, B). Forest plot (A) and nomogram (B) regarding the univariate andmultivariate Cox regression analyses
of the key genes. (C). Calibration curve plots for the 1-, 3-, and 5-year survival using the Cox regression model based on the nomogram analysis. (D–F).
DCA regarding the 1-, 3-, and 5-year survival based on the Cox regression model. (G). Comparison of the expression levels of the 14 key genes between
the high- and low-risk groups in TCGA-LIHC dataset. (H). Comparison of the expression levels of the 12 key genes between the high- and low-risk
groups in the GSE25097 dataset.
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IGFBP3, KDM8, RCAN1, ALPL, FBP1, NQO1, and LCAT) were
associated with the over survival (Table 3; Figure 5A). We
constructed a nomogram to assess the predictive value of the Cox
model using these genes (Figure 5B). In addition, we constructed 1-year,
3-year, and 5-year (Figure 5C) calibration curves regarding nomogram.
The results indicated that the prediction effect of themodel in the 5-year
survival analysis was better than that in the 1-year and 3-year survival

analyses. Moreover, we used the DCA to evaluate the clinical utility of
the prognostic model in terms of the 1-year (Figure 5D), 3-year
(Figure 5E), and 5-year (Figure 5F). The results suggested that the
prediction effect of the model in the 5-year survival analysis was better
than that in 1- and 3-year survival analyses.

In addition, we divided TCGA-LIHC and GSE25097 samples
into high- and low-risk groups according to the risk scores and

FIGURE 6
GSVA of TCGA-LIHC dataset (A). Heatmap of the functional scores in the GSVA. (B). Heatmap of the correlation between the 14 key genes. (C).
Comparison of the significant enrichment pathways in the GSVA between the high- and low-risk groups.
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compared expression of 14 key genes between the high- and low-risk
groups from TCGA-LIHC dataset (Figure 5G). In the
GSE25097 dataset, only the expression levels of 12 key genes
(E2F1, SERPINE1, GYS2, SPP1, PCK1, CCNB1, CYP2C9,
RCAN1, ALPL, FBP1, NQO1, and LCAT) differed significantly
between the high- and low-risk groups (Figure 5H).

Gene Set Variation Analysis

To explore the differences in the hallmark gene set between the
high- and low-risk groups, GSVA was performed on TCGA-LIHC
dataset. The results showed that different genes between the high-
and low-risk groups in the LIHC samples were significantly enriched
in 17 pathways, of which 13 were hallmark gene sets (angiogenesis,
coagulation, complement, epithelial mesenchymal transition, G2M
checkpoint, IL2/STAT5 signaling, inflammatory response, KRAS
signaling up, myogenesis, PI3K/AKT/mTOR signaling, reactive
oxygen species pathway, TGF-β signaling, and UV response DN)
(Figure 6A; Table 4). A comparison of the hallmark gene sets is
presented in Figure 6C. A correlation heatmap of the 14 key genes is
presented in Figure 6B.

Construction of the predictive model based
on LASSO regression

We screened key prognosis-related genes using LASSO
regression (Figures 7A, B) and constructed a predictive model for
prognosis. The prognostic model comprised six key genes:
SERPINE1, SPP1, CCNB1, CYP2C9, NQO1, and LCAT
(Table 5). A risk scoreplot for the six key genes is illustrated in
Figure 7C. Finally, according to the risk score of the predictive
model, the samples from TCGA-LIHC and GSE54236 datasets were
divided into high- and low-risk groups. The expression levels of the

six key genes between the high-and low-risk groups from TCGA-
LIHC (Figure 7D) and GSE54236 (Figure 7E) were compared.

Prognostic value of the key genes for HCC

The Kaplan-Meier survival analysis was performed to examine the
prognostic value of the six key genes (SERPINE1, SPP1, CCNB1,
CYP2C9, NQO1, and LCAT) in the high expression and low-
expression groups (Figures 8A–F). The results showed that the high
expression of SERPINE1 (Figure 8A), SPP1 (Figure 8B), CCNB1
(Figure 8C) and NQO1 (Figure 8E) and low expression of CYP2C9
(Figure 8D) and LCAT (Figure 8F)were associatedwith poor prognosis.
In addition, 1-, 3- and 5-year time-dependent receiver operating
characteristic curves were plotted to analyze the prognostic value of
the six key genes in TCGA-LIHC dataset. The results showed that the
expression levels of SERPINE1 (Figure 8G), SPP1 (Figure 8H), CCNB1
(Figure 8I), and NQO1 (Figure 8K) had prognostic predictive value in
HCC patients, while CYP2C9 (Figure 8J) and LCAT (Figure 8L) had no
significant prognostic value.

