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Introduction: Sepsis leads to multi-organ dysfunction due to disorders of the
host response to infections, which makes diagnosis and prognosis challenging.
Apoptosis, a classic programmed cell death, contributes to the pathogenesis of
various diseases. However, there is much uncertainty about its mechanism
in sepsis.

Methods: Three sepsis gene expression profiles (GSE65682, GSE13904, and
GSE26378) were downloaded from the Gene Expression Omnibus database.
Apoptosis-related genes were obtained from the Kyoto Encyclopedia of Genes
and Genomes Pathway database. We utilized LASSO regression and SVM-RFE
algorithms to identify characteristic genes associated with sepsis. CIBERSORT
and single cell sequencing analysis were employed to explore the potential
relationship between hub genes and immune cell infiltration. The diagnostic
capability of hub genes was validated across multiple external datasets.
Subsequently, the animal sepsis model was established to assess the
expression levels of hub genes in distinct target organs through RT-qPCR and
Immunohistochemistry analysis.

Results: We identified 11 apoptosis-related genes as characteristic diagnostic
markers for sepsis:CASP8, VDAC2,CHMP1A,CHMP5, FASLG, IFNAR1, JAK1, JAK3,
STAT4, IRF9, and BCL2. Subsequently, a prognostic model was constructed using
LASSO regression with BCL2, FASLG, IRF9 and JAK3 identified as hub genes.
Apoptosis-related genes were closely associated with the immune response
during the sepsis process. Furthermore, in the validation datasets, aside from
IRF9, other hub genes demonstrated similar expression patterns and diagnostic
abilities as observed in GSE65682 dataset. In the mouse model, the expression
differences of hub genes between sepsis and control group revealed the potential
impacts on sepsis-induced organ injury.

Conclusion: The current findings indicated the participant of apoptosis in sepsis,
and apoptosis-related differentially expressed genes could be used for diagnosis
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biomarkers. BCL2, FASLG, IRF9 and JAK3 might be key regulatory genes affecting
apoptosis in sepsis. Our findings provided a novel aspect for further exploration of
the pathological mechanisms in sepsis.
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1 Introduction

Sepsis is one of the most important healthcare problems evoking
ongoing researches about pathogenesis, diagnosis, therapy, and
prognosis (Kumar, 2018). Several elements were certified to be
involved in the sepsis mechanism, including pathogenic
microorganisms, systemic inflammatory response, abnormal
energy metabolism, immunosuppression, and multiple targeting
organs (Hawiger et al., 2015; Stone, 2017; Huang et al., 2019).
According to “Sepsis-3” consensus definition, sepsis was defined
as a life-threatening organ dysfunction caused by dysregulated host
response to infection (Singer et al., 2016). Over 45 million people
suffer from sepsis worldwide, with a high fatality of 16.7%–33.3%
each year (Rhee et al., 2017; Fleischmann-Struzek et al., 2020; Rudd
et al., 2020). Although remarkable progress has been made in anti-
infective treatments, fluid resuscitation, multiple organ support, or
other medical technologies, initial uncontrolled host response to
infection still leads to the malignant development of sepsis and
adverse clinical outcomes (Rello et al., 2017; Evans et al., 2021).

In recent decades, the effects of cell death have emerged as the
breakthrough to establish more thorough theories of sepsis, which can
be broadly divided into programmed cell death (PCD) and accidental
cell death (ACD) (Hotchkiss et al., 2009; D’Arcy, 2019). ACDmanifests
as a biologically uncontrolled process with representation by necrosis.
In contrast, PCD is an active suicide of cells conducted by a cascade of
signal reactions and molecular effects facing excessive cellular stress,
typically represented by apoptosis (Shi et al., 2021). During apoptosis,
the activation of executioner caspases contributed to clearance of
intracellular components in an accelerated manner and ultimate
phagocytosis of dying cells (Chipuk and Green, 2005). In sepsis,
there exhibits a substantial excessive apoptosis of tissue cells
triggered by the intense inflammatory response, meanwhile, the
apoptosis of cells of the innate and adaptive immune system might
impact the body ability to combat infections (Hotchkiss and Nicholson,
2006; Henson and Bratton, 2013). However, the role of apoptosis is not
solely adverse in sepsis. Researchers have found thatmoderate apoptosis
aided in clearing infected cells and limiting the spread of pathogens in
the early stage of sepsis (Lang and Matute-Bello, 2009). By means of
intervening in apoptotic signaling pathways, it is possible to regulate the
extent of cell apoptosis and mitigate organ damage, thereby achieving
positive therapeutic effects on sepsis (Xiao et al., 2023). This requires a
more comprehensive consideration of the overall balance of immune
system to avoid adverse consequences. In summary, in-depth researches
into the molecular mechanisms of apoptosis facilitate the improvement
of diagnosis and clinical decisions for sepsis. There is still a need for
more explorations to address the questions of how to balance the
promotion and inhibition of apoptosis, as well as determining optimal
intervention at different stages (Delsesto et al., 2011).

