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Toxicological risk assessment increasingly utilizes transcriptomics to derive point
of departure (POD) and modes of action (MOA) for chemicals. One essential
biological process that allows a single gene to generate several different RNA
isoforms is called alternative splicing. To comprehensively assess the role of
splicing dysregulation in toxicological evaluation and elucidate its potential as a
complementary endpoint, we performed RNA-seq on A549 cells treated with five
oxidative stress modulators across a wide dose range. Differential gene
expression (DGE) showed limited pathway enrichment except at high
concentrations. However, alternative splicing analysis revealed variable intron
retention events affecting diverse pathways for all chemicals in the absence of
significant expression changes. For instance, diazinon elicited negligible gene
expression changes but progressive increase in the number of intron retention
events, suggesting splicing alterations precede expression responses. Benchmark
dosemodeling of intron retention data highlighted relevant pathways overlooked
by expression analysis. Systematic integration of splicing datasets should be a
useful addition to the toxicogenomic toolkit. Combining both modalities paint a
more complete picture of transcriptomic dose-responses. Overall, evaluating
intron retention dynamics afforded by toxicogenomics may provide biomarkers
that can enhance chemical risk assessment and regulatory decision making. This
work highlights splicing-aware toxicogenomics as a possible additional tool for
examining cellular responses.
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Introduction

Genomic and transcriptomic approaches in toxicology provide unprecedented
molecular insight into the mode-of-action (MOA) and derivation of points-of-departure
(PODs) while reducing time, increasing throughput, and lowering the cost (Chepelev et al.,
2015; Harrill et al., 2019; 2021; Baltazar et al., 2020; Franzosa et al., 2021). Thus, these
approaches are becoming increasingly well-accepted as alternatives to conventional in vivo
studies to derive PODs for assessing chemical safety in screening studies (Pagé-Larivière
et al., 2019; Baltazar et al., 2020; Johnson et al., 2020; Pouzou et al., 2020). Recently, a focus
of transcriptomics in toxicology has been the dose-response modeling of gene expression.
This application couples benchmark dose (BMD) modeling to derive transcriptomic POD
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values determined by the gene expression changes induced by the
chemical and gene ontology pathway analysis (EFSA Scientific
Committee et al., 2017; Farmahin et al., 2017; Jensen et al.,
2019). This approach identifies specific POD levels that are
altered due to chemical exposure. The National Toxicology
Program (NTP) report outlines an approach for genomic dose-
response that has been effective for in vivo studies, where the
biological effect POD closely approximates apical toxicology
endpoints. For in vitro studies, additional steps like in vitro to in
vivo extrapolation (IVIVE) modeling may be needed before the
transcriptomic results can be effectively used for quantitative risk
assessment (National Toxicology Program, 2018). Despite the
advent of bioinformatic approaches and pipelines to determine
the MOA and POD values of a chemical by transcriptomics,
there is not yet any set consensus on data exploration. Therefore,
it is crucial to conduct a systematic analysis of the bioinformatic
approaches employed for deriving BMD and POD values.

The commonalities and differences observed in gene ontology
pathways between chemicals can be attributed to their shared ability
to induce oxidative stress, a well-documented mechanism in
toxicology. For instance, pathways related to mitochondrial
function, cell respiration, and DNA damage repair are often
affected by oxidative stress as the cell attempts to counteract the
damage caused by reactive oxygen species (ROS). Additionally,
chemicals may target specific pathways or processes depending
on their unique chemical structures and MOA. To further
elucidate these relationships, additional studies and experiments
are needed to provide a more detailed understanding of how
oxidative stress mediates the observed gene ontology pathway
changes in response to specific chemicals.

Alternative splicing is a fundamental cellular mechanism that
enables a single gene to produce multiple distinct mRNA isoforms,
thereby expanding proteomic diversity and regulating gene
expression (Baralle and Giudice, 2017). Among the various types
of alternative splicing events, intron retention, where introns are
retained within the mature RNA, has garnered increasing attention
due to its potential role in cellular processes and disease. While the
significance of alternative splicing is well-established, the functional
implications of intron retention remain relatively unexplored.
Recent studies have begun shedding light on the regulatory roles
of intron retention in diverse biological contexts, including
neurodevelopment, immune responses, and cancer progression
(Braunschweig et al., 2014; Wong et al., 2016; Jacob and Smith,
2017). The involvement of intron retention in toxicology and its
potential as a molecular mechanism remain largely untapped.

In this study, we examine transcriptomics for short-term in vitro
exposures with chemicals modulating cellular oxidative stress
(Kappus, 1987). Oxidative stress is caused by an imbalance
between the production and accumulation of ROS in cells and
tissues and the ability of a biological system to detoxify these
reactive products. ROS can be generated as by-products from the
metabolism of environmental pollutants or xenobiotics that lead to
imbalance and eventually tissue damage. Physiological and
biological stress responses such as immune cell activation,
inflammation, infection, cancer, or aging are all also responsible
for the endogenous production of oxidative species. Excess ROS can
adversely affect several cellular structures, such as membranes,
lipids, proteins, lipoproteins, and DNA (Mittal et al., 2014).

Chemical-induced oxidative stress represents an external
influence on normal homeostatic processes and may exert effects
at the transcriptome level differently for different chemicals that
impact oxidative stress response.