Construction of the PPI networks

Since genes that regulate the same biological processes have
close relationships, we further analyzed the interaction between the
key genes. The STRING database was used to construct a PPI
network of the six key genes (SERPINE1, SPP1, CCNB1,
CYP2C9, NQO1, and LCAT) (Figure 9A). We found that
NQO1 had the strongest positive correlation with SPP1,
CYP2C9 had the strongest negative correlation with CCNB1, and
SERPINE1 had the weakest correlation with the other genes. In
addition, we constructed and predicted the functionally similar gene
interaction network of six key genes using GeneMANIA and found
that 20 genes were co-expressed with the six key genes

TABLE 4 GSVA analysis of TCGA-LIHC dataset.

Ontology logFC AveExpr t P.Value adj.P

HALLMARK_ANGIOGENESIS −0.907354821 −0.010311404 −12.99538088 9.37E-33 7.97E-32

HALLMARK_IL2_STAT5_SIGNALING −0.907354821 −0.010311404 −12.99538088 9.37E-33 7.97E-32

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION −0.751514215 0.038111566 −12.74604327 9.58E-32 5.43E-31

HALLMARK_KRAS_SIGNALING_UP −0.756255157 0.048359743 −11.90858684 2.02E-28 8.60E-28

HALLMARK_MYOGENESIS −0.595822385 0.072268378 −9.040133663 5.56E-18 1.89E-17

HALLMARK_G2M_CHECKPOINT −0.601469372 0.01938544 −7.833225589 3.83E-14 9.30E-14

HALLMARK_PI3K_AKT_MTOR_SIGNALING −0.601469372 0.01938544 −7.833225589 3.83E-14 9.30E-14

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY −0.585543805 −0.027634564 −7.596308483 1.95E-13 4.15E-13

HALLMARK_TGF_BETA_SIGNALING −0.415745545 −0.002474737 −5.284238664 2.02E-07 2.64E-07

HALLMARK_COMPLEMENT −0.415745545 −0.002474737 −5.284238664 2.02E-07 2.64E-07

HALLMARK_INFLAMMATORY_RESPONSE −0.415745545 −0.002474737 −5.284238664 2.02E-07 2.64E-07

HALLMARK_UV_RESPONSE_DN −0.415745545 −0.002474737 −5.284238664 2.02E-07 2.64E-07

HALLMARK_COAGULATION −0.415745545 −0.002474737 −5.284238664 2.02E-07 2.64E-07

GSVA, gene set variation analysis; TCGAthe, cancer genome atlas; LIHC, liver hepatocellular carcinoma.

Frontiers in Genetics frontiersin.org11

Li et al. 10.3389/fgene.2024.1390882

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1390882


FIGURE 7
Construction of the prognostic model based on LASSO regression (A). LASSO regression model with 14 key genes to screen the prognosis-related
genes. (B). LASSO regression was performed to screen out the six key genes. (C). Risk score, risk grouping, survival status, and expression of the six key
genes in TCGA-LIHC dataset. (D). Comparison of the expression of the six key genes between the high- and low-risk groups in TCGA-LIHC dataset. (E).
Comparison of the expression of the six key genes between the high- and low-risk groups in theGSE54236dataset.

TABLE 5 List of key genes of differential expression analysis.

Gene Symbol Description logFC P.Value adj.P.Val

LCAT lecithin-cholesterol acyltransferase −2.83466 3.36E-35 6.10E-33

CCNB1 cyclin B1 2.024582 2.36E-32 3.26E-30

SERPINE1 serpin family E member 1 −2.05142 7.84E-15 7.11E-14

CYP2C9 cytochrome P450 family 2 subfamily C member 9 −2.45995 1.48E-13 1.11E-12

NQO1 NAD (P) H quinone dehydrogenase 1 2.293504 3.02E-09 1.22E-08

SPP1 secreted phosphoprotein 1 2.092279 9.64E-06 2.36E-05
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(Figure 9B).As shown in the mRNA-drug interaction network
constructed using the CTD database (Figure 9C), we identified
11 potential drugs or compounds for the six key genes.