Therefore, in the present study, we carried out a systematic
bioinformatic analysis based on the Gene Expression Omnibus

(GEO) database to delineate apoptosis-related gene signatures for
the diagnosis and/or prognosis of sepsis, further, we evaluate the
potential relationship between apoptosis and immune
microenvironment in sepsis.

2 Methods

2.1 Data acquisition and processing

The GSE65682, GSE13904, and GSE26378 datasets were
retrieved from the Gene Expression Omnibus (GEO) database
(www.ncbi.nlm.nih.gov/geo/). The GSE65682 dataset contained
802 blood samples: 760 sepsis and 42 healthy volunteers based
on the GPL3667 platform. The GSE13904 and GSE26378, covering
pediatric sepsis gene expression data, were used for external
validation. The former dataset included 18 healthy children,
52 sepsis subjects, and 106 subjects with septic shock based on
the GPL570 platform. The latter comprised 21 normal children and
82 sepsis cases, also based on the GPL570 platform (Table 1). The
profiles of apoptosis-related genes were obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database
(https://www.genome.jp/entry/map04210). Then, data normalization
and variation analysis were conducted using the “limma” R package.
Heatmapwas generated under p< 0.05 using the “pheatmap”Rpackage.
All data were collected from public databases; hence, ethics approval and
informed consent were not required. The overview of the workflow steps
is shown in Supplementary Figure S1.

2.2 Functional enrichment analysis of
apoptosis-related genes

To study the molecular functions (MFs), biological processes
(BPs), and cellular components (CCs) of apoptosis-related genes,
“clusterProfiler,” “org.Hs.e.g.,.db,” and “enrichplot” R packages were
used for Gene Ontology (GO) annotation. KEGG pathway
enrichment analysis was also conducted. The threshold for each
analysis was set at p < 0.05.

2.3 Selection of optimal apoptosis-related
gene biomarkers for sepsis

We applied least absolute shrinkage and selection operator
(LASSO) regression and support vector machine-recursive
feature elimination (SVM-RFE) model for disease-specific
gene selection. The optimal λ selected returned the minimum
cross-validation error under 10-fold cross-validation in the
LASSO model. The SVM-RFE model was executed using the
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“SVM” R package. Each feature’s score was sorted after
removing the minimum value and iterations were sustainably
performed until the best features were selected. Accordingly,
differentially expressed genes (DEGs) for sepsis were identified
by overlapping both results. Moreover, the diagnostic ability of
DEGs was assessed using receiver operating characteristic
(ROC) curves with the “pROC” R package. The volcano plot
and heatmap presented the detailed expression of DEGs with
“ggplot” and “pheatmap” R package.

2.4 Verification and survival analysis of
hub genes

The univariate Cox and LASSO regressions with Candidate
DEGs were conducted using the “glmnet” R package to construct
a prognostic signature. Then, the “timeROC” R package was
employed to perform 1-, 2- and 3-week ROC analyses, and
results were quantified by the area under curve (AUC).
Meanwhile, the Kaplan-Meier survival analysis was conducted
using ‘‘survival” and ‘‘survminer” R packages. Using the formula
Risk score = (each gene’s expression×corresponding coefficient),
septic patients were classified into the high-risk group (risk score >
median risk score) and low-risk group (risk score ≤ median risk
score). The entire dataset was divided into train and test set, keeping
a ratio of about 1:1. These analyses were carried out on the whole
dataset, train dataset, and test dataset, respectively.

2.5 Nomogram development

The nomogram was built using the multivariate Cox regression
with the “survival” and “rms” R packages. The concordance index
(C-index) was applied to assess the discriminatory performance of
hub genes. The calibration curve was applied for nomogram
calibration. This algorithm can be an efficient graphical
description in which each risk factor responds to the risk of
mortality at 1-, 2-, and 3- week for an individual patient.

2.6 Single gene set enrichment analysis
(GSEA) and single gene set variation
analysis (GSVA)

To study transcriptome differences and personalized analysis,
GSEA was carried out using the “GSEABase” R package. According
to the log2 [Fold Change (FC)] value of the differential analysis, genes
were ranked from high to bottom to be defined as the tested gene set.
The KEGG pathway set was applied to conduct pathway-level analysis
of each hub gene using the “GSVA” R package, in which the relative
pathway activity represented as the t-value. Up- and downregulated
pathways were determined using the “limma” R package.

2.7 Immune infiltration analysis

CIBERSORT is a classic method to quantify the relative
abundance of various cell composition from enormous gene

expression profile (Chen et al., 2018). By means of CIBERSORT
in the GSE65682, the proportion of 22 types of infiltrating immune
cells was analyzed between sepsis and control groups, further, the
correlation degree between immune cells and hub genes was
calculated using Pearson correlation. The results were shown in
visual diagrams via “ggplot” R language.