Transcriptomic events occurring at doses prior to cell death can
provide a clear insight into whether toxicity is an accumulation of
cell damage or an acute response to high-dose exposure to a
chemical. In an effort to investigate these possibilities, we
examined five effectors of oxidative stress - diazinon, paraquat,
prochloraz, sulforaphane, and 2,4-dinitrochlorobenzene (DNCB)—
in a dose-response exposure using the A549 lung adenocarcinoma
cancer cell line. The A549 lung adenocarcinoma cell line was
selected because it is a well-characterized model that has been
extensively used to study oxidative stress and chemical toxicity
(Lukaszewicz et al., 2019; Upadhyay et al., 2019; Niechoda et al.,
2023), and harbor functional cytochrome P450 enzymes and
antioxidant response pathways that allow them to respond to and
metabolize xenobiotics that modulate oxidative stress (Hukkanen
et al., 2000). The chemicals were chosen for their varied mechanisms
of impacting oxidative stress (Supplementaryu Table S1). Cell
viability and RNA-seq experiments were performed using a nine-
concentration dose-response experimental setup. The RNA-seq data
were analyzed for differential gene expression, alternative splicing
events, BMD modeling, and subsequent POD derivation following
ontology pathway enrichment analyses. Taken together, these results
presented in this study underscore the underutilized potential of
intron retention in the context of toxicogenomics and its possible in
illuminating MOAs for various chemicals. By comparing gene
expression and alternative splicing events, this study examines
the value of combining these tools by evaluating compounds with
different characteristics that affect oxidative stress.

Materials and methods

Cell culture

A549 cells were obtained from the American Type Culture
Collection (ATCC). Proliferation media consisted of Dulbecco’s
Modified Essential Medium (Gibco) with 10% fetal bovine serum
(FBS) (Atlanta Biologicals) and 1% penicillin-streptomycin
(Gibco). The plating medium consisted of Dulbecco’s Modified
Essential Medium (Gibco) with 10% Heat-Inactivated FBS (HI
FBS; Atlanta Biologicals) and 1% penicillin-streptomycin (Gibco).
For passaging, cells were washed with sterile Dulbecco’s
Phosphate Buffered Saline (DPBS) and enzymatically removed
using 0.25% trypsin-EDTA (Gibco). In preparation for the
proliferation assay, A549 cells were thawed (2.0 x 106, passage
3) and placed into a T25 flask (United States Scientific). After
5 days in culture, cells were passaged into a T75 flask (2.0 × 106,
passage 4) using a plating medium (10% HI FBS). After 5 days,
cells were plated at a density of 35,000 cells/well in black-walled,
clear-bottom, tissue-culture-treated 96-well plates (Greiner Bio-
One) using a plating medium (10% HI FBS). Cells were cultured
for 48 h in 96-well plates prior to treatment. Cell viability was
measured using a bioluminescent assay for ATP in lysed cells
(Promega G7571, CellTiter-Glo assay) with 3 biological and
3 technical replicates for each condition.
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Chemicals and reagents

Test chemicals, sulforaphane (Chemical Abstracts Service
Registry number (CASRN) 4478-93-7), prochloraz (CASRN
67747-09-5), paraquat (CASRN 1910-42-5), diazinon (CASRN
333-41-5), and 2,4-dinitrochlorobenzene (DNCB - CASRN 97-
00-7) were procured from Sigma. All chemicals had >98% purity,
except sulforaphane, which had >90% purity. Stock solutions were
made up of molecular biology grade (>99.9% purity) dimethyl
sulfoxide (DMSO) (Sigma) or deionized water (paraquat and
sulforaphane). The stock solutions were diluted into media prior
to adding to cells, keeping the solvent concentration the same in all
wells. Each compound was tested in eight concentrations in half-log
increments from the highest dose tested. Diazinon, prochloraz, and
DNCB were dissolved in DMSO, while paraquat and sulforaphane
were dissolved in sterile deionized water. DMSO vehicle control
wells contained 0.1% DMSO in culture medium, matching the final
DMSO concentration in chemical treatment wells. Deionized water
vehicle controls were used for paraquat and sulforaphane
treatments. For serial dilutions, the chemicals were diluted using
the same respective solvents to maintain consistent vehicle
concentrations across all doses. All treatment wells contained
500 μL of cell culture medium. Chemicals or vehicle compounds
were added in a 50 μL volume to achieve the desired final
concentrations. Treatment plates were prepared fresh before each
experiment to avoid evaporation issues.

RNA-Seq data generation and analysis

Using 4 biological replicates for each condition, whole cell RNA-
seq was performed by Novogene Corp. using polyA enrichment. The
RNA isolation was performed by utilizing the RNeasy Micro Kit
(Qiagen Cat. No. 74004) with polyA enrichment. The retained RNA
underwent quality assessment with a RIN >9 threshold, and purity
was verified based on absorbance ratio measurements (260:280 nm
ratio of −2). Illumina 150bp paired-end read kits (TruSeq Stranded
mRNA Library Prep Kit (Cat #20020594) as per the instructions
supplied with the kits. Reads were mapped to the Ensembl human
reference genome (hg38) using HISAT2 (version 2.05) (Zhang et al.,
2021). Each biological replicate of each condition was sequenced to
an average depth of −40 million reads (standard
deviation −5.2 million reads). Preceding the mapping step, reads
were subjected to trimming and quality filtering processes to
enhance data accuracy and reliability. RNA-seq results were
uniformly of high quality (>90% mapping rate). The replicates
displayed high QC quality with regards to the mapped count
data and correlation, and thus each concentration for every
chemical was analyzed using all four replicated samples. The
4 biological replicates displayed high QC quality with regards to
the mapped count data and correlation, and thus all 4 replicates for
every condition were analyzed using DESeq2 for differential gene
expression and VAST-tools for alternative splicing analysis.
FeatureCounts (Liao et al., 2014), a part of the Subread package,
was employed to quantify the read counts for each gene from the
aligned RNA-seq data. The analysis involved specifying the aligned
BAM files as input, and the resulting count matrix was utilized for
downstream expression analysis.

