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Background: Chemokines and NETosis are significant contributors to the
inflammatory response, yet there still needs to be a more comprehensive
understanding regarding the specific molecular characteristics and
interactions of NETosis and chemokines in the context of acute pancreatitis
(AP) and severe AP (SAP).

Methods: To address this gap, the mRNA expression profile dataset
GSE194331 was utilized for analysis, comprising 87 AP samples (77 non-SAP
and 10 SAP) and 32 healthy control samples. Enrichment analyses were
conducted for differentially expressed chemokine-related genes (DECRGs)
and NETosis-related genes (DENRGs). Three machine-learning algorithms
were used for the identification of signature genes, which were subsequently
utilized in the development and validation of nomogram diagnostic models for
the prediction of AP and SAP. Furthermore, single-gene Gene Set Enrichment
Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed. Lastly, an
interaction network for the identified signature genes was constructed.

Results: We identified 12 DECRGs and 7 DENRGs, and enrichment analyses
indicated they were primarily enriched in cytokine-cytokine receptor
interaction, chemokine signaling pathway, TNF signaling pathway, and T cell
receptor signaling pathway. Moreover, these machine learning algorithms finally
recognized three signature genes (S100A8, AIF1, and IL18). Utilizing the identified
signature genes, we developed nomogrammodels with high predictive accuracy
for AP and differentiation of SAP from non-SAP, as demonstrated by area under
the curve (AUC) values of 0.968 (95% CI 0.937–0.990) and 0.862 (95% CI
0.742–0.955), respectively, in receiver operating characteristic (ROC) curve
analysis. Subsequent single-gene GESA and GSVA indicated a significant
positive correlation between these signature genes and the proteasome
complex. At the same time, a negative association was observed with the
Th1 and Th2 cell differentiation signaling pathways.
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Conclusion: We have identified three genes (S100A8, AIF1, and IL18) related to
chemokines and NETosis, and have developed accurate diagnostic models that
might provide a novelmethod for diagnosing AP and differentiating between severe
and non-severe cases.
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Introduction

Acute pancreatitis (AP) is one of the most common abdominal
acute conditions (Liang et al., 2021; Sheng et al., 2021). The
2012 revised Atlanta Classification divides acute pancreatitis into
three categories: mild acute pancreatitis (MAP), moderately severe
acute pancreatitis (MSAP), and severe acute pancreatitis (SAP)
(Zhao et al., 2023). The outcome of acute pancreatitis is
determined by the seriousness of the condition (Lin et al., 2019).
SAP accounts for approximately 20% of AP cases (Zhao et al., 2021).
MAP presents with local inflammation, whereas SAP is
characterized by systemic inflammatory response syndrome,
which is associated with a 30% mortality rate (Peng et al., 2023).
Symptoms of SAP include persistent organ failure (>48 h) of the
respiratory, cardiovascular, and renal systems due to cytokine
cascade-induced systemic inflammation (Akiode et al., 2022).
Inflammation and cell death are two AP hallmarks (Zhan et al.,
2019). Moreover, inflammatory factors and their cascade reaction
and uncontrolled inflammation will lead to SAP. In patients with
SAP, inhibiting the release of inflammatory factors is the top priority
of treatment (Yang et al., 2022).

AP is characterized by edema, necrosis, and neutrophilic
infiltrates histologically (Hardwick et al., 2022). The neutrophils
are the prominent actors in the acute inflammation of AP, playing
critical components of SAP and releasing cytokines that activate the
inflammatory responses of several other immune cells (Murthy
et al., 2019; Andersson et al., 2020). Neutrophils, as the primary
responders and essential components of the innate immune system,
generate neutrophil extracellular traps (NETs) during acute
inflammation. These heterogeneous and plentiful leukocytes play
a crucial role in acute inflammatory responses, such as infection and
injury (Han et al., 2022). In a recent study, NETs were identified as
an effector function of neutrophils, characterized by extracellular
networks of chromatin coated with histones, myeloperoxidase, and
neutrophil elastase (Colón et al., 2019; Zhang et al., 2020).
Neutrophils carry out their physiological roles through
mechanisms such as phagocytosis, degranulation, and the release
of NETs (Muqaku et al., 2020). The process of NET formation has
been identified as a novel form of neutrophil cell death known as
NETosis (Cho and Cho, 2019; Chen et al., 2022).

In recent years, NETosis research has been booming (Wang H.
et al., 2023). Evidence shows that dysregulated NETosis leads to
hypercoagulability and thrombosis (Dechamps et al., 2021).
Notably, neutrophil influx and cancer cells can release
chemokines that attract neutrophils and induce NETs formation
(Wang H. et al., 2023). The pathophysiological role of NETosis in
neutrophil infection immunity is not entirely understood, but it is an
essential mechanism for neutrophil anti-infection immunity (Ou
et al., 2021). Despite the crucial role that NETosis plays in