2.8 Analysis of single cell RNA sequencing
(scRNA-seq)

Based on GEO database, GSE167363 raw data was downloaded.
Single cells were extracted under the criteria: nFeature_RNA>500,
percent. mt<20%, percent. HB < 1, nCount_RNA>1000. The
doublet and non-viable cells were removed by “DoubletFinder” R
language and Scrublet algorithm. Normalization, scaling, clustering
of cells was implemented by “Seurat” R package, which generated
dominant immune cell types. The results were distinguished using
t-distributed stochastic neighbor embedding (tSNE). The average
gene expression levels in each identified cell type were estimated
using “Seurat” R package. The Variation analyses were conducted
using the “limma” R package.

2.9 Validation of expression of hub genes in
external datasets

For high quality evidence in external validation, we not only
employed GSE13904, GSE26378 form GEO database, also harvested
158 adult samples from ZhongNan hospital, Wuhan University,
composed of 15 healthy volunteers and 143 septic patients. All
patients were adequately informed, and the study received approval
from the Ethics Committee of ZhongNan Hospital, Wuhan University
(2017004). The demographic and clinical characteristics of recruited
samples were summarized in Supplementary Table S1. The peripheral
blood mononuclear cells (PBMCs) were collected from patients on the
first day after the diagnosis of sepsis using leucocyte cell separation
medium kit (TBD Science, Tianjin, China), further, the total RNA was
extracted. Based on thorough evaluation of its integrity and quality, we
selected RNA with the RNA Integrity Number (RIN)≥7.0 and 28S/18S
ratio>1.0 for library preparation andmRNA transcriptome sequencing.
Subsequently, the library was constructed through the TruSeq Stranded
mRNA Library Prep Kit (Illumina), and sequencing was performed
using NovaSeq 6000 (Illumina). Regarding the external datasets
validation, following the calculation of expression level of hub genes
using RSEM (Li and Dewey, 2011) in two separate groups, differential
expression analysis was performed using the “DESeq2” R package with
p < 0.05, and the diagnostic value of hub genes was presented with the
fitting ROC curves. Plus, the volcano plot and heatmap revealed the
intuitive expression of hub genes. Besides, we explored the prognostic
significance of hub genes shown in 1-, 2- and 3-week ROC analyses of
Zhongnan Hospital dataset.

2.10 Animals and grouping

C57BL/6 mice (males and 8 weeks old) were housed under a
standard raising condition. Ten mice were randomly divided into
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control and sepsis groups with five in each group. The sepsis model
was established using the cecal ligation and puncture (CLP) method
according to guidelines (Rittirsch et al., 2008). After anesthetizing
mice with pentobarbital sodium solution (0.01 mg/g) by
intraperitoneal injection, the caecum was exposed and ligatured
during laparotomy. The major step was the caecal wall puncture
with a 20-gauge needle and gently squeezing the stool (length:
2 mm). The surgery ended with abdomen closure layer by layer.
The heating pad and normal saline injection were used for better
post-operation resuscitation. In the control group, the abdomen was
only opened and closed without extra operation. After 12 h, blood
samples were collected and centrifuged to obtain serum.
Subsequently, the mice were humanely euthanized with
pentobarbital sodium (0.1 mg/g), then, the heart, lung, liver, and
kidney tissues were harvested for further experiments. The Animal
Care and Use Committee of the Zhongnan Hospital of Wuhan
University approved the animal experiment.

2.11 Enzyme linked immunosorbent
assay (ELISA)

Following the extraction of mice serum in control and CLP
groups, the creatinine (Cr) level was determined by Creatinine Assay
Kit (Sigma-Aldrich, Shanghai, China) and blood urea nitrogen
(BUN) level were determined by BUN Quick Test Strips (Sigma-
Aldrich, Shanghai, China) according to the manufacturer’s
instructions.

2.12 Real-time quantitative polymerase
chain reaction (RT-qPCR) validation

Following the samples harvested frommice models, total RNA was
extracted using the FastPure Plant Total RNA Isolation Kit (Vazyme,
Nanjing, China). Then, cDNA was synthesized using the Hifair® first
Strand cDNA Synthesis SuperMix (Yeasen Biotechnology, Shanghai,
China) with the following procedure: 25°C/5 min, 42°C/30 min, and
85°C/5 min. Next, we performed qPCR using ChamQ SYBR qPCR
Master Mix (Vazyme Biotech, Nanjing, China). The amplification
process was implemented in the Roche LightCycler®96 Real-Time
PCR Detection System (Hoffmann-La Roche Ltd., Shanghai, China).
The primer pairs used were presented in Table 2.With GAPDH serving
as reference gene, the expression levels of hub genes in serum and target
organs (heart, lung, liver and kidney) were analyzed using the 2−ΔΔCT

method (Livak and Schmittgen, 2001). In general, GAPDH had an
identical presentation despite distinct treatments in two groups, the

relative mRNA abundance of each gene was estimated as the fold
change of its expression level in CLP groups over that in control groups.