Finally, chromosomal mapping was performed regarding the six
key genes. The results showed that SPP1 was distributed on
chromosome 4, CCNB1 on chromosome 5, SERPINE1 on

FIGURE 8
Prognosis analysis of the six key genes (A–F). Kaplan-Meier survival analysis of the six key genes (G–L). Time-dependent receiver operating
characteristic (ROC) analysis of the six key genes.
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chromosome 7, and CYP2C9 on chromosome 10. LCAT and
NQO1 were distributed on chromosome 16 (Figure 9D).

Immune infiltrate analysis

The expression profile data and grouping information were
collated and uploaded to the CIBERSORTx. The correlation
between the 22 types of immune cells and the expression profiles
of the high- and low-risk group samples were assessed. According to
the analysis results, the distribution of immune cell infiltration in
TCGA-LIHC dataset is illustrated in Figure 10A. The high-risk group
had a higher abundance of macrophage, CD4+ memory active T cells

and gamma-delta T cells (γδT), and had a lower abundance of mast
cells. In addition, the correlation between immune cell infiltration
abundance and the six key genes was analyzed, and the correlation
heatmap is illustrated in Figure 10B.The positive correlation between
CCNB1 and macrophages M0 was the top1 (p < 0.001; r = 0.316;
Figure 10C). The negative correlation between CCNB1 and mast cells
resting was the top1 (p < 0.001; r = −0.326; Figure 10D).

Discussion

Increasing evidence indicates that lactic acid metabolic changes
in tumors can remodel the TME and confer a growth advantage to

FIGURE 9
Protein-protein interaction (PPI) network (A). PPI network of the six key genes. (B). The interaction network of the predicted functionally similar
genes among the six key genes (C). Interaction network of the mRNA-based and small molecule drugs among the six key genes. (D). Chromosome
mapping of the six key genes.
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tumor cells (Romero-Garcia et al., 2016; Gu et al., 2022).
Previous studies have indicated lactic acid promotes the
proliferation, invasion, and migration of HCC cells (Zeng
et al., 2020). In recent years, the inhibition of lactate
metabolism has proven to be a potential therapeutic approach
for malignant tumors (Doherty and Cleveland, 2013). It has been
reported that the simultaneous inhibition of lactate metabolism
related gene ODC1 and PKM2 exerts synergistic effects against
HCC cells (Zeng et al., 2020). Recently, a prediction model of
lactic acid metabolism-related lncRNAs was constructed and
used to predict the clinical outcomes and assess the TME in
patients with HCC (Guan et al., 2022). Therefore, it is necessary
to understand the functions and mechanisms of LAMRGs in the
development of HCC.

In this study, LAMRDEGs were screened out and their functions
and pathways were enriched using GO, KEGG, and GSEA. Finally, a
model of six genes that could predict the prognosis of patients with
HCC was constructed. These LAMRDEGs, including CCNB1,
CYP2C9, E2F1, NQO1, LCAT, SERPINE1, and SPP1, may be
involved in lactic acid transport, production, and consumption.
Abnormal expressions of these genes lead to an acidified
microenvironment, thereby affecting the occurrence,
development, metastasis, and progression of HCC. A previous
study has reported that SERPINE1 facilitated HCC progression
(Li et al., 2021). SPP1 and CYP2C9 have also been as prognostic
biomarkers for HCC (Tu et al., 2023). CCNB1 can promote cell
proliferation, migration, invasion and resistance in HCC (Gu et al.,
2019; Jin et al., 2020; Xia et al., 2021). Reducing CCNB1 expression

FIGURE 10
Analysis of immune cell infiltration based on the risk scores (A). Histogram of the proportion of immune cells among the different samples in TCGA-
LIHC dataset. (B). Correlation between the immune cell infiltration abundance and six key genes in TCGA-LIHC dataset. (C). CCNB1 was positively
correlated with macrophages M0. (D). CCNB1was negatively correlated with resting mast cells.
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can suppresses the growth of HCC cells (Li et al., 2021). LCAT has
been reported as a prognostic and recurrence biomarker in HCC
(Long et al., 2019; Hu et al., 2020; Jiang et al., 2020; Su et al., 2021;
Sharifi et al., 2022) and has been correlated to anti-cancer drug
sensitivities (Zhang et al., 2022). Collectively, LAMRDEGs may
serves as prognostic biomarkers and potential targets for the
development of new therapeutic strategies for HCC.