antimicrobial processes, excessive NETosis can lead to severe
tissue damage and exacerbation of inflammation (Hafkamp et al.,
2022). It is noteworthy that NETosis causes thrombosis, which
exacerbates COVID-19, cancer, acute myocardial infarction, and
ischemic stroke (Wang H. et al., 2023). When chemokines activate
neutrophils, they migrate into inflammation sites, produce
antimicrobial agents, undergo NETosis, and kill bacteria
(Balachandran et al., 2022). An essential function of chemokines
is to increase neutrophils and other immune cell recruitment from
the peripheral blood to injured tissue (Kong et al., 2022), and
previous studies also reported that chemokines play crucial roles
in AP (Ramnath et al., 2008). Together, it indicated that the NETosis
and chemokine might play a central regulatory intermediary and
executor in AP. However, our understanding of the specific molecule
character and interaction of NETosis and chemokines within AP
and SAP is limited. Hence, a novel predictive diagnostic model for
AP, especially SAP, is urgently needed based on molecular
mechanisms of NETosis and chemokine-related genes.

In contemporary life science research, bioinformatics plays a
crucial role facilitated by advancements in high-throughput
sequencing and microarray technologies. This analytical tool is
utilized to analyze differentially expressed mRNA and predict
potential therapeutic targets in specific diseases. Bioinformatic
analysis serves as an effective method for identifying biomarkers
and elucidating the etiopathogenesis of diseases, thereby offering a
valuable foundation for subsequent investigations (Peng et al.,
2022). In this study, the Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016) dataset was analyzed using
bioinformatic methods and machine learning techniques to
identify signature NETosis-related and chemokine-related genes
for AP, as well as SAP. Additionally, a predictive diagnostic
model was developed and assessed.

Material and method

Data source of microarray

The methodology for data analysis in this study is illustrated in
Figure 1. Inclusion criteria were established to ensure that test
specimens were sourced from human subjects, focusing on
independent expression profiles with the highest sample size. The
dataset GSE194331 was selected for inclusion in this research and
was obtained from the GEO database. Within this dataset were
87 samples from patients with acute pancreatitis (including 57 with
MAP, 20 with MSAP, and 10 with SAP), and 32 samples from
healthy individuals, all of whom underwent mRNA expression
profiling. The participants were stratified into a training cohort
consisting of AP and healthy control samples and an internal
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validation cohort comprising non-SAP and SAP samples based on
the larger sample size of the AP and healthy control groups. Further
information can be found in Table 1.

Identifying differentially expressed
chemokine-related and NETosis-
related genes

The differentially expressed genes (DEGs) between samples
from individuals with AP and healthy controls were identified
using normalized and preprocessed data based on the R limma
package. A screening threshold of |log2 Fold Change| >1.0 and p <
0.05 was applied. A total of 396 genes involved in the chemokine-
related pathway were obtained from the GeneCards database
(https://www.genecards.org/), along with 73 genes related to the

NETosis pathway. The intersection of DEGs and these chemokine-
related genes was defined as the differentially expressed chemokine-
related genes (DECRGs). Similarly, the differentially expressed
NETosis-related genes (DENRGs) were defined.

Enrichment analyses of Gene ontology

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
and Gene ontology (GO) enrichment analyses, encompassing
biological process (BP), cellular component (CC), and molecular
function (MF), were conducted using the R clusterProfiler package
(Dechamps et al., 2021). The false discovery rate (FDR) was
determined through Benjamini–Hochberg (BH) adjustment, with
a cutoff criterion of q-value <0.05. The significant results of these
enrichment analyses were visualized using the R circlize package.

FIGURE 1
Flowchart of this study. (DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DECRGs,
differentially expressed chemokine-related genes; DENRGs, differentially expressed NETosis-related genes; RF, random forest; SVM-RFE, Support Vector
Machines- Recursive Feature Elimination; LASSO, Least Absolute Shrinkage and SelectionOperator; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set
Variation Analysis).

TABLE 1 Details of the GEO data.

Dataset Platform Number of samples (AP/Healthy control)

GSE194331 GPL16791 119 (87/32)

Illumina HiSeq 2,500 (Homo sapiens)

GEO, gene expression omnibus.
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Machine learning of least absolute
shrinkage and selection operator
(LASSO), support vector machines-
recursive feature elimination (SVM-
RFE), and random forest (RF)

Subsequently, machine learning algorithms, precisely the
LASSO regression, and SVM-RFE algorithm were employed to
identify the feature genes from DECRGs and DENRGs,
respectively. The optimal parameter λ for Lasso regression was
determined through 10-fold cross-validation using the R glmnet
package with the specifications “family = binomial, measure =
deviance,” and default settings for all other parameters.
Additionally, the SVM-RFE method, known for its effectiveness
in feature selection, was utilized to differentiate feature genes from
DECRGs and DENRGs with the R e1071 package. The feature
DECRGs and DENRGs, derived using LASSO regression and the
SVM-RFE algorithm, were incorporated for subsequent analysis.

In the RF algorithm, equipped with a feature selection function,
the values of “Mean Decrease Gini” and “Mean Decrease Accuracy”
indicate a feature’s importance. The classification process ranks
input features DECRGs and DENRGs based on their respective
“Mean Decrease Gini” and “Mean Decrease Accuracy” scores,
ultimately identifying the top and consistent features as signature
genes in the final RF model.