2.13 Immunohistochemistry (IHC) analysis

As described above, the heart, lung, liver, and kidney tissues were
acquired and made into paraffin tissue slides. Sections were dewaxed
through xylene, ethanol, and distilled water. Sodium Citrate Antigen
Retrieval Solution (Solarbio Science and Technology, Beijing, China)
was used to recover antigens. After 30-min blocking of Bovine Serum
Albumin (Solarbio Science and Technology, Beijing, China), primary
antibodies were added to sections and incubated overnight at 4°C. The
source of primary antibodies was listed as following: anti-BCL2
antibody: Proteintech, Cat No. 68103 at 1/800 dilution; anti-FASLG
antibody: Proteintech, Cat No. 60196 at 1/200 dilution; anti-IRF9
antibody: Proteintech, Cat No. 14167 at 1/500 dilution; anti-JAK3
antibody: Proteintech, Cat No. 80331 at 1/500 dilution. After that
step, the sections were washed three times in Phosphate Buffered
Solution (PBS) and incubated with secondary antibody at room
temperature for 20 min. The final chromogenic reaction was
conducted using the DAB Substrate kit (Solarbio Science and
Technology, Beijing, China), and the sections were dehydrated and
sealed. The target proteins were stained in brown and further
histological analysis was completed by an experienced pathologist
using a light microscope in a blinded method. The percentage of
positive expression of target proteins was independently assessed in
four kinds of organs. All the images were shown at 30* magnification.

2.14 Apoptosis detection

Apoptosis of heart, lung, liver and kidney were evaluated
through the terminal deoxynucleotidyl transferase-mediated
fluorescein-dUTP nick-end labeling (TUNEL) technique using
the Click-iT™ Plus TUNEL Assay Kit (ThermoFisher Scientific,
Shanghai, China). The results were observed under Nikon Eclipse
50i Fluorescence Upright Microscope (Tokyo, Japan).

2.15 Statistical analysis

Statistical analyses were performed using R software.
Comparisons between two groups were assessed with the
Student’s t-test. Unless stated otherwise, statistical tests were
bilateral, with p < 0.05 as significant. The Kaplan-Meier method
was applied to compare the overall survival (OS) time. The RT-

TABLE 1 Information of the microarray datasets.

Dataset Platform Samples Control Sepsis

GSE65682 GPL13667 (HG-U219) Affymetrix Human Genome U219 Array 802 42 760

GSE26378 GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 103 21 82

GSE13904a GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array 227 18 158

GSE167363 GPL24676 Illumina NovaSeq 6000 (Homo sapiens) 12 2 10

aThe GSE13904 contained several samples which is independent of this research, only the healthy and sepsis cases were extracted for further study.
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qPCR results were interpreted using GraphPad Prism 8. The IHC
and TUNEL images were rendered with Adobe Photoshop 2022.

3 Results

3.1 Identification and functional analysis of
apoptosis-related genes

With access to the apoptosis-related genes, 82 genes were
differently expressed in sepsis in the GSE65682 cohort

(Figure 1A). Then, we conducted GO functional and KEGG
pathway enrichment analysis to screen predominant signaling
pathways. The top 10 significantly enriched terms in BPs, CCs,
and MFs are presented in Figure 1B, and the top 30 KEGG
pathways in Figure 1C. The preliminary results suggested that
apoptosis-related pathways were enriched and upregulated in
sepsis, and apoptosis-related genes were linked to apoptosis
pathway, necroptosis pathway, NOD-like receptor signaling
pathway, JAK-STAT signaling pathway, NF-kappa B signaling
pathway, et al., reflecting the strong relationship between
apoptosis and sepsis.

TABLE 2 Primer sequences used for RT-qPCR.

Gene Forward sequence (5′-3′) Reverse sequence (5′-3′)

BCL2 GGATTGTGGCCTTCTTTGAGTTC CTTCAGAGACAGCCAGGAGAAAT

FASLG GGCTCTGGTTGGAATGGGATTAG AGAGATCAGAGCGGTTCCATATG

IRF9 GAGCTCTTCAAGACCACCTACTT TAACAGGAACAAGGCAGCTTTCT

JAK3 CGCAGGACTATGACAGCTTTCTT GTCTACTCGCAGCCCAGAATTC

GAPDH GGCATTGTGGAAGGGCTCAT AGATCCACGACGGACACATT

FIGURE 1
Identification and function analysis of apoptosis-related genes. (A) Heatmap of apoptosis-related genes identified in GSE65682 (*p < 0.05, **p <
0.01, ***p < 0.001). (B) Gene Ontology (GO) annotation of apoptosis-related genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of apoptosis-related genes.
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3.2 Eleven DEGs were identified as
diagnostic genes for sepsis

We performed two machine-learning algorithms: LASSO and
SVM-RFE. The LASSO regression showed 18 apoptosis-related
features (Figures 2A, B), the SVM-RFE algorithm filtered
19 genes as the optimal combination of feature genes (maximal
accuracy = 0.988, minimal root mean square error = 0.0125)
(Figures 2C, D). After intersecting both results, 11 DEGs were
selected: CASP8, VDAC2, CHMP1A, CHMP5, FASLG, IFNAR1,
JAK1, JAK3, STAT4, IRF9, and BCL2 (Figure 2E). Then, we
established ROC curves indicated the AUC of nine genes
were >0.85 (Figure 2F). The volcano plot and heatmap indicated
that JAK3, CHMP5 and IFNAR1 were upregulated while CASP8,
VDAC2, FASLG, JAK1, STAT4 and BCL2 were downregulated in
sepsis (Figures 2G, H). These results showed the superiority of
filtered DEGs in distinguishing sepsis from healthy cases.