Differential gene expression analyses

The open-source statistical program R was used to run the
DESeq2 library (Love et al., 2014), and normalized log2 (gene
count+1) transformed data for BMD analyses were generated
with DESeq2 for all analyses. Genes that harbored less than
10 gene counts were removed from the dataset prior to
DeSeq2 analysis. To capture genes altered by exposure to
compound with high confidence, we applied corrected p-value
(false discovery rate) of less than 0.05 (FDR<0.05) and a fold
change greater than 1.5-fold (|FC|>1.5). The Venn diagrams were
generated by using the DeepVenn package (Hulsen, 2022). The gene
ontology analysis was performed with the gProfiler software
(Kolberg et al., 2023).

Analysis of Splicing events

Alternative splicing analysis of RNA-Seq data was performed
with VAST-Tools (version 2) (Tapial et al., 2017), a comprehensive
software suite designed for the identification and quantification of
various alternative splicing events from RNA-Seq data. VAST-Tools
employs a rigorous methodology that aligns the reads to the
reference genome and transcriptome, accurately identifying splice
junctions and quantifying alternative splicing events, including
intron retention, exon skipping, alternative 5′and 3′splice site
usage, and mutually exclusive exons.

To identify differentially regulated alternative splicing events
across the different chemical treatments and doses, we utilized the
“diff” module of VAST-Tools. This module compares the
Percentage Spliced In (PSI) values, which represent the inclusion
ratio of a particular alternative splicing event, between the treatment
and control conditions. We then applied a threshold of |dPSI| > 5%,
which means that only alternative splicing events with an absolute
difference in PSI values greater than 5% between the treatment and
control conditions were considered significant.

Additionally, we employed theMV_dPSI_at0.95CI > 0 criterion,
which ensures that the 95% confidence interval for the mean
difference in PSI values removes non-confident events. This step
further enhances the statistical robustness of the analysis by
accounting for biological variability and ensuring that the
observed differences in alternative splicing are statistically
significant.

By combining these two criteria, we identified alternative
splicing events that were consistently and significantly altered
across the different chemical treatments and doses. The raw
codes and usage of VAST-tools can be obtained from https://
github.com/vastgroup/vast-tools.

Benchmark dose modeling

The BMDExpress2 package was used to identify different BMD
models for the ontology enrichment genes and pathways (Phillips
et al., 2019). A complete description of the BMDmodeling approach
was also previously described (Black et al., 2022). All models were
fitted assuming constant variance as the data were log2 transformed
after the normalization in DESeq2. A final best fitting model was
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determined by first determining the best fitting polynomial model by
nested Chi square test. The best fit polynomial model was then
compared to the remaining models to select a final overall best fitting
model by Akaike information criteria (AIC). A BMD factor of
1 standard deviation (SD) was used. The option for flagging the
Hill model with “k” parameter less than ⅓ of lowest positive dose
was utilized, and best model selection with flagged Hill model was
done by selecting the next best model with p-value >0.05. First, any
model with extrapolated BMD value beyond the highest or the
lowest concentrations used in the dose-response experiment was
rejected. Similarly, any best fitting model with a goodness of fit
p-value less than 0.1 was rejected. Finally, any model which had a
BMDU/BMDL ratio greater than 40 was rejected to avoid BMD
estimates with excessively large 95% confidence intervals.

Ontology enrichment was performed using the publicly
available GO ontology database. BMDExpress2 performs a
conventional over-representation test of the query gene lists
relative to the pathway annotated gene lists in Gene Ontology.
For BMD analyses, the data were prefiltered using the ANOVA test
(p ≤ 0.05) and a fold-change of ≥1.5 or ≤1.5. Data were then filtered
with the settings in BMDExpress v2.3 of best BMDU/BMDL <40,
and best fitPvalue >0.1. We set a significance threshold for the
enrichment of a pathway having at least 5 of our query genes found
amongst the pathway elements, and with a Fisher’s Exact test (two-
tailed) p-value from the over-representation test that was less than
0.05. A pathway BMD value is computed as the median gene based
BMDU/BMD/BMDL values for the genes found amongst the
pathway category elements.

For intron retention BMD modeling, we used the number of
transcript-mapped reads to calculate the expression levels of
individual introns, and they were modeled at the “intron” level in
BMDExpress2, similar to the approach for gene expression counts.
Specifically, the intron retention mapped read counts were
log2 transformed and median-normalized per sample prior to
BMD modeling. This matches the preprocessing for gene counts.
After the BMD calculation step, the corresponding genes were used
to perform the BMD pathway analyses.

Significantly enriched pathways and computation of pathway-
based POD values were obtained by selecting genes from the
ontology enrichment analyses. For ontology enrichment results,
we summarized the 20 most sensitive enriched Gene Ontology
(GO) pathways (p < 0.05, genes that passed all filters >5).
Comparisons were restricted to median pathway values or
averages of the median BMD values of genes with a pathway as
our experience with other data (not shown) has shown these are
consistently more conservative than pathway mean values.