Establishment of interaction network for
signature genes

Subsequently, we constructed an interaction network for
signature genes by utilizing GeneMANIA, an online tool for
identifying internal correlations within gene sets. The results of
this network analysis can be found in Supplementary Material S1.

Construction of nomogram model and
assessment of diagnostic efficacy

Utilizing the R rms package, diagnostic models with nomograms
were developed using signature genes. Calibration curves were
generated to evaluate the calibration of the nomogram models
through mean absolute error and 1,000 bootstrap samples with the
R CalibrationCurves package. Decision curve analysis (DCA) was
conducted to assess the net benefits of the nomogram models at
various high-risk thresholds. Subsequently, the predictive efficacy of
the nomogram model was assessed using the clinical impact curve
(CIC). Lastly, the receiver operating characteristic (ROC) curve with the
area under the curve (AUC) was analyzed to determine the model’s
performance. Similarly, a nomogram model based on signature genes
was also modeled and validated in the internal validation set.

Gene set variation analysis and gene set
enrichment analysis

Subsequently, our study aims to investigate the potential
functions of signature genes in AP. To achieve this, a single-gene

Gene Set Enrichment Analysis (GSEA) was conducted for each
signature gene using the R clusterProfiler package. Initially, the
samples were divided into low-expression and high-expression
groups based on the individual expression levels of each signature
gene. Subsequently, GSEAwas utilized to identify significantly distinct
pathways from the KEGG database within these two groups.

The Gene Set Variation Analysis (GSVA) analysis was conducted
to illustrate the varying enrichment of KEGG pathways andGO terms
among the groups in a comparablemanner. The RGSVApackage was
employed in this investigation using gene sets sourced from
c2.cp.kegg.symbols.gmt and c5.go.symbols.gmt from the official
repository. A significance threshold of p < 0.05 was established for
identifying statistically significant terms.

Results

Recognition of DEGs

The mRNA expression profile dataset GSE194331 underwent
normalization, identifying 565 DEGs between AP and healthy control
groups, consisting of 376 upregulated DEGs and 189 downregulated
DEGs. Subsequently, a volcano plot and a heatmap were generated
and presented in Figure 2A, B, respectively. The top five most
significantly upregulated and downregulated genes (based on
log2 Fold Change) were respectively annotated in Figure 2A, B.

Function enrichment analyses of the DEGs

The biological functions of DEGs were analyzed using GO
analyses to enhance understanding. The DEGs were categorized
into three functional groups within the GO framework: BP
(including 41 DEGs), CC (including 26 DEGs), and MF
(including 17 DEGs). The major functional processes of DEGs
were lymphocyte differentiation, mononuclear cell differentiation,
regulation of inflammatory response, activation of immune
response, and positive regulation of cytokine production. These
outcomes demonstrated that the inflammatory response and
cytokine might be crucial in AP. Furthermore, we found that
many DEGs were also significantly involved in processes such as
neutrophil migration (including 12 DEGs), neutrophil activation
(including 6 DEGs), neutrophil chemotaxis (including 15 DEGs),
chemokine binding (including 9 DEGs), and leukocyte chemotaxis
(including 3 DEGs), indicating the functions of neutrophils and
chemokines are significantly changed in AP, as depicted in Figure 2C
and Supplementary Material S2. These results suggest that
neutrophil activity and chemokines may be crucial in regulating AP.

Recognition of DECRGs and DENRGs

Supplementary Materials S3, 4 display the 396 genes involved in
the chemokine-related pathway and the 73 genes related to NETosis.
From the GSE194331 dataset, a total of 12 DECRGs were identified,
following the intersection of DEGs and 396 chemokine-related genes
(Figure 2D). Similarly, 7 DENRGs were recognized, following the
intersection of DEGs and 73 Netosis-related genes (Figure 2E). As
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shown in Figure 2C, 14 DEGs were enriched in neutrophil-related
functions, of which nine were from DECRGs and DENRGs,
indicating that DECRGs and DENRGs might play a vital role in
regulating neutrophil activity. Then, all the DECRGs and DENRGs

are displayed in Table 2, and their log2 Fold Change and p-values are
shown in Supplementary Material S5.

The outcomes of KEGG pathways enrichment analysis showed
that the DECRGs and DENRGsmostly correlated with the cytokine-

FIGURE 2
Identification of DECRGs and DENRGs between AP and healthy control groups. (A) The volcano plot of DEGs; (B) The heatmap of DEGs; (C) The
chordal graph shows GO enrichment significance items of DEGs between AP and healthy control groups (each string represents the association of DEGs
with special GO terms); (D) The Venn diagram for recognizing DECRGs (The red region means DEGs, green region means chemokine-related genes and
yellow region means DECRGs); (E) The Venn diagram for recognizing DENRGs (The red region means DEGs, green region means Netosis-related
genes and yellow region means DENRGs).
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cytokine receptor interaction, chemokine signaling pathway, NOD-
like receptor signaling pathway, IL-17 signaling pathway, MAPK
signaling pathway, TNF signaling pathway, and T cell receptor
signaling pathway (Figure 3; Supplementary Figure S1).