3.3 Establishment of prognostic signature
based on DEGs

To broaden the clinical significance of DEGs, we integrated
survival data from the GSE65682 dataset, then we employed the
univariate COX regression (Figure 3A) and LASSO regression
(Figures 3B, C) to establish a survival model, ultimately, 4 hub
genes: BCL2, FASLG, IRF9 and JAK3 were screened out. The AUC
for 1, 2, and 3 weeks was calculated in the time-ROC curves (Figures
3D–F). Then, septic patients were stratified into low- and high-risk
groups using the median cut-off value based on risk scores and the
survival comparison showed that low-risk patients have greater
survival time than high-risk ones (Figures 3G–I). The risk
survival status charts and expression patterns of four hub genes

were presented in Supplementary Figure S2, showing the survival
time and rate decreased as the risk scores increased. The algorithms
for the time-ROC curve, survival analysis, and expression profiles as
described above were run three times separately in the whole, train
and test datasets. Additionally, a nomogram model was constructed
for overall survival (OS) prediction incorporating FASLG, JAK3,
IRF9, BCL2 and other predictors (gender and age) (Supplementary
Figures 3A, D). These results revealed the prognostic capability of
hub genes for sepsis, while acknowledging their limitations.

Besides, the GSEA-KEGG analysis indicated that hub genes were
closely correlated to certain functional pathways participated in the
occurrence of sepsis (Supplementary Figures 3B–E, F). According to
GSVA terms (Supplementary Figure S4), we observed that hub genes
were enriched for multiple immune response pathways, including
antigen processing and presentation, T cell receptor signaling
pathway, et al.

3.4 Immune landscape analysis

Previous studies have demonstrated the close connection between
sepsis and immune microenvironment (Delano and Ward, 2016; Liu
et al., 2022). Therefore, we assessed the concrete changes in immune
microenvironment using CIBERSORT (Figure 4A). The proportions of
memory B cells and naive CD4+ T cells were lower in sepsis than in
normal samples, while monocytes, neutrophils, and macrophages were
higher in sepsis samples. The results of correlations between hub genes
and immune cells showed that NK cells and CD8+ T cells had strong
positive links with BCL2 and FASLG, IRF9 was negatively related to
CD4+ T cells, whereas JAK3 exhibited a strong positive influence on
B cells and CD4+ T cells (Figure 4B). Hence, our findings exhibited that
apoptosis-related hub genes were inseparable from the changes in
immune system in sepsis.

FIGURE 2
Screening of apoptosis-related differentially expressed genes (DEGs) and exploration of diagnostic ability. (A,B) 18 differentially expressed features
were selected by LASSO regression algorithm. (C,D) 19 differentially expressed features were regarded as the optimal genes by SVM-RFE algorithm. (E)
DEGs were acquired from the intersection of LASSO and SVM-RFE. (F) The diagnostic ROC curves of DEGs. (G) The volcano plot of DEGs. (H)Heatmap of
DEGs. (*p < 0.05, **p < 0.01, ***p < 0.001).
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3.5 Expression levels of hub genes in scRNA-
seq data

GSE167363 was downloaded from GEO databases for
normalization, scaling, clustering, and highly variable genes
screening. The dimensionality-reduced clusters were showed
on the 2D map produced with the t-distributed t-SNE
(Figure 5A). The clusters predominantly consisted of six
immune cell types: T cells, B cells, monocytes, NK cells,
platelets and neutrophils, with the former four types
accounting for large proportions. Based on the analysis of
differentially expressed genes in distinct cell types (Figure 5B),
further investigation revealed hub genes showed differential

expression across distinct immune cell types. In septic
patients, a decrease in the expression levels of BCL2 was
observed in B cells and monocytes compared to healthy
samples, the expression levels of FASLG in B cells, monocytes,
and T cells were lower in septic patients than in healthy subjects.
In contrast, higher expression levels of IRF9 were detected in
B cells and T cells, while JAK3 expression was elevated in B cells
and monocytes among septic patients, comparing to healthy
volunteers (Figure 5C). Subsequently, hub genes were visually
distinguished in cell clusters from healthy cases and sepsis cases
using multi-element expression diagrams (Figures 5D, E). These
results provided a clearer understanding of the relationships
between hub genes and immune cells in sepsis.