The GO analysis presented in Figure 2 was conducted based on
data from single dose concentrations, involving the categorization of
genes as either up- or downregulated. This initial analysis aimed to
capture early molecular responses to the various chemicals studied.
In contrast, the subsequent BMD pathway analysis, conducted using
BMDExpress2, took a different approach. It centered on calculating
the increase or decrease in gene expression that aligns with one of
the mathematical models tested, thereby providing a more
comprehensive representation of dose-response relationships
across the entire concentration range. By utilizing BMDExpress2,
this analysis aimed to identify critical benchmark concentration
values (BMDL, BMD, and BMDU) that serve as thresholds

indicative of the chemicals’ impact on molecular pathways. This
transition from single dose GO (molecular, biological, and
functional domains) analysis to BMD pathway analysis generates
a deeper and more nuanced understanding of the molecular changes
induced by these oxidative stressors. The network analysis was
performed by using the CytoScape software (v3.9.1).

Results

Cell viability of A549 cells to different
oxidative stress inducers

In this study, we assessed 5 oxidative stress effectors using
toxicogenomics analyses (Figure 1A, Supplementary Table S1).
To assess the sensitivity of the A549 cell line to each chemical,
and to determine the concentration range for transcriptomic studies,
we performed cell viability assays (Figures 1B–F). This experiment
allowed us to identify the upper concentration for each of the five
chemicals, where the concentrations for the transcriptomic
experiments consisted of half-log dilution series from that
maximum concentration. These values were 10-4 M for Paraquat
and Prochloraz, 10-5 M for Sulforaphane and DNCB, and 10-3 M
for Diazinon (Figures 1B–F). For RNA-seq experiments, the
maximum concentration, where the cell viability decreased by
15%–25%, was selected to prevent confounding cell death and
cytotoxicity and the loss of viable RNA. The 24-h exposure was
chosen as the time point since this time point displayed intermediate
effects when compared to shorter and longer time points.
Altogether, these experiments determined the viability rates of
A549 cells upon exposure to different oxidative stress inducers
and allowed us to choose the optimum dose for dose-curve
transcriptomics experiments.

RNA-seq and differential gene expression

RNA-Seq results were uniformly of high quality with an average
of −40 million mapped reads per replicate. The replicates displayed
high QC quality with regards to the mapped count data and
correlation, and thus each concentration for every chemical was
analyzed using all 4 replicated samples. Differential gene expression
results (see Methods for details) for A549 cells show that at highest
dose concentration, there were hundreds to thousands of
differentially expressed genes (DEGs) for all five chemicals. We
observed a clear dose-response of DEGs with diazinon and
prochloraz with the A549 cells (Figure 2A; Table 1).

Next, in order to assess the pathways that were altered via the
treatment of each chemical, we performed GO analysis of DEGs
identified with the lowest dose concentration in which significantly
differentially expressed genes and pathways were identified for each
compound and cell line (Figure 2B).

The 31.6 µM diazinon treatment in A549 cells revealed
alteration of genes involved in GO terms such as the
“apolipoprotein binding” or “cholesterol homeostasis”. 10 µM
DNCB treatment revealed pathways such as “respiratory pathway
IV” and “mitochondrial envelope” in A549 cells, indicating the
perturbation of respiratory pathways. Next, GO analysis of 10 µM
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sulforaphane treatment revealed the perturbation of “protein
binding” or “cell surface” pathways. The lowest doses of which
prochloraz treatment showed a DEG and perturbed pathways were
10 µM for A549 cells. GO terms altered in A549 cells in this
condition included “circulatory system process” “transcriptional
activity” and “cell-matrix adhesion”. Finally, 31.6 µM paraquat
treatment in A549 cells revealed pathways such as “long chain
fatty acid metabolism” or “signaling receptor binding” in
A549 cells (Figure 2B).

In summary, these findings indicate that examining lower doses
where DEGs are observed unveils diverse pathways affected. An
exception to this would be DNCB, which led to aberrant expression

of genes within the oxidative respiratory pathway. We identified
upregulation of expected oxidative stress marker genes, such as
SOD1, HMOX1 and NQO1, and relevant pathways related to
oxidative stress responses. Therefore, the differential gene
expression and GO pathway analysis using transcriptomics reveal
overlapping as well as differing number of DEGs and enriched
molecular, cellular and functional GO pathway categories across the
5 oxidative stress modulators, providing a highly detailed
information about the molecular changes associated with each
compound (Figure 2B).

To analyze the common cellular responses between the
chemicals, we assessed the extent of commonly regulated up- and

FIGURE 1
Cell viability upon treatment of oxidative stress modulators. (A) Schematic overview of the experimental procedure in this study. (B–F) A549 cell
viability assay for (A) DNCB, (B) Sulforaphane, (C) Prochloraz, (D) Paraquat and (E) Diazinon. Blue = 1 h, red = 6 h, green = 24 h and purple = 48 h.
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downregulated genes in the highest dose condition of each chemical
that are unique or shared among the different compounds (Figures
2C,D). A substantial number of genes were commonly upregulated
across multiple chemicals, with a core set of 26 genes shared by all
compounds except DNCB (Figure 2C). GO analysis of the
overlapping upregulated genes revealed a significant enrichment

of terms associated with oxidative stress response, such as “cellular
response to oxygen levels,” “cellular response to decreased oxygen
levels,” and “cellular response to hypoxia” (Figure 2C, inset). In
contrast, the analysis of overlapping downregulated genes
(Figure 2D) revealed 36 genes that commonly overlap across all
compounds except DNCB. GO analysis of the overlapping