The machine learning algorithm of LASSO
and SVM-RFE

Additionally, two machine learning algorithms, LASSO and
SVM-RFE, were utilized to separately identify feature genes from
DECRGs and DENRGs. The LASSO regression, which assumes a

linear relationship and incorporates an L1 regularization penalty, was
employed. The LASSO regression with the lowest binomial deviance
was initially conducted using 10-fold cross-validation. Genes with
non-zero regression coefficients were chosen as feature genes for
DECRGs. Consequently, a total of 7 DECRGs (CCL5, AIF1, IL18,
PRKACB, CACNA1E, CACNA2D2, and IL18R1) were identified in
the simplified LASSO regularization model (Figures 4A, B; Table 3).

The SVM-RFE machine learning paradigm, known for its
effectiveness in classification, regression, and various machine
learning tasks, has frequently demonstrated superior performance
compared to other classifiers. Subsequently, the SVM-RFE method
was employed to extract optimal feature genes. Upon reaching a count

TABLE 2 The DECRGs and DENRGs of GSE194331.

Category Genes

DECRGs (n = 12) AIF1, IL18, PRKACB, CACNA1E, ITK, CCL5, CACNA2D2, CCR7, IL10, CXCR3, IL18R1, FFAR3

DENRGs (n = 7) S100A8, S100A9, CAMP, F12, ORM1, CHIT1, CLEC5A

DECRGs, differently expressed chemokine-related genes; DENRGs, differently expressed Netosis-related genes.

FIGURE 3
The KEGG pathway enrichment analysis of DECRGs and DENRGs. (Red fonts and dots indicate DECRGs; blue fonts and dots indicate DENRGs).
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of 8, themodel attained a peak accuracy of 92.4% and aminimum error
rate of 7.6% concurrently. Consequently, these top 8 DECRGs (ITK,
CCR7, AIF1, IL18, PRKACB, CACNA1E, CACNA2D2, and IL18R1)
are deemed optimal and utilized for subsequent analyses (Figures 4C, D;
Table 3). Subsequently, an intersection was conducted between the two
primary gene sets identified by the LASSO and SVM-RFE models,
resulting in the identification of 6 feature DECRGs (AIF1, IL18,
PRKACB, CACNA1E, CACNA2D2, and IL18R1) (Figure 4E). In
addition, following the same screening procedure as DECRGs, we

finally retained 4 feature DENRGs (S100A8, CAMP, F12, and
ORM1) (Figures 5A–D; Table 3).

Univariate logistic regression analysis of the
feature DECRGs and DENRGs

The study employed univariate logistic regression analyses to
assess the relationship between individual DECRGs/DENRGs and

FIGURE 4
Machine learning for DECRGs. (A) The log(λ) value was optimally selected by 10-fold cross-validation and plotted by the partial likelihood deviance;
(B) Processes of lasso regression for identifying variables and mapping each variable to a curve; (C) The accuracy (5× CV) is highest as 0.924 when the
number of feature genes is 8; (D) The error (5× CV) is lowest as 0.076 when the number of feature genes is 8; (E) The Venn diagram for recognizing
feature DECRGs.
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the dependent variables of AP versus healthy control. Notably, the
elevated expression of AIF1, IL18, CACNA1E, IL18R1, S100A8,
CAMP, F12, and ORM1 was significantly associated with increased
risk of AP, as indicated by odds ratios (OR) greater than 1.
Conversely, decreased expression of PRKACB and

CACNA2D2 was found to be significantly protective. Forest plots
illustrating the risk factors identified through univariate analysis are
presented in Figure 6A. These findings suggest that the identified
feature DECRGs/DENRGs may play a vital role in the
pathogenesis of AP.

TABLE 3 The feature DECRGs and DENRGs of LASSO and SVM-RFE.

Machine learning Feature DECRGs Feature DENRGs

LASSO AIF1, IL18, PRKACB, CACNA1E, CCL5, CACNA2D2, IL18R1 S100A8, CAMP, F12, ORM1

SVM-RFE AIF1,PRKACB, ITK, CACNA2D2 IL18, CACNA1E, IL18R1, CCR7 CLEC5A, CHIT1, S100A8, CAMP, F12, ORM1

FIGURE 5
Machine learning for DENRGs. (A) the log(λ) value was optimally selected by 10-fold cross-validation and plotted by the partial likelihood deviance;
(B)Processes of lasso regression for identifying variables andmappingeach variable to a curve; (C) The accuracy (5×CV) is highest as 0.881when thenumber of
feature genes is 6; (D) The error (5× CV) is lowest as 0.119 when the number of feature genes is 6; (E) The Venn diagram for recognizing feature DENRGs.
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Recognition of signature genes via RF

The significance of each feature DECRGs/DENRGs was
assessed through the calculation of “Mean Decrease Gini”
and “Mean Decrease Accuracy”, resulting in the identification
of the top three feature DECRGs/DENRGs consistently selected

from the RF model in GSE194331 (Figure 6B). Subsequently,
these three feature DECRGs/DENRGs (S100A8, AIF1, and IL18)
were collectively designated as the signature genes for
AP. Finally, the violin plot of three signature gene
expressions between AP and healthy control groups is
displayed in Figure 7.