FIGURE 3
Filtration of hub genes and verification of prognostic value. (A)Cox regressionmodel with HR of 11 differentially expressed genes. (B,C)Construction
of hub gene signature based on LASSO regression. (D–F) The time-dependent ROC curves in whole dataset, train dataset and test dataset, respectively.
(G–I) Kaplan-Meier curves for the overall survival of patients in the high- and low-risk groups in whole, train and test dataset, respectively.

Frontiers in Genetics frontiersin.org07

Sun et al. 10.3389/fgene.2024.1389630

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1389630


3.6 Verification of hub genes in
external datasets

To enhance the reliability of results, the expression levels of
BCL2, FASLG, IRF9 and JAK3 were investigated in three external
datasets. In the GSE13904 dataset (Figures 6A–J), the expression
trends of BCL2 and FASLG showed a significant decrease in sepsis,
while JAK3 exhibited elevation. However, there was no significant
difference in the expression level of IRF9 between two groups. The
ROC curves for BCL2, FASLG and JAK3 demonstrated good AUC
values. The volcano plot and heatmap yielded similar results. The
verification results of the GSE26378 dataset (Figures 6K–T) and
Zhongnan Hospital dataset (Figure 7) closely aligned with the
findings from the GSE13904 dataset, confirming the diagnostic
advantages of hub genes for septic patients.

On the other hand, we attempted to estimate the prognostic
value of individual hub gene.Whereas, the time-ROC curves showed
that hub genes did not exhibit prognostic nature in either the
Zhongnan Hospital dataset or the GSE65682 dataset
(Supplementary Figure S5).

3.7 RT-qPCR and IHC validation of the
hub genes

To start with, the serum levels of Cr and BUN of sepsis group
were significantly higher than that of control group (Supplementary
Figure S6). Subsequently, the serum levels of hub genes were
depicted in Figures 8A, F, K, P, in which we observed elevated
levels of JAK3 and decreased levels of BCL2 and FASLG in sepsis
group compared to controls, providing further compelling evidence

corresponding to the results from external datasets. Considering the
general impact of sepsis on various organs, the expressions of hub
genes were assessed in four major organs. In the heart (Figures 8B,
G, L, Q), IRF9 expression was upregulated in sepsis, while BCL2 was
downregulated. However, there was no intergroup difference in the
expression levels of FASLG and JAK3. In the lung (Figures 8C, H, M,
R), all four hub genes exhibited significant upregulation in the CLP
group. In the liver (Figures 8D, I, N, S), IRF9 and JAK3were elevated
in the sepsis model, while no difference was observed in the
expression of BCL2 and FASLG between two groups. In the
kidney (Figures 8E, J, O, T), BCL2, IRF9, and JAK3 displayed
upregulation in the CLP group. The IHC results manifested the
representative positive expression of hub genes as brown staining
(Figure 9A). The quantification of IHC results (Figure 9B)
corroborated the differences in hub gene expression between two
groups, consistent with the RT-qPCR analysis. Besides, the TUNEL
assay was performed on the four organs as routine detection for
apoptosis (Supplementary Figure S7), in which the apoptotic cells
significantly increased in the sepsis group.

4 Discussion

Sepsis keeps a critical clinical issue and many efforts have been
made to improving its management. The pathophysiological
mechanisms of sepsis are complicated, however, studies focused
on cell death have expanded a novel perspective. In our report, the
acknowledged public datasets and machine learning were used to
determine the role of apoptosis in sepsis and identify 11 DEGs
including: CASP8, VDAC2, CHMP1A, CHMP5, FASLG, IFNAR1,
JAK1, JAK3, STAT4, IRF9 and BCL2. Further, 4 hub genes (BCL2,

FIGURE 4
Immune landscape analysis. (A) The differences in immune cells between septic patients and healthy volunteers with CIBERSORT algorithm. (B) The
concrete relationships between hub genes and several immune cells. (*p < 0.05, **p < 0.01, ***p < 0.001).
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FASLG, JAK3 and IFR9) were emerged as remarkable diagnostic
signatures, which was supported by validation of external datasets.
Based on immune infiltration analysis and scRNA-seq data, we
verified the underlying associations between hub genes and immune
cells. Additionally, the differential expression levels of hub genes in
separate organs provided more indications for their potential
impacts on sepsis-induced organ injury.