FIGURE 2
Transcriptomic analysis of oxidative stressmodulators. (A)Dot plot showing the number of upregulated (red) and downregulated (blue) genes for the
5 chemicals across the doses tested. (B) Heatmap showing the -logFDR value of the gene ontology pathways for the lowest chemical concentrations in
which there was observed differential gene expression. (C) Upset plot showing the number of upregulated genes at the highest dose concentration for
each oxidative stress modulator. The bars on the left represent the total number of upregulated genes for each compound, while the bars on top
indicate the number of genes shared among different combinations of compounds. The inset shows the enriched Gene Ontology (GO) terms for the
overlapping upregulated genes across most compounds, highlighting their association with oxidative stress response, and signaling pathways. (D) Upset
plot showing the number of downregulated genes at the highest dose concentration for each oxidative stress modulator. The inset shows the enriched
Gene Ontology (GO) terms for the overlapping downregulated genes across most compounds, highlighting their association with DNAmetabolism, cell
cycle processes, and chromosome organization.
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downregulated genes highlighted terms related to DNAmetabolism,
cell cycle processes, and chromosome organization (Figure 2D,
inset), indicating potential disruptions in these cellular processes.

Benchmark concentration modeling and
POD derivation

To gain insight into the pathways that are affected as a function of
increasing dose concentrations, we used BMD analyses to derive POD
values from the transcriptomic data of each chemical. Given the varying
approaches found in the literature (Harrill et al., 2021; Matteo et al.,
2023) and the evolving nature of transcriptomics data analysis, we chose
to conduct a comprehensive and impartial analysis by employing two
distinct methods. First, we applied a significance criterion for BMD
pathways, where each pathway contained more than 5 genes and
displayed an FDR value of less than 0.05 (see Methods) and selected
the 20 lowest BMD pathways. For the second method, we analyzed the
BMD values for individual intron retention events.

First, we applied a significance criterion for BMD pathways,
where each pathway contained more than 5 genes and displayed an
FDR value of less than 0.05 (see Methods) and selected the 20 lowest
BMD pathways. This approach led to hundreds of pathways being
identified (Figure 3B). Analysis of the average lower benchmark dose
(BMDL), BMD and upper benchmark dose (BMDU) values of the
lowest 20 pathways revealed values that were consistent with the cell
viability assays (Figure 1). Since only sulforaphane and DNCB had
two enriched pathways with A549 cells, a single summary POD was
derived based on the median value for all pathways for these results.
The average BMDL values for the 20 most significant pathways were
compared to the average BMDL values for all significant pathways.
In all cases, the average BMDL for the 20 most significant pathways
was lower than the average BMDL for the full set of significant
pathways. We observed BMDL values of 19.9, 3.3, 2.43, 0.5, and

0.29 μM for diazinon, paraquat, prochloraz, DNCB, and
sulforaphane, respectively. As a result, this analysis highlighted
several known features of these compounds and unearthed
unexpected MOA’s (see Discussion).

Next, we visualized the BMD accumulation plots for genes that
exhibited responses below the maximum tested dose for each condition
(Figure 3A). A549 cells treated with DNCB displayed the gene
distribution with the lowest BMD accumulation, whereas cells
treated with diazinon had the highest (Figure 3A). We next
analyzed the BMD pathways that were commonly shared among all
the chemical conditions and identified that pathways such as
“regulation of serine/threonine kinase activity” or “metabolic” and
“apoptotic process” that were overlapping (Figures 3B,C,
Supplementary Figure S2). A wide range of cell cycle and DNA
damage endpoints were most predominant among the pathways
observed at the low concentration range. Notable cellular responses
to oxidative or chemical stress pathways were apparent in cells exposed
to diazinon, paraquat, prochloraz, and DNCB at the BMD and BMDL
levels observed. Only paraquat demonstrated major chemical oxidative
stress response pathways observed.

Our analysis highlights shared toxicity pathways while also
revealing some substantial differences between the chemicals
(Supplementary Figure S2). Core cell cycle control and DNA
damage pathways showed sensitivity to all compounds, implying
general reactive toxicity. However, paraquat uniquely disrupted
MAPK signaling (Liu et al., 2022), potentially reflecting oxidative
inhibition of phosphatases. Diazinon’s impacts on immune pathways
align with its acetylcholinesterase inhibition (Colović et al., 2013).
Sulforaphane and DNCB showed earlier perturbation of translation
and RNA processing. Prochloraz’s low-dose effects on reproductive
pathways match its endocrine disruption (Vandenberg et al., 2012).
Thus, despite common downstream outcomes like cell cycle
dysfunction, signatures of distinct molecular initiating events
emerged. Overall, combined assessment of shared and unique

TABLE 1 The number of genes dysregulated for each condition.

Diazinon (µM) 0.1 0.316 1 3.16 10 31.6 100 316 1000

Upregulated 0 0 0 0 0 9 242 1702 2190

Downregulated 0 0 0 0 0 2 60 1162 1451

DNCB (uM) 0.001 0.00316 0.01 0.0316 0.1 0.316 1 3.16 10

Upregulated 0 0 0 1 0 0 0 0 50

Downregulated 0 0 1 0 0 0 0 1 266

Sulforaphane (uM) 0.001 0.00316 0.01 0.0316 0.1 0.316 1 3.16 10

Upregulated 0 0 0 0 0 0 0 0 140

Downregulated 0 0 0 0 0 0 0 5 238

Prochloraz (uM) 0.01 0.0316 0.1 0.316 1 0.316 10 31.6 100

Upregulated 0 0 0 4 119 203 499 577 1862

Downregulated 1 1 0 0 0 264 535 389 4972

Paraquat (uM) 0.01 0.0316 0.1 0.316 1 0.316 10 31.6 100

Upregulated 0 0 0 0 0 0 0 22 1483

Downregulated 0 0 0 0 0 0 0 10 1536
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BMD-perturbed pathways facilitates MOA elucidation, aiding
chemical characterization and risk analysis.