FIGURE 6
(A) Forest map of univariate logistic regression of DECRGs and DENRGs in GSE194331; (B) The “Mean Decrease Accuracy” and “Mean Decrease Gini”
of each feature DECRGs and DENRGs within RF models for GSE194331.
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Construction and assessment of the
nomogram model for AP

Additionally, a nomogram model was developed using logistic
regression analysis of three signature genes through the R rms
package (Figure 8A). Subsequently, a calibration curve was
employed to assess the predictive efficacy of the nomogram
model. The calibration curve demonstrated minimal error
between the actual and predicted probabilities of AP, with a
mean absolute error of 0.03, indicating the high accuracy of this
nomogram model in predicting AP (Figure 8B). The findings of
the DCA demonstrated that the “Nomogram” curve exhibited
higher values compared to the “All” curve, “S100A8” curve,
“IL18”curve, “AIF1” curve, and “None” curve within the high-
risk threshold ranging from nearly 0 to 1.0. It indicated that
patients may experience a net benefit from utilizing the
nomogram model (Figure 8C). Additionally, a CIC was
constructed based on the DCA curve to evaluate the clinical
efficacy of the nomogram model visually. The proximity of the
“Number high risk” curve to the “Number high risk with event”
curve at a high-risk threshold ranging from 0.2 to 1 suggests that
the nomogram model exhibits exceptional predictive capability
(Figure 8D). These findings further suggest that the three

signature genes may significantly contribute to the
pathogenesis of AP.

ROC curves with AUC were utilized to assess the diagnostic
efficacy of the nomogram model in distinguishing between
individuals with AP and healthy controls based on the expression
levels of the identified target genes (S100A8, AIF1, and IL18). The
analysis of ROC curves indicated AUC values of 0.944 for S100A8,
0.923 for AIF1, and 0.919 for IL18 (Figure 8E). Furthermore, the
AUC for the nomogram model incorporating all three signature
genes was calculated to be 0.968 (95% CI, 0.937–0.990) (Figure 8F).

Construction and assessment of the
nomogram model for SAP

Compared to MAP and MSAP, SAP is distinguished by more
pronounced clinical manifestations and a poorer prognosis.
Consequently, both SAP and non-SAP (encompassing MAP and
MSAP) cohorts were utilized to corroborate the reliability of these
three distinctive genes. Notably, the expression levels of these three
signature genes were notably elevated in the SAP group (Figure 9A).
The nomogram derived from the analysis of these three signature
genes is depicted in Figure 9B.

FIGURE 7
The violin plot of mRNA expression S100A8(A), IL18(B), and AIF(C) in GSE194331 between AP and healthy control groups.
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Additionally, this nomogram model demonstrated similarly
high accuracy (Figure 9C), net clinical benefit (Figure 9D), and
clinical applicability (Figure 9E) for predicting SAP. The analysis of
ROC curves indicated AUC values of 0.827 for S100A8, 0.739 for
AIF1, and 0.727 for IL18 (Figure 9F). Furthermore, the AUC of the
nomogram model for predicting SAP was calculated to be 0.862
(95% CI, 0.742–0.955) (Figure 9G). Summarily, these results

suggested that these three signature genes can serve as effective
diagnostic biomarkers for predicting AP and distinguishing SAP
from non-SAP.

Interaction network of signature genes
The interaction network and associated functions of the

identified signature genes were examined. The analysis

FIGURE 8
(A) The Nomogram model predicting AP based on three signature genes. The nomogram is used by summing all points identified on the scale for
each variable. The total points projected on the bottom scales indicate the probabilities of AP; (B) The calibration curves for the nomogramwith themean
absolute error = 0.03; (C) Decision curve analysis (DCA) of the nomogram model and each signature gene (the “All” means diagnosis-all strategy; the
“None”means diagnosis-none strategy); (D) The clinical impact curve (CIC) of the nomogrammodel; (E) The ROC and AUC of each signature gene
between AP and healthy control groups; (F) The ROC and AUC of nomogram model between AP and healthy control groups.
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FIGURE 9
(A) The violin plot ofmRNA expressionS100A8, IL18, and AIF1 in GSE194331 between SAP and non-SAP groups. (B) TheNomogrammodel predicting
SAP based on three signature genes; (C) The calibration curves for the nomogram with the mean absolute error = 0.028; (D) DCA of the nomogram
model and each signature gene (the “All”means diagnosis-all strategy; the “None”means diagnosis-none strategy); (E) The CIC of the nomogrammodel;
(F) The ROC and AUC of each signature gene between SAP and non-SAP groups; (G)The ROC and AUC of nomogrammodel between SAP and non-
SAP groups.
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revealed a multifaceted interaction network consisting of
physical interactions (77.64%), co-expression (8.01%),
predicted interactions (5.37%), co-localization (3.63%), genetic
interactions (2.87%), pathway associations (1.88%), and shared
protein domains (0.60%). The biological functions of this
network primarily centered around cellular response to
molecules of bacterial origin, cellular response to biotic
stimulus, response to lipopolysaccharide, regulation of
inflammatory response, positive regulation of DNA-binding
transcription factor activity, adaptive immune response based

on somatic recombination of immune receptors built from
immunoglobulin superfamily domains, and leukocyte
chemotaxis (Figure 10 and Supplementary Material S1).
S100A8 appears to occupy a central role within the interaction
network, as evidenced by its involvement in numerous biological
functions. These findings suggest that pathways related to
inflammatory response and leukocyte chemotaxis may
collaboratively contribute to the pathogenesis of acute
pancreatitis, underscoring the need for further investigation
into the specific pathway involved.

FIGURE 10
The Interaction network of signature genes via GeneMANIA. (Different line colors indicate the association of different genes and constitute gene
networks; Different colors of the gene circle plot represent different gene functions).
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FIGURE 11
(A) The top 20 regulated KEGG pathway ranked by enrichmentscore from single-gene GSEA of S100A8; (B) The top 20 regulated KEGG pathway
ranked by enrichmentscore from single-gene GSEA of IL18; (C) The top 20 regulated KEGG pathway ranked by enrichmentscore from single-gene GSEA
of AIF1; (D) The GSVA-based volcano plot of upregulated and downregulated pathways between AP and healthy control groups in GSE194331; (E–G) The
proteasome complex from single-gene GSEA of S100A8, IL18 and AIF1.
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Single-gene GSEA and GSVA of
signature genes

Given the potential significance of S100A8, IL18, and AIF1 in
the chemokine-related and Netosis-related pathway for AP and their
role in regulating SAP, we chose to individually examine these three
signature genes through single-gene GSEA and GSVA. Our findings
were broadly in line with previous research.

The samples of AP patients and healthy controls were
categorized into high-expression and low-expression groups
based on the mRNA levels of signature genes. Following this, a
single-gene GSEA was performed using the KEGG pathways.
Figure 11A illustrates that the S100A8 high-expression group
exhibited upregulated activities in complement and coagulation
cascades, neutrophil extracellular trap formation, and the PPAR
signaling pathway. The downregulation of Th1/Th2 differentiation,
T cell receptor signaling pathway, Wnt signaling pathway, and
Th17 cell differentiation was observed in comparison.

Additionally, IL18 (Figure 11B) and AIF1 (Figure 11C)
upregulation correlated with increased activity in neutrophil
extracellular trap formation, complement and coagulation
cascades, and PPAR signaling pathway. Furthermore, the
decreased expression of IL18 (Figure 11B) and AIF1 (Figure 11C)
is associated with reduced activity in the Th1 and
Th2 differentiation, the Wnt signaling pathway, and Th17 cell
differentiation. These pathways will be candidates for further
validation.

The GSVA analysis investigated the distinctively regulated
pathways between samples from individuals with AP and those
from healthy controls. The findings of the GSVA analyses
demonstrated that the Wnt signaling pathway and Th1 and
Th2 differentiation activities were concurrently decreased in AP
samples (Figure 11D). Similarly, the proteasome complex and
complement pathway activities were concurrently increased in
AP samples (Figure 11D). Consistently, in the context of GSEA,
the activities of the proteasome complex were found to be
concurrently increased due to perturbations in S100A8, IL18, and
AIF1 (Figures 11E–G). Furthermore, the GSVA results for samples
with SAP and non-SAP revealed that only the activities of the
proteasome complex and Th1/Th2 differentiation exhibited a
consistently regulated trend, as previously described (Figure 12).

Discussion

As an inflammatory pancreatic disorder, AP is one of the more
common acute abdominal diseases (Zheng et al., 2022),
characterized by acute abdominal pain and increased
concentrations of serum amylase and lipase. The pathological
response of AP is cell death and inflammation (Zhan et al.,
2019). Numerous researchers have endeavored to elucidate the
pathogenesis of AP; moreover, the precise molecular mechanisms
still need to be understood. Growing evidence suggests that SAP is
intricately linked to tissue damage and disturbances in
microcirculation, which arise from the release of
proinflammatory cytokines and mediators such as TNF-α, IL-1β,
IL-6, and intercellular adhesion molecule (ICAM)-1 (He et al.,
2015). Experiments have shown that infiltrating inflammatory

cells is crucial to experiment-induced AP by producing
inflammatory mediators such as IL-1β and monocyte
chemoattractant protein-1 (MCP-1) (Shen et al., 2018).
Consequently, diminishing the concentrations of
proinflammatory cytokines to impede the inflammatory cascade
may present a viable therapeutic approach for AP (29).