To date, molecular biology has broadened the function
recognition of identified hub genes. BCL2, known as B-cell
leukemia/lymphoma gene number 2, manipulates cell survival to
deploy typical anti-apoptotic effects in normal cellular lineages
(Ploner et al., 2008; Kang et al., 2011). It has been demonstrated
that the expression of BCL2 decreased in white blood cells in septic
patients compared to control subjects (Lorente et al., 2021), which
was aligned with our findings. By contrast, we paid much attention
to the role of BCL2 in non-apoptotic pathways. Researchers reported

that necroptosis pathway (another form of PCD) was significantly
activated in sepsis (Shashaty et al., 2019; Reilly et al., 2022). Han She
et al. (She et al., 2023) identified BCL2 as one of the necroptosis-
related hub genes in sepsis, highlighting its diagnostic and
prognostic value. Moreover, necroptosis and pyroptosis (another
form of PCD) pathways collaborated to aggravate tissue injury in the
process of sepsis (Chen et al., 2020), and BCL2 constrained the
induction of these two pathways through interaction with a BCL2-
homology-3 like domain (Shi and Kehrl, 2019). Hence, the effects of
BCL2 are not limited to apoptosis, but also encompass other forms
of PCD, which may be attributed to the function of BCL2 as the
molecular death switch and partially overlapping signaling
transduction pathways in PCD (Borkan, 2016). The exact role of
BCL2 in the crosstalk among different cell death pathways remains
unclear, requiring deeper validation in the future. Additionally,
BCL2 was proved to produce almost complete protection against

FIGURE 5
Analysis of single-cell RNA-sequencing data in GSE167363. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot. (B) The volcano plot of
differentially expressed genes in immune cells. (C) The associations of four hub genes and immune cells between sepsis group and healthy group. (D) The
clusters of immune cells for individual hub gene in healthy volunteers. (E) The clusters of immune cells for individual hub gene in septic patients.
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T cell apoptosis in transgenic mice that overexpress BCL2
(Hotchkiss et al., 1999; Hotchkiss et al., 2000; Wesche-Soldato
et al., 2007a). The naive T cells, naive B cells and NK cells were
dependent on individual BCL2 molecule (Carrington et al., 2017).
More importantly, a cohort study in pediatric intensive care unit
(PICU) showed patients, who developed sepsis and/or multiple
organs dysfunctions (MODS), had lower lymphocytic counts and
lower levels of BCL2 comparing to control group (El Shazly et al.,
2018), which provided additional proof covering different age
groups. Furthermore, in our study, BCL2 was positively
correlated with B cells, T cells while negatively correlated to NK
cells, meanwhile, BCL2 was related to several immune-related
signaling pathways including antigen processing and
presentation, the T cell receptor signaling pathway, and ECM
receptor interaction (Sutherland et al., 2023). Hence, our research
provides innovative insights into how apoptosis interacted with host
immune response in sepsis.

FASLG (Fas ligand) is a tumor necrosis factor (TNF), binding to
FAS receptor to initiate an extrinsic apoptosis pathway (Audo et al.,

2014). In a prospective cohort enrolled septic patients (Yoo et al.,
2021), there was a significant difference in 90-day mortality between
low and high serum concentrations of FASLG, further, we provided
the novel results of diagnostic value of FASLG for sepsis. According
to Soldato’s report (Wesche-Soldato et al., 2007b), CD8+ T cells
expressed FASLG were detrimental to liver injury after CLP. Our
results demonstrated strong correlations between FASLG expression
and CD8+ T cells, CD4+ T cells and memory B cells. Thus, it is highly
likely that FASLG is involved in the regulation of immune response
in sepsis.

The interferon regulatory factors (IRFs) are identified to be a
family of transcription factors which play crucial roles in immune
response (Jefferies, 2019). Most family members participate in the
production of type I interferons and regulation of undifferentiated
immune cell development. (Honda et al., 2006; Tamura et al., 2008).
Unlike these members, IRF9 interact with phosphorylated
STAT1 and STAT2 dimer to form interferon-stimulated gene
factor 3 (ISGF3), the transcriptionally active complex (Qureshi
et al., 1995). In our study, IRF9 was filtered as one of the hub

FIGURE 6
Expression of hub genes in the external validation datasets. (A–D) The expression of BCL2, FASLG, IRF9 and JAK3 in GSE13904 dataset, respectively.
(E) The volcano plot of hub genes in GSE13904 dataset. (F–I) The diagnostic ROC curves of BCL2, FASLG, IRF9 and JAK3 in GSE13904 dataset,
respectively. (J)Heatmap of hub genes in GSE13904 dataset. (K–N) The expression of BCL2, FASLG, IRF9 and JAK3 in GSE26378 dataset, respectively. (O)
The volcano plot of hub genes in GSE26378 dataset. (P–S) The diagnostic ROC curves of BCL2, FASLG, IRF9 and JAK3 in GSE26378 dataset,
respectively. (T) Heatmap of hub genes in GSE26378 dataset. (ns means no significance, *p < 0.05, **p < 0.01, ***p < 0.001).
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genes based on machine learning, however, the noteworthy issue is
the absence of differential expression of IRF9 between healthy
volunteers and septic patients in external datasets confirmation.
Several possible reasons were analyzed as following (Kumar, 2018):
It is difficult to detect the independent expression of IRF9 in sepsis
because its main function is to assemble trimolecular ISGF3 complex
with phosphorylated STAT1 and STAT2, which then translocates to
the nucleus (Fu et al., 1990). According to Lau’s study (Lau et al.,
2000), dimerization is required to retain IRF9 in the cytoplasm and
IRF9 tend to pre-associate with STAT2 in the non-stimulated state
(Hawiger et al., 2015); Considering the complicated information
conveyed in gene expression datasets, IRF9 is constitutively
expressed in most, instead of all human and murine tissues
(Suprunenko and Hofer, 2016; Stone, 2017) There was defective
interferon antiviral responses in both adult and pre-school children
in asthma model, serving as valuable inspiration for sepsis (Bergauer
et al., 2017). Consequently, in-depth research is still required to

validate these assumptions and disclose the underlying molecular
mechanism of regulation of IRF9 on sepsis.