These analyses altogether highlight the specific and shared
pathways that are perturbed with each chemical and underscore
the importance of careful BMD analysis pipelines for the
identification of MOAs.

Alternative splicing analysis

Alternative splicing generates multiple mRNA isoforms from a
single gene through mechanisms like exon skipping, intron
retention, and alternate splice site usage (Figure 4A), allowing
individual genes to produce multiple transcript isoforms,

FIGURE 3
BMD analysis using gene expression. (A) BMD Median Accumulation plot for the genes in each tested condition. The ANOVA test (p < 0.05) and a
fold-change of >1.5 or < −1.5 were used to pre filter the data. In BMDExpress v2.3, data were also post-filtered for best BMDU/BMD 40 and best
fitPvalue >.1. (B) Upset plot showing the number of BMD pathways that are either unique to each condition or overlapping with multiple conditions. The
lines that connect the dots below indicate an overlap between the conditions, and the bar graph on top indicates the number of overlapping
pathways. The bar graph on the left indicates the number of observed BMD pathways for each condition. (C)Network graph showing the connectivity of
the BMD pathways that display the highest rate of overlap among the tested conditions.

Frontiers in Genetics frontiersin.org08

Barutcu et al. 10.3389/fgene.2024.1389095

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1389095


expanding proteomic diversity (Blencowe, 2006; Lee and Rio, 2015;
Tapial et al., 2017; Park et al., 2018; Ule and Blencowe, 2019). This
process is regulated by splice sites, splicing factors, and RNA-
binding proteins that control exon inclusion/exclusion and intron
excision. Major splicing patterns include cassette exon skipping,
intron retention, and use of alternate 5′/3′ splice sites (Figure 4A).
Alternative splicing can influence the relative abundance of different
transcript isoforms originating from the same gene, thereby
impacting the composition of the transcript pool without
necessarily altering the overall gene expression levels. Despite its
prevalence in eukaryotes, and its frequent perturbation in several
developmental diseases and cancer (Scotti and Swanson, 2015), the
role of alternative splicing in toxicology remains under-explored
(Zaharieva et al., 2012; Villaseñor-Altamirano et al., 2019; Banerjee
et al., 2020).

Here, we utilized the RNA-seq data to systematically investigate
splice variants associated with each chemical (see Methods) using
the widely utilized VAST-Tools software (Tapial et al., 2017). VAST-
Tools quantifies alternative splicing events by counting RNA-seq
reads mapping uniquely to splice junctions and involved exons, then
calculates an inclusion ratio for each event representing the relative
abundance of isoforms with or without the event. Alternative
splicing analysis revealed extensive changes in events such as
exon skipping (EX) and intron retention (IR) across the tested
chemicals. All chemicals elicited robust changes in the four splicing
event types often at low doses (Figure 4B, Supplementary Figure
S3A). For instance, diazinon triggered the inclusion of a high
number of IR and EX events by 0.316 μM, preceding toxicity.
DNCB similarly resulted in marked IR and EX changes at
0.001 μM, below concentrations impairing viability or gene

expression. Most compounds displayed preferential modulation
of certain event types, illustrating the complexity of splicing
regulation. However, IR and EX were consistently the
predominant response, emerging as generalizable markers of
chemical perturbation. In contrast, ALT3 and ALT5 events were
detected in lower numbers. Thus, it may be possible that all types of
splicing events could be playing a combinatorial role in oxidative
stress. While many chemicals elicited splicing perturbations without
significant differential expression, sulforaphane uniquely induced
gene expression alterations alongside splicing effects. Overall,
alternative splicing analysis provides another window to query
chemical effects overlooked by standard expression profiling.

Benchmark concentration modeling using
intron retention events

Of the splicing alterations elicited by chemical toxicants, intron
retention (IR) and exon skipping (EX) events were the most
common splicing alterations across all compounds tested,
highlighting it as a possible marker of cellular stress (Vu et al.,
2022). Though under-appreciated relative to exon skipping, IR is
now recognized to play key regulatory roles, influencing mRNA
localization, stability, translation, and protein production (Wong
et al., 2016; Jacob and Smith, 2017; Monteuuis et al., 2019). Retained
introns introduce premature termination codons, enabling rapid
message turnover. Moreover, the unique sequences and motifs
within retained introns can affect splicing, RNA localization,
transcription, and translation via RNA-binding proteins and
chromatin modifiers.