As a hallmark of AP, neutrophils play a pivotal role in SAP and
contribute to acute lung injury (Guo and Cui, 2018; Murthy et al.,
2019; Andersson et al., 2020). A significant correlation exists
between neutrophil migration and chemokine gradients (Kim
et al., 2017), with the concentration of chemotactic factors
guiding neutrophils toward the injury site (Daseke et al., 2021).
Prior studies have demonstrated that depleting or inhibiting
neutrophils can protect against pancreatic tissue damage in
inflammatory responses reliant on neutrophil activity (Cui et al.,
2017). Neutrophil-induced NETosis is a distinct form of neutrophil
death that differs from apoptosis and necrosis and significantly
contributes to tissue damage (Liu et al., 2022; Wang C. L. et al.,
2023). By responding to chemokines, activated neutrophils migrate
into the site of inflammation, produce antimicrobial agents, and
undergo NETosis (Balachandran et al., 2022). Thus, chemokines are
crucial regulators in the process of NETosis. However, the
involvement of NETosis, conducted by chemokines, in the
mechanistic pathways of AP remains uncertain.

As previously mentioned, chemokine-regulated NETosis may
play a crucial role in the pathogenesis of AP, particularly SAP,
characterized by dysregulated inflammatory response and tissue
damage. In this study, we first analyzed to identify DEGs
between AP and healthy control samples. A total of 565 DEGs
were identified, and GO enrichment analyses revealed significant
involvement of processes such as migration, chemotaxis, activation
of neutrophil, and chemokine binding. These results align with our
initial hypotheses and warrant further investigation.

Moreover, we have identified 12 DECRGs and 7 DENRGs that
are primarily enriched in functions related to chemokine, cytokine,
inflammatory, and immune pathways, such as the NOD-like
receptor signaling pathway and TNF signaling pathway. TNF-α is
a proinflammatory cytokine that triggers inflammation and pain in
conditions like AP, hepatitis, and inflammatory bowel disease.
Inhibiting TNF-α has been shown to improve outcomes in
experimental AP (Oz, 2016). Thus, it is reasonable to infer that
the varied expression of NETosis and chemokine-related genes may
play a role in the pathogenesis of AP.

Machine learning algorithms demonstrate superior
performance compared to standard logistic regression in
developing accurate classification and prediction models for
diseases (Alonso-Betanzos and Bolón-Canedo, 2018). An
integrated algorithm incorporating LASSO, SVM-RFE, and RF
was employed to identify signature genes with the highest
predictive accuracy. Subsequently, three signature genes (S100A8,
IL18, and AIF1) were identified as the final selection from the
intersection of featured genes. Two nomogram models were
developed and validated for their predictive efficacy using
calibration curves, DCA, and CIC. The ROC curve was utilized
to assess the performance of these nomogram models, yielding an
AUC of 0.968 (95% CI, 0.937–0.990) for predicting AP and 0.862
(95% CI, 0.742–0.955) for predicting SAP. In conclusion, the
findings indicated that S100A8, IL18, and AIF1 play a critical
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role in NETosis and chemokine regulation in AP, including SAP,
and the diagnostic models utilizing these genes demonstrated
high efficacy.

Within the S100 protein family, S100A8 and
S100A9 predominantly form heterodimers (S100A8/A9;
calprotectin) in vivo (Kotani et al., 2022). Previous studies
demonstrated that S100A8 has been utilized as a surrogate
marker for neutrophil activity, assessed by myeloperoxidase
(MPO) levels (Espira et al., 2023). There is evidence that
S100A8 is a neutrophil-specific chemokine (Wu et al., 2022).
Through immunocytochemistry, Sprenkeler EGG et al. found
S100A8/A9 in NETs and demonstrated that it was released
simultaneously with DNA during NETosis (Sprenkeler et al.,
2022). Activated neutrophils immediately release S100A8/
A9 upon activation, making it an ideal biomarker for rapid
inflammatory responses (Jonasson et al., 2017). S100A8/A9 was
significantly increased in exosomes from SAP and activated
NADPH oxidase, producing free radicals and promoting
inflammatory response (Carrascal et al., 2022). Exhilaratingly, our
findings demonstrated that the increased expression of S100A8 is
significantly correlated with the severity of AP and the KEGG

pathway of “Neutrophil extracellular trap formation”, aligning
with existing literature and bolstering our hypothesis.

IL18 was first described as an endotoxin-induced serum factor.
As part of the IL1 family, IL18 can stimulate systemic and local
inflammation by releasing TNF-α, COX2, and GM-CSF (Wang X.
et al., 2023). Emerging research indicated that IL-18 plays a
significant regulatory role in immunoregulation across various
inflammatory and malignant conditions. Several studies have
shown a link between IL18 and cancer, specifically in pancreatic
ductal adenocarcinoma (PDAC), where high levels of IL18 are
associated with increased mortality and poor disease outcomes
(Yamanishi et al., 2023). Recent studies have elucidated the
involvement of IL-18 in pancreatic disorders, presenting novel
opportunities for therapeutic strategies that target this cytokine
(Li et al., 2019). A notable elevation in serum IL-18 levels was
observed within 24 h of symptom onset in patients with AP
compared to healthy individuals. Furthermore, the concentration
of this cytokine was significantly higher in patients with SAP
compared to those with mild cases (Rotstein, 2014; Sternby et al.,
2016; Li et al., 2019;Ćeranić et al., 2020). Additionally, the absence of
IL-18 significantly decreased neutrophil infiltration in the injured

FIGURE 12
The GSVA-based volcano plot of upregulated and downregulated pathways between SAP and non-SAP groups in GSE194331.
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pancreas and impaired neutrophil maturation in the spleen of mice
with SAP (Li et al., 2019).

Therefore, the high expression of IL18 may be associated with
poor prognosis in AP and PDAC. Our investigation observed a
notable elevation in serum IL18 expression in the AP group,
particularly in the SAP subgroup. This increase in IL18 levels
was associated with heightened activity in the KEGG pathway
term “Neutrophil extracellular trap formation” via single-gene
GSEA. These findings align with prior studies and might
demonstrate the remarkable regulatory function of IL18 in AP.

Allograft Inflammatory Factor-1 (AIF1) is expressed in myeloid
cells and functions to enhance immune responses and regulation (da
Silva et al., 2021). There is evidence that AIF1 can regulate
monocyte/macrophage, microglia, and lymphocyte immune
activity, and it may stimulate these cells to produce cytokines,
chemokines, and nitric oxide synthase (Liu et al., 2018). Also,
AIF1 plays a critical role in migration, phagocytosis,
proliferation, survival, and pro-inflammatory activity in
macrophages (da Silva et al., 2021). Our study revealed a
significant increase in AIF1 levels in the AP group, particularly
in the SAP subgroup, and a significant positive correlation with
activating the kEGG pathway “Neutrophil extracellular trap
formation”. However, a paucity of literature supports the
association and underlying mechanism of AIF1 with NETosis
and AP. Additional clinical and mechanistic investigations are
warranted to validate these findings.

The results of single-gene GSEA demonstrated a noteworthy
association between the upregulated genes S100A8, IL18, and
AIF1 and heightened activity of the “Proteasome Complex.” This
association was consistently observed in both the AP and SAP
groups, as indicated by GSVA. The proteasome plays a crucial
role in NF-κB activation and can potentially modulate the
development of inflammatory conditions (Zhu et al., 2018). Dong
X et al. illustrated in their study that the proteasome inhibitor PS-
341 effectively mitigated the severity of acute pancreatitis induced by
cerulein and lipopolysaccharide in mice. This observed effect is
attributed to the inhibition of NF-κB activation, leading to
improvements in various parameters, including serum amylase,
CRP, lactate dehydrogenase, IL-1β, IL-6, and pancreatic MPO
levels (Dong et al., 2010). Similarly, Zhu QT documented that
the proteasome plays a role in the development of AP and that
its inhibitor, bortezomib, demonstrated protective effects against AP
in mice by reducing the expression of NF-κB p65 nucleoprotein and
total proteasome 20S protein (Zhu et al., 2018).

Conversely, the perturbation of S100A8, IL18, and AIF1 resulted in
the downregulation of the activity of “Th1 and Th2 cell differentiation”.
This downregulation was observed not only in the AP group but also in
the SAP subgroup. It has been proposed that a Th1 profile is linked to
SAP, while a Th2 profile is associated with MAP or MSAP (Rodriguez-
Nicolas et al., 2018). However, another study found that the analysis of
spleen-derived cells frommice with acute pancreatitis showed increased
levels of Th2 cells, while Th1 cells remained unchanged (Sendler et al.,
2020). Furthermore, research indicated that the quantity and function
of circulating Th1 and Th2 cells undergo dynamic alterations, with the
Th1/Th2 ratio playing a significant role in determining the progression
and severity of AP (Stojanovic et al., 2023). Hence, the diverse and
dynamic changes in “Th1 andTh2 cell differentiation” in AP necessitate
further comprehensive investigation.

Indeed, this study was subject to limitations, notably just
retrospective and data-based analyses. Secondly, inflammation-
related molecules are susceptible to modulation by a multitude of
environmental and genetic factors. The expression levels of
inflammatory cytokines and chemokines may exhibit significant
variability in response to differing physiological states within the
same patient population. The upregulation of these three genes in
AP, particularly in SAP, is just a subject of speculation at the
transcriptome level. The precise relationship between this
upregulation and AP and its role in specifically determining the
severity of AP and the specific molecular mechanisms remains
unclear. Thus, further large-sample clinical surveys and
experimentation based on appropriate cell/animal models and
proteomics are necessary to validate our findings.

However, our study, for the first time, screened and verified that
chemokines and NETosis-related feature genes could be used to
construct effective prediction models for AP and SAP. These
outcomes might provide an emerging perspective on the
association between NETosis and AP and contribute to revealing
the novel therapeutic target of AP. Furthermore, it is noteworthy
that the diagnostic models utilizing three signature genes were also
effective in the internal test group, showing a good performance in
distinguishing SAP from non-SAP, thereby bolstering the reliability
of our results. The integration of these signature genes with existing
clinical diagnostic models could be a worthwhile endeavor.

Conclusion

Through the utilization of integrated bioinformatics and various
machine-learning algorithms, we have identified three distinct
chemokine-related and NETosis-related genes (S100A8, IL18, and
AIF1). Additionally, we have developed accurate diagnostic models
for identifying AP, focusing on SAP. This novel approach might
contribute significantly to AP’s clinical diagnosis and treatment.
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