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LncRNAs are an essential type of non-coding RNAs, which have been reported to
be involved in various human pathological conditions. Increasing evidence
suggests that drugs can regulate lncRNAs expression, which makes it possible
to develop lncRNAs as therapeutic targets. Thus, developing in-silicomethods to
predict lncRNA-drug associations (LDAs) is a critical step for developing lncRNA-
based therapies. In this study, we predict LDAs by using graph convolutional
networks (GCN) and graph attention networks (GAT) based on lncRNA and drug
similarity networks. Results show that our proposed method achieves good
performance (average AUCs > 0.92) on five datasets. In addition, case studies
and KEGG functional enrichment analysis further prove that the model can
effectively identify novel LDAs. On the whole, this study provides a deep
learning-based framework for predicting novel LDAs, which will accelerate the
lncRNA-targeted drug development process.
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1 Introduction

LncRNAs are a class of non-coding RNAs transcribed from DNA with a length of over
200 nucleotides (Ponting et al., 2009). They account for 70%–80% of all non-coding RNAs
and play crucial regulatory roles in numerous cellular processes, including but not limited to
transcription, splicing, translation, DNA repair, and regulation of genes. The quantity and
biological importance of lncRNAs determine their widespread involvement in all
physiological activities of living cells and the pathogenesis of human diseases, such as
cancer, Parkinson’s disease, and cardiovascular disease (Riva et al., 2016; Schmitz et al.,
2016; McCabe and Rasmussen, 2021). LncRNAs represent a new type of potential
therapeutic targets, that can affect the diagnosis, treatment, and prognosis of diseases,
and have attracted significant attention (Blokhin et al., 2018; Fernandes et al., 2019; Winkle
et al., 2021).

Due to the key roles of lncRNAs in diseases, it is crucial to develop lncRNA-targeted
drugs and technologies. This presents a significant opportunity for the treatment of
lncRNA-related diseases and represents a new area for drug development (Sangeeth
et al., 2022). Emerging studies have shown that small-molecular drugs can inhibit the
proliferation of tumor cells or tumor stem cells by regulating the expression of lncRNAs,
laying a crucial theoretical foundation for the advancement of lncRNA-targeted
therapeutics (Liu et al., 2021). To develop lncRNA-targeted drugs, it is necessary to
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take three preparatory steps: elucidating the action mechanism of
lncRNAs in diseases, analyzing their structural and functional
pockets, and finding small-molecular drugs that can bind
specifically to the pockets. One important aspect of this process
is identifying associations between lncRNAs and drugs (Jiang et al.,
2019; Chen Y. et al., 2021). Predicting lncRNA-drug associations
(LDAs) not only facilitates the selection of potential drug candidates
but also streamlines the drug discovery process, ultimately
propelling the realization of efficacious lncRNA-targeted
therapies and fostering advancements in precision medicine.

LDAs are mainly identified through biological experiments. For
example, curcumin plays a crucial role in the treatment of various
cancers by regulating lncRNAs (Patel et al., 2020). It inhibits the
expression of lncRNA H19, and restores MEG3 levels via
demethylation, thus enhancing the sensitivity of cancer cells to
chemotherapeutic drugs (Zhang et al., 2017; Cai et al., 2021).
Wang et al. (2020) confirmed that the oncogenic factor lncRNA
CCAT2 was overexpressed in ovarian cancer, and calcitriol, the
vitamin metabolite, can inhibit the proliferation, migration, and
differentiation of ovarian cancer cells by inhibiting the expression of
CCAT2. However, identifying LDAs based on biological
experiments is time-consuming and costly, there is a need for
efficient and accurate computational methods to predict potential
LDAs, which can be further verified by biological experiments.

Jiang et al. (2019) identified LDAs based on the hypothesis that
lncRNAs with similar sequences are often regulated by the same
drug, and drugs with similar structures tend to regulate the same
lncRNA.Wang et al. (2018) utilized Elastic Network (EN) regression
to predict potential LDAs by integrating lncRNA expression profiles
and drug response data in cancer cells. However, the limitation of
these methods is that they heavily rely on specific features of the
existing data, which may affect the prediction performance.
Although predicting LDAs is receiving increasing attention, the
relevant prediction methods are still relatively lacking.