FIGURE 4
Splicing changes occur prior to changes in gene expression. (A) Schematic representation of the major alternative splicing events observed. (B) Bar
plot showing the number of exon skipping (EX), intron retention (IR), alternative 3′ splice site (ALT3), and alternative 5′ splice site (ALT5) events along with
the number of differentially expressed genes (DEG) for the five chemicals across the doses. The splicing events are observed at concentrationwhere there
aren’t any DEGs.
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We therefore leveraged IR profiles to model dose-response
relationships and benchmark concentrations. The BMD pathway
accumulation plot revealed numerous intron retention events
surpassing benchmark response cutoffs, even at low
concentrations (Figures 5A,B). For instance, critical mRNA
processing pathways emerged at a BMD of −4 μM for several of
our test compounds. Upset plot analysis highlighted extensive
overlap in BMD pathways across chemicals, centered on key
processes like splicing and translation (Figure 5C). Interestingly,
except for diazinon, the mean BMDs derived from intron retention
events were lower than those from differential expression for the

same compounds (Figures 5D–H). Accordingly, the number of
BMD pathways detected by gene expression profiling partially
overlapped with BMD pathways detected by IR profiling
(Supplementary Figures S3B–F). This supports intron retention’s
sensitivity, capturing pathway perturbations undetected by
expression profiling. Overall, applying benchmark concentration
modeling to global intron retention patterns revealed unexpected
pathways and POD. Splicing-derived BMD modeling expands the
utility of toxicogenomics.

The BMD analysis uncovered biological pathways and points of
departure from IR that differed from those associated with gene

FIGURE 5
BMD Analysis using intron retention events. (A) BMD Median Accumulation plot, generated by using the intron retention events, for each tested
condition. (B) Bubble plot showing the minus log10 p-value of lowest 50 BMD pathways as a function of Median BMD levels. (C) Upset plot showing the
overlap of BMD pathways determined by intron retention events. (D–H) Scatter plot showing the Mean BMD values that have been generated either by
gene expression profiling (y-axis) or splicing analyses (x-axis) for (D) Diazinon, (E) Prochloraz, (F) Sulforaphane, (G) DNCB, and (H) Paraquat.
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expression. Our results reveal retained introns as promising targets
meriting extensive analysis to elucidate chemical MOAs and
enhance risk assessment.

To elucidate shared and unique biological changes across
chemicals, we further constructed a pathway network to visualize
the overlapping BMD pathways (Figure 6). Network visualization of
pathways modulated at benchmark concentration levels revealed
extensive connectivity and shared biology across the mechanistically
distinct chemicals. Numerous pathways were jointly perturbed by
multiple compounds, centered on key processes like mRNA
processing, vesicle trafficking, and post-translational
modifications. For instance, critical splicing and polyadenylation
pathways were common to prochloraz, DNCB, and sulforaphane,
three otherwise divergent oxidative toxicants. Similarly, regulation
of ubiquitination and transport vesicles emerged as conserved hubs,
suggesting generalized cellular stress effects. Furthermore, DNA
repair pathways unique to sulforaphane emerged at higher BMD
levels, providing chemical-specific insights. However, closer
examination also revealed chemical-specific interactions reflecting
unique alterations, such as DNA repair for sulforaphane or neuron
development for DNCB. In addition, calcium signaling pathways
showed lower median BMDs for DNCB versus prochloraz, implying
greater potency despite common modulation. This network
approach enhances compound-specific potency assessments,
elucidating unique molecular initiation events and their dose-
dependencies.

Collectively, these results demonstrate that combining BMD
modeling with network biology provides both a broad overview of
common toxicological mechanisms, as well as nuanced insights into

the precise pathway perturbations underlying each compound’s
toxicity. This systems-level perspective enhances molecule-specific
risk assessment.

Discussion

In this study, we sought to identify the pathways affected in a
dose response manner by various oxidative stress modulators. The
range of BMD values obtained for the chemicals showed a
correlative trend with the doses where ~15–25% cell death
occurred in viability experiments (Figure 1). This trend is
consistent with the fact that the DEGs also followed the same
trend as the viability assays (Figure 2A). GO analysis using fixed,
early dose concentrations revealed several mitochondrial and
cellular respiration-associated pathways consistent with the
known effects of these chemicals (Figure 2B).

This study demonstrates the potential of combining gene
expression and splicing analysis to elucidate chemical
mechanisms of action (MOAs) and PODs. While expression
profiling revealed overt toxicity thresholds, systematic splicing
characterization uncovered lower-dose RNA processing
disruption, affirming RNA homeostasis as a toxicological MOA.
Remarkably, intron retention emerged as the primary splicing
alteration, providing a generalized indicator of cellular stress
across structurally diverse toxicants, as also suggested by earlier
reports (Hadar et al., 2022; Vu et al., 2022). By modeling dose-
dependent intron retention profiles, we extracted benchmark
concentration pathways and PODs at lower concentrations than

FIGURE 6
Network analysis of BMDpathways determined by intron retention events. Network graph showing the unique, aswell as overlapping BMDpathways
that have been determined by intron retention event modeling. The color of the edges indicates the Median BMD values.
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those affecting gene expression. The minimal, but significant overlap
between expression- and splicing-derived pathways affirms retained
introns as informative, complementary biomarkers. Rather than
superseding expression results, splicing analysis may add useful
information.

The modulation of splicing events, encompassing intron
retention, exon skipping, and 3′or 5′splice site selection, plays
important roles in gene expression regulation (Jacob and Smith,
2017). Perturbations induced by environmental factors or toxicants
can lead to aberrant splicing patterns, generating diverse mRNA
isoforms, some of which may encode dysfunctional proteins that
disrupt cellular processes. Altered splicing can also result in the
accumulation of unstable RNA species, triggering stress responses.
Moreover, changes in splicing may yield protein isoforms with
varying activities and interactions, contributing to cellular
dysfunction and toxicity. These alterations serve as valuable
biomarkers, offering insights into the molecular mechanisms
underlying toxicity and providing early indicators for
comprehensive risk assessment in toxicology.

Our integrated transcriptomics approach provides broad,
pathway-level insights through expression analysis, supplemented
by event-level perturbations from splicing. By fusing both
techniques, we obtained a more complete perspective into
chemical MOAs, capturing low-abundance anomalies antecedent
to downstream endpoints. Both techniques provide complementary
insights. Gene expression defines chemical impacts on functional
protein pathways that influence cellular outcomes. Meanwhile,
splicing analyses reveals the fine-tuned regulatory disruptions
underlying these transcriptomic shifts. Integrating both is crucial
for a mechanistic understanding of how chemicals initiate molecular
perturbations that propagate into overt toxicity. Future work should
balance sensitive pathway examination with systems-level
perspectives and investigate whether changes in alternative
splicing is a hallmark within different toxicological contexts.

We identified intricate dose-dependent modulation of
alternative splicing events (Supplementary Figure S3). With
Diazinon and Sulforaphane, there is a balanced up- and
downregulation of IR and EX events across all the doses. DNCB
induces a robust downregulation of IR and EX events across all
doses. Paraquat treatment leads to IR events that are consistently
upregulated especially at lower doses, with balanced distribution at
higher doses. Moreover, in the context of Prochloraz treatment,
there is a dose-dependent decrease in the number of upregulated and
an increase in the number of downregulated IR and EX events. These
observations highlight the complex interplay between different
splicing events and their dose-dependent modulation, which may
be influenced by the specific mechanisms of action and cellular
responses elicited by each oxidative stress modulator. The clear
differences in the patterns of up- and downregulation across
compounds underscore the need for a comprehensive analysis of
alternative splicing events to fully understand the splicing
dysregulation associated with oxidative stress and its implications
for cellular function, toxicity and risk assessment. Comparison of
altered pathways detected by differential gene expression and IR
analysis reveals several common pathways that are co-regulated by
these processes (Supplementaryu Table S4).

Differential basal expression of genes and pathways involved
in mediating or counteracting chemical MOAs likely contributes

to cell-type specific susceptibility (Black et al., 2023).
Furthermore, compounds may preferentially disrupt pathways
that are highly expressed in certain cell contexts due to tissue-
specific roles, while not affecting cell types lacking associated
gene programs. Elucidating how chemical perturbations
interface with cell-intrinsic expression landscapes will shed
light on selective sensitivities and improve cross-cell-type
extrapolation.

Assessing significant BMD pathways which were commonly
identified to be overlapping among the cell line-chemical
combinations revealed that these pathways do not necessarily
harbor the lowest BMD or BMDL (i.e., BMDL = POD) levels but
are shared among the oxidative stressors and the 2 cell lines used
(Figure 3). These analyses revealed several converging pathways that
include metabolic processes, phosphorylation of proteins
(i.e., serine/threonine kinases in cell cycle control) or regulation
of gene expression by gene silencing. A detailed, gene-level BMD
analysis of the top three overlapping pathways (Figure 3) indicates
that there is a range of genes with differing BMD values that drive
the alterations of these pathways.

Intron retention-based BMCs tended to be lower than viability
or gene expression-based BMCs across most chemicals. However,
there is a high correlation between the median BMC values of lowest
BMC pathways and those that have been derived from cell viability
assays (Krebs et al., 2020) (Supplementary Figure S4). This
highlights the sensitivity of splicing alterations like intron
retention in capturing early molecular changes at doses below
those impairing viability or gene expression. However, further
evaluation using in vitro to in vivo extrapolation (IVIVE) is
needed to determine if intron retention provides PODs that
better reflect in vivo dose-response compared to gene expression
alone. Nonetheless, our results demonstrate the value of intron
retention profiling for interpreting chemical MOA through the
unique pathways and dose-dependencies revealed. The non-
overlapping sets of BMC pathways from gene expression vs.
splicing analyses substantiate intron retention as a
complementary indicator of biological impacts at lower
concentrations.

Future work focusing on the validation and functional
characterization of individual alternative splicing events is
required to identify individual markers for oxidative stress or
other toxicology applications. Follow-up work involving ROS
assays and DNA damage assays like COMET to directly quantify
oxidative stress upon chemical treatment will be paramount. It will
be important to correlate altered splice isoform levels with these
functional readouts to determine which splicing events are most
associated with oxidative stress and toxicity. Knockdown or
overexpression studies focused on shifting isoform ratios will
provide further evidence linking alternative splicing to oxidative
stress. In addition, studies characterizing the involvement of other
splicing events, such as exon skipping, will be important to identify
novel biomarkers.

Further visualization of the pathways indicated several processes
that were specific to individual chemical-cell line combinations or
shared by many chemicals (Supplementary Figure S1). For instance,
A549 cells treated with DNCB showed several pathways related to
oxygen transport. On the other hand, “Transcriptional Regulation
by TP53” and “D-loop structure” pathways were commonly shared
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with many compounds. Previous research has highlighted the
p53 pathways as a marker for oxidative stress (Liu et al., 2020).
Similarly, D-loops structures, due to their relaxed structures, have
been shown to be more prone to oxidative damage than other
mitochondrial DNA regions (Rothfuss et al., 2010).

Taken together, these results demonstrate that splicing analysis may
provide another complementary biomarker to standard expression
profiling. The non-overlapping pathway sets highlight retained
introns as a complementary indicator of biological impacts induced
by chemical exposure. Overall, coupling intron retentionmodeling with
gene expression analysis provides a systems perspective.
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