Moreover, our results indicated that LAMRDEGs were involved
in lactate metabolism and HCC related pathways: oxidoreductase
activity, incorporation or reduction of molecular oxygen, antioxidant
activity, cellular senescence, and p53 signaling pathways. High
oxidoreductase activity can promote HCC carcinogenesis, targeting
oxidoreductase activity-related pathways can be a potential treatment
modality for human cancer (Kudo et al., 2014). The incorporation or
reduction of molecular oxygen and powerful antioxidant activity play
a key role in HCC treatment (Ahmed et al., 2018; Kim et al., 2022). In
addition, cellular senescence affects immune infiltration and
immunotherapeutic responses in HCC (Gao et al., 2023). The
activation of the P53 signaling pathway is involved in HCC
carcinogenesis, and inhibition of P53 can improve the therapies
response in HCC (Krstic et al., 2022). Therefore, LAMRDEGs are
involved in the development and progression of HCC.

In addition, the GSEA indicated that the LAMRDEGs were
mainly enriched in cancer associated pathways including oxidative
stress-induced senescence, glycolysis, gluconeogenesis, fatty acid
metabolism, and the defective intrinsic pathway for apoptosis
(Hanahan, 2022). Moreover, the GSVA showed that the hallmark
gene sets such as angiogenesis, epithelial mesenchymal transition,
G2M checkpoint, KRAS signaling up, PI3K/AKT/mTOR signaling,
and TGF-β signaling exhibited significant differences between high-
and low-risk groups in terms of the expression patterns of
LAMRDEGs. These different gene sets are closely related to
tumor cells proliferation, invasion, and metastasis (Dituri et al.,
2019; Satyananda et al., 2021; Li et al., 2022; Wu et al., 2022; Han
et al., 2023). Based on these results, we speculate that these
LAMRDEGs are involved in the progression of HCC and have
potential applications in evaluating its prognosis.

Lactic acid is essential energy substances for tumor metabolism
and play an indispensable role in restructuring the TME (Bergers
and Fendt, 2021; Hayes et al., 2021). It is also an immunosuppressive
molecule in immune infiltration of TME. On the one hand, the high
lactic acid levels in TME lead to decrease in the production of T cell
related cytokines and T cell activity, and can inhibit the survival and
function of NK cells, associating with decreased immune infiltration
and aggressive tumor progression (Pérez-Tomás and Pérez-Guillén,
2020; Watson et al., 2021). On the other hand, high lactic acid levels
derived from TME can promote the M2 polarization of tumor-
associated macrophages (TAM), and assist TAM in promoting
tumor growth (Goswami et al., 2022). The abnormal expressions
of these LAMRDEGs are associated with tumor immune escape and
affect the efficacy of therapy. The SERPINE1 is an immune
infiltration related gene in several cancers (Wang et al., 2023;
Zhai et al., 2023). Targeting the E2F1/SEC61G pathway increased
response to chemotherapy in hypopharyngeal squamous cell
carcinoma through immune response (Li et al., 2022). High
CCNB1expression is associated with tumor immune infiltration
and poor prognosis in breast cancer (Fu et al., 2022). Combining
NQO1 inhibitors with conventional chemotherapeutics might

enhance anti-tumor immune effects in non-small cell lung cancer
(Madajewski et al., 2023). Furthermore, lower LCAT expression and
higher infiltration of immune cells have been detected in patients
with HCC (Hu et al., 2020). Our findings indicated that the
expression of LAMRDEGs was associated with immune cell types
in high risk groups. Moreover, key genes were significantly
correlated with cell immune infiltrating levels, such as those
regarding T cells, and macrophages. Hence, these immune cells
infiltration might promote tumor progression by suppressing anti-
tumor immunity in the high-risk group. These results suggest that
the LAMRDEGs can play a crucial role in the regulation of immune
cell infiltration and might be potential prognosis biomarkers in
patients with HCC. However, whether these key genes can be
therapeutic target in HCC required further investigation.

This study had some limitations. First, no further experimental
validation was conducted due to limited experiment funding and
sample availability. Second, the insufficient sample size may have
affected the reliability of results. Further prospective, multicenter
studies are needed to evaluate clinical value. Third, there are few
reports related to lactate metabolism in HCC of these hub genes,
further research into their mechanisms is required.

In summary, we explored the functions and potential
mechanisms associated with LAMRDEGs in HCC. Furthermore,
we constructed a prognostic model using LAMRDEGs. Our findings
may provide new biomarkers for evaluating the survival outcomes of
patients with HCC and new insights into the potential therapeutic
targets for HCC. However, the specific pathological mechanisms and
molecular targets in HCC require further investigation. Further
studies with experimental validations and larger sample sizes are
needed to strengthen the veracity of our findings.
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