At present, a wealth of computational methods has been
accumulated for predicting small molecule drug-miRNA
associations (Qu et al., 2019; Yin et al., 2019; Chen et al., 2020).
Considering that both lncRNAs and miRNAs are non-coding RNAs
involved in gene expression regulation and cellular functions, and
share similar regulatory mechanisms (Yan and Bu, 2021), the
methods for predicting drug-miRNA interactions hold significant
implications for predicting LDAs. Zhao et al. (2020) developed a
model using symmetric nonnegative matrix factorization and
Kronecker regularized least squares to predict small molecule
drug-miRNA associations. Chen et al. (2021) predicted small
molecule drug-miRNA associations based on bounded nuclear
norm regularization. Wang et al. (2022) presented an ensemble
of kernel ridge regression-based method to identify potential small
molecule-miRNA associations. Niu et al. (2023) employed a
combination of GNNs and Convolutional neural networks
(CNNs) to predicted small molecule drug-miRNA association.

Recently, due to the breakthroughs in deep learning and the
huge improvements in computing power, models based on deep
learning, particularly those employing GNNs, have been applied in
multiple bioinformatics-related tasks, such as lncRNA-disease
association prediction, and drug-target interaction prediction
(Xuan et al., 2019; Chen et al., 2020; Kumar Shukla et al., 2020;
Zhao et al., 2023). Yin et al. (2023) proposed a general framework

using residual GCN and CNNs to predict drug-target interactions.
Wang and Zhong (2022) proposed a method (gGATLDA) to
identify potential lncRNA-disease associations based on graph
attention networks (GAT). The success of the above GNNs-based
methods can be attributed to the three main reasons: 1) biological
correlations can be modeled naturally as graph structures, 2) GNNs
have the advantage of capturing complex network relationships, 3)
the introduction of attentionmechanisms enables the model to focus
locally on important nodes in the graph and effectively integrate
node information on a global scale.

Therefore, based on the experiments validated LDAs dataset (D-
lnc (Jiang et al., 2019)), we propose a GNNs-based framework to
predict LDAs by referring to the gGATLDA method which was
originally designed to predict lncRNA-disease associations. In this
paper, we first extract the lncRNA-drug bipartite graph according to
the LDAs matrix and obtain one-hop enclosing subgraphs of all
lncRNA-drug pairs from the bipartite graph. Then, the feature
vectors of lncRNA-pairs are constructed according to Gaussian
interaction profile kernel lncRNA (drug) similarities. Finally,
GCN learns lncRNA and drug node embeddings and obtain local
spatial characteristics of nodes. GAT uses the attention mechanism
to integrate the global information of the lncRNA-drug bipartite
graph. Our model takes full advantage of GCN and GAT to predict
novel LDAs. Results show that the method achieves high AUC and
AUPR, and the ablation experiments show that our model performs
better than GCN andGAT. The case studies on two drugs (Berberine
and Panobinostat) and two lncRNAs (NEAT1 and MEG3)
demonstrate the effectiveness of the model in predicting the
potential LDAs. In the functional enrichment analysis, we further
verified the validity of our predicted LDAs from the perspective of
the relationship between the biological function of drugs and the
enrichment pathway of lncRNA target genes. All these results
suggest that the framework used in this study is an efficient
method for predicting LDAs.

2 Materials and methods

2.1 Materials

Three benchmark datasets including the Gene Expression
Omnibus (GEO) dataset, Connectivity Map (cMap) dataset, and
Validated dataset (Jiang et al., 2019) are downloaded from http://
www.jianglab.cn/D-lnc/index.jsp. The cMap dataset and GEO
dataset were obtained by re-annotating microarray probes in
cMap and GEO databases, respectively, and screening lncRNA
differential expression data before and after drug therapy. The
Validated dataset was created by searching experimentally
verified drug modification of lncRNA expressions. We obtain
three benchmark datasets (Dataset 1, Dataset 2, and Dataset 3)
by removing the repeated LDAs of GEO dataset, cMap dataset, and
Validated dataset respectively. As the number of lncRANs and drugs
in three benchmark datasets is unbalanced, only when Dataset 1 and
Dataset 2 are combined, the number of them is relatively balanced.
Therefore, we combine Dataset 1 and Dataset 2 into Dataset 4, which
is used as a training dataset in the case study to predict LDAs in
Dataset 3 (see case study section). Dataset 5 is merged from Dataset
1, Dataset 2, and Dataset 3. Table 1 shows the detailed information
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of five datasets. We treat the known LDAs as positive samples and
randomly select the negative samples with the same number of
positive samples from the unknown LDAs.