Janus Kinase (JAK) is a family of non-receptor tyrosine
kinases which participate in JAK-STAT pathway including
JAK3 (Bousoik and Montazeri Aliabadi, 2018; Agashe et al.,
2022). During eryptosis (suicidal programmed death of mature
red blood cells) (Jemaa et al., 2017), JAK3 was activated by energy
depletion, subsequently stimulated eryptosis in turn, which was
blunted by pharmacologic inhibitors or genetic knockout of JAK3
(Bhavsar et al., 2011). Long et al. (Long et al., 2022) investigated
the correlation between JAK3 expression and tumor
microenvironment immune cell infiltration, proved elevated
JAK3 expression linked to higher infiltration of immune cells.
In their data, JAK3 expression was positively correlated with
B cells, CD4+ T cells, CD8+ T cells, and dendritic cells. In sepsis,
we have identified JAK3 as an apoptosis-related hub gene for
sepsis and explored its participation in immune regulation, in

FIGURE 7
Expression of hub genes in Zhongnan Hospital dataset. (A–D) The expression of BCL2, FASLG, IRF9 and JAK3 in Zhongnan Hospital dataset,
respectively. (E–H) The diagnostic ROC curves of BCL2, FASLG, IRF9 and JAK3 in Zhongnan Hospital dataset, respectively. (I) The volcano plot of hub
genes in Zhongnan Hospital dataset. (J) Heatmap of hub genes in Zhongnan Hospital dataset. (ns means no significance, *p < 0.05, **p < 0.01,
***p < 0.001).
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order to provide a better picture of the nature of these
pathological interactions.

More importantly, the behavior of hub genes appeared not
homogeneous in different organs in mouse model. Previous
publications reported that BCL2 was upregulated in the kidney
tissue in LPS-induced sepsis while downregulated in the heart in
ischemia-reperfusion model (Ren et al., 2020; Xia et al., 2023).
Additionally, lung was regarded as a specific organ where FASLG
was constitutively expressed. In response to viral infection, the
intense inflammatory response allowed the upregulation of
FASLG expression in lung tissues (Koshkina et al., 2020; Li et al.,
2020). IRF9 was upregulated in the heart tissue and modulated the
cardiomyocyte death and inflammation development after
myocardial ischemia reperfusion (Zhang et al., 2014). In

autoimmune hepatitis, the expression of JAK3 was found to be
increased, affecting inflammatory cytokine production (Asselah
et al., 2003; Centa et al., 2023). In the context of sepsis, our
findings yielded partially similar expression trends of hub genes
in target organs, while presenting novel discoveries compared to
above literature. Our analysis indicated the apoptosis-related genes
played distinct roles in the sepsis-induced multiple organ damage.
More investigations are warranted to unveil the molecular
mechanism of regulation of hub genes on sepsis.

However, our study has some limitations. First, we did not
explore the explicit molecular mechanisms of how apoptosis-
related genes regulate sepsis. Second, our study did not account
for the added value of hub genes and other diagnostic features of
sepsis. Third, considering the validation datasets covering

FIGURE 8
Confirmation of relative expression levels of hub genes between control group and CLP group in animal model using RT-qPCR (n = 5). The analyses
were performed in serum samples, heart tissues, lung tissues, liver tissues and kidney tissues, respectively. (A–E) The expression levels of BCL2 in serum,
heart, lung, liver and kidney. (F–J) The expression levels of FASLG in serum, heart, lung, liver and kidney. (K–O) The expression levels of IRF9 in serum,
heart, lung, liver and kidney. (P–T) The expression levels of JAK3 in serum, heart, lung, liver and kidney. (ns means no significance, *p < 0.05, **p <
0.01, ***p < 0.001).
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different age groups, the relevant results could be affected by
biological differences among different populations. Fourth, the
heterogeneity of expression patterns of hub genes across various
organs requires in-depth research in the future.

5 Conclusion

In summary, we systematically identified 11 apoptosis-related
differentially expressed genes in sepsis, and four hub genes (BCL2,
FASLG, JAK3 and IRF9) were recognized as valuable diagnostic
biomarkers. Furthermore, we explored the correlations from hub
genes to the immune microenvironment of sepsis. For the first time,
we revealed the relationship between apoptosis pathway and sepsis
from bioinformatics perspective, constituting a reference for basic
research and clinical decision-making.
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