2.2 Methods

The flowchart of the method is shown in Figure 1. Firstly,
construct the lncRNA-drug association matrix, lncRNA similarity
matrix, and drug similarity matrix. Secondly, construct one-hop
enclosing subgraphs according to the lncRNA-drug bipartite graph,
and obtain lncRNA node features and drug node features,
respectively. Further, the one-hop enclosing subgraph of each
lncRNA-drug pair and their feature vectors are input to the
GNNs model. Finally, the lncRNA vector and drug vector are

concatenated and processed by Softmax to obtain the
prediction score.

2.2.1 Constructing similarity matrices for lncRNAs
and drugs

Because of the sparsity of the lncRNA-drug association matrix
LD ∈ Rm×n, we calculate lncRNA similarity LS(li, lj) and drug
similarity DS(di, dj) by the following Gaussian interaction
profile kernel (GIP) (van Laarhoven et al., 2011; Yang and
Li, 2021):

LS li, lj( ) � exp −rl IP li( ) − IP lj( )����� �����2( ) (1)

DS di, dj( ) � exp −rd IP di( ) − IP dj( )����� �����2( ) (2)

TABLE 1 The detailed information of five datasets.

LncRNAs Drugs Associations

Dataset 1 2360 115 28487

Dataset 2 129 1279 15804

Dataset 3 4691 48 4791

Dataset 4 (Dataset 1 + Dataset 2) 2431 1369 44262

Dataset 5 (Dataset 1 + Dataset 2 + Dataset 3) 6556 1400 49044

FIGURE 1
The flowchart of our method. (A) The LDAs matrix, lncRNA similarity matrix, and drug similarity matrix are constructed, respectively. (B) Obtain
lncRNA-drug bipartite graph and one-hop subgraphs, and construct the initial feature vector of lncRNA and drug. (C) Extract feature representation of
lncRNAs and drugs based on GCN and GAT. (D) Concatenate the lncRNA vector and drug vector to obtain a new vector, and the prediction score is
obtained by Softmax.
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where LS ∈ Rm×m and DS ∈ Rn×n denote the lncRNA similarity
matrix and drug similarity matrix, respectively. m and n
represent the number of lncRNAs and drugs respectively. IP(li)
and IP(di) are binary vectors, which represent the i th row and i th
column of LD, respectively. If lncRNA li is associated with drug dj,
LD(i, j) � 1, otherwise LD(i, j) � 0. rl and rd are used to adjust the
kernel bandwidth, which are calculated as followed:

rl � 1/ 1
m
∑m

i�1 IP li( )‖ ����2( ) (3)

rd � 1/ 1
n
∑n

i�1 IP di( )‖ ‖2( ) (4)

2.2.2 Extracting one-hop enclosing subgraph
The bipartite graph G is constructed from the matrix LD, where

each known lncRNA-drug pair corresponds to an edge connecting
the lncRNA li and drug dj, for unknown LDAs, there are no edges
between li and dj. The one-hop enclosing subgraph G1(V1, E1) of
each lncRNA-drug pair (li, dj) can be defined as following: V1 is the
set of nodes containing one-hop neighbor nodes of li, one-hop
neighbor nodes of dj, as well as node li and node dj, and E1 is edge
set. Each node in subgraphs can be labeled to distinguish its role
(Zhang and Chen, 2020). We use 0 and 1 to label target lncRNA
node and target drug node, respectively, and use 2i and 2i + 1 to label
the one-hop neighbor nodes of li and the one-hop neighbor nodes of
dj, respectively, where i represents the order of neighbor nodes, and
it is set to 1 according to gGATLDA (Wang and Zhong, 2022).

2.2.3 Constructing and denoising original
feature vectors

The original lncRNA and drug feature vectors are constructed
from lncRNA similarity matrix and drug similarity matrix,
respectively. However, due to the high dimension of original
features and the sparsity of lncRNA (drug) similarity matrix, we
employ principal component analysis (PCA) for dimension
reduction. PCA is a classical, efficient, and unsupervised feature
selection method, which can not only retain as much feature
information as possible while reducing the feature dimension
but also greatly reduce the training time of the model. Assume
the original lncRNA and drug feature vector f0

l �
[f0

l1, f
0
l2, f

0
l3, ..., f

0
lm] and f0

d � [f0
d1, f

0
d2, f

0
d3, ..., f

0
dn],

respectively. After performing PCA, we obtain the feature
vectors f′

l � [fl1
′ , fl2

′ , fl3
′ , ..., fla

′ ] and f′
d � [fd1

′ , fd2
′ , fd3

′ , ..., fdb
′ ],

where a and b denote the feature vector dimension of lncRNAs and
drugs, respectively. Since a and b may not be equal, in order to
ensure that the input feature dimensions of each node are the same,
we take the sum of 4 + a + b as the feature dimensions of the nodes,
where the first 4 dimensions represent the one-hot encoding of the
node labels to distinguish the roles of different nodes. The extra b
dimensions of lncRNA node features and a dimensions of drug
node feature are filled with 0 values. We construct the lncRNA
feature matrix Flnc � Rm×(4+a+b) and the drug feature matrix
Fdrug � Rm×(4+a+b). The feature vector of lncRNA l is
fl � [p1, p2, p3, p4, fl1

′ , fl2
′ , fl3

′ , ..., fla
′ , 0 , 0, 0, ..., 0], and pj

(1≤ j≤ 4) represents the one-hot encoding of the node label,
distinguishing different roles. Similarly, the feature vector of a
drug d is fd � [p1, p2, p3, p4, 0, 0, 0, ..., 0, fd1

′ , fd2
′ , fd3

′ , ..., fdb
′ ].

2.2.4 The model based on GCN and GAT
GNNs are a class of data models for processing graph structures

that utilize a message-passing mechanism to update the node
embeddings. GCN and GAT are two specific GNN models whose
core idea is to update node embeddings by aggregating neighbor
nodes’ information. The difference is that GAT introduces an
attention mechanism during the message-passing process, which
can adaptively assign different weights to different nodes, allowing
for more flexibility in capturing relationships between nodes.

In the model, the GCN layer is employed to update the features
of lncRNA and drug nodes. The feature representation of node i in
the k + 1 layer is presented as follows:

h k+1( )
i � σ ∑

j∈N i( )∪ i[ ]

1				
d i( )√ ·

				
d j( )√ h k( )

j W k+1( )( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (5)

where h(k)j represents the feature vector of node j in layer k
(k � 0, 1, 2, 3, ..., n), d(j) denotes the degree of node j, N(i)
represents the set containing all neighbors of node i, and W(k+1)

denotes the parameter matrix to be learned in the k + 1 GCN layer.
To get the weights between different nodes, GAT introduces the

attention coefficient. The attention coefficient between node i and
node j is calculated as follows:

eij � σ a W k( )h k( )
i ,W k( )h k( )

j( )( ) (6)

where a represents a shared attention mechanism to calculate the
attention coefficient, and σ represents the LeakyReLU activation function.

To compare the attention coefficient between different nodes,
the normalized attention coefficient αij is calculated as follows:

αij � softmax eij( ) � exp eij( )∑
m∈Ni

exp eim( ) (7)

After obtaining the attention coefficients between node i and its
neighbor nodes, we obtain the final representation h(k+1)i by taking a
weighted summation of its neighbor nodes, and it is calculated
as follows:

h k+1( )
i � σ ∑

j∈Ni

αijW
k( )h k+1( )

j
⎛⎝ ⎞⎠ (8)

where σ represents ELU activation function.

2.2.5 Prediction score
For the final output of the last GAT layer, the vector

representations of target lncRNA and target drug are concatenated:

f li,dj( ) � concat hli, hdj( ) (9)

where hli and hdj denote the final feature representation of the lncRNA
li and dj, respectively. The purpose of concatenating the feature
vectors of target lncRNA and target drug is to integrate the feature
information of lncRNA and drug node pairs to form a richer feature
representation and to reduce information loss to a certain extent. This
can help the model better understand the relationship between
lncRNAs and drugs and improve the accuracy of prediction.

Finally, for the representation f(li ,dj), we use Softmax as an
activation function to obtain the prediction score y′(li, dj):

Frontiers in Genetics frontiersin.org04

Xu et al. 10.3389/fgene.2024.1388015

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1388015


y li,dj( )′ � Softmax f li,dj( )( ) � e
f

li ,dj( )
∑n

j�1e
f

li ,dj( ) (10)

The binary cross-entropy loss function is used to train the
weight W(k):

Loss � −y li ,dj( ) log y′ li ,dj( )( ) + 1 − y li ,dj( )( )log 1 − y′ li ,dj( )( ) (11)

where y(li ,dj) represents the real label.

2.3 Evaluation criteria

In this study, we evaluate the performance of the model by means
of AUC (AreaUnder Curve), AUPR (Area Under the Precision-Recall
curve), precision, accuracy, F1-Score, and recall. AUC means the area
under the Receiver Operating Characteristic (ROC) curve, which is
plotted by the true positive rate (TPR) and the false positive rate (FPR)
at different thresholds. The TPR and FPR are calculated as follows:

FPR � FP

FP + TN
(12)

TPR � TP

TP + FN
(13)

where TP and TN are the numbers of correctly identified positive
and negative samples respectively. FP and FN are the numbers of
misidentified positive and negative samples, respectively.

In addition, the evaluation metrics including precision, recall,
F1-score, and accuracy are calculated as follows:

precision � TP

TP + FP
(14)

recall � TP

TP + FN
(15)

F1 − score � 2 × precision × recall

precision + recall
(16)

Accuracy � TP + TN

TP + TN + FP + FN
(17)

3 Results

In this section, firstly, we select the appropriate parameters of the
model through parameter optimization. Secondly, we show the
experimental results of six evaluation metrics on five datasets and
conduct ablation experiments on five datasets. Thirdly, case studies
are conducted on two drugs and two lncRNAs, which aim to validate
the ability of the method to predict potential LDAs. Finally, we
performed the KEGG functional analysis based on the results of case
studies to further verify the validity of the predicted LDAs, especially
for those that are unconfirmed in the case study.

3.1 Parameter optimization

We initially explore the influence of various hyperparameter
combinations on the performance of predicting LDAs across five

datasets. These hyperparameters include epochs, batch size, learning
rate, the initial feature vector dimensionality selected by PCA, and
the layers of GCN and GAT, respectively. We utilize grid search to
tune these six hyperparameters. The epochs range extends from
10 to 50, incremented by 10. Batch size is selected from the set {16,
32, 64, 128}, learning rate is chosen from {0.1, 0.001, 0.0001}, and the
initial feature vector dimensionality selected by PCA ranges from
{32, 64, 128, 256}. The experimental results are shown in Figure 2,
the optimal model performance is attained when a particular
combination of hyperparameters is used on Dataset 1 to Dataset
5. Specifically, epochs are set to {40, 40, 40, 40, 50}, batch sizes to {64,
128, 64, 64, 128}, and learning rate uniformly to 0.001. Additionally,
the number of initial PCA-selected feature dimensions is set to {128,
128, 32, 128, 256} for each dataset.

In addition, the selection of model structure is crucial for
prediction performance. Therefore, we also investigate the impact
of the two main hyperparameters, the number of GCN and GAT
layers on the model in Dataset 1, Dataset 2, and Dataset 3.
Specifically, we select layer numbers ranging from 1 to 3 for both
GCN and GAT. The increase in the number of GNN layers means
aggregating features from higher-order neighbor nodes, but it may
lead to the loss of local structure, resulting in overfitting and
decreased prediction performance. For instance, as shown in
Table 2, in Dataset 1, increasing the GCN layer from 1 to
2 improves performance, but further increasing it to 3 leads to a
decrease in performance. It is worth noting that the model achieves
the best performance across all three datasets when the model
structure consists of 1 GCN layer and 3 GAT layers. Therefore,
we choose 1 GCN layer and 3 GAT layers as our model architecture.

3.2 Prediction performance of the model

To avoid potential random bias, we repeat the five-cross-
validation process 100 times and average the performance
metrics to derive the final results. The results are shown in
Table 3, the AUC and AUPR are higher than 0.92 on both the
benchmark datasets and combined datasets. It is noteworthy that the
overall performance of the model is superior on the combined
datasets compared to the benchmark datasets. For instance,
among the benchmark datasets, the model on Dataset 1 and
Dataset 2 achieves the AUC of 0.9514 and 0.9280, respectively.
However, the model’s AUC on Dataset 4 (Dataset 1+Dataset 2) is
0.9690, which surpassed that of its constituent subsets. This
improvement of performance on the combined dataset can be
attributed to the more balanced relationship between the
quantities of lncRNAs and drugs and the more trainable data in
this dataset. However, on the contrary, the performance of
benchmark Dataset 3 is better than that of the combined
datasets. This discrepancy can be attributed to the presence of
4791 LDAs involving 4691 lncRNAs and 48 drugs in Dataset 3.
Notably, the average degree size of each drug is 99, implying that one
drug corresponds to multiple lncRNA information, enabling the
model to extract more complex features from abundant lncRNA
information. Consequently, it facilitates a more accurate capture of
the relationship between drugs and lncRNAs. Overall, these
observations indicate that the proposed method has an excellent
performance on the five datasets.
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FIGURE 2
Hyperparameter optimization results for five datasets. (A) The AUC values under the different epochs on five datasets. (B) The AUC values under the
different batch sizes on five datasets. (C) The AUC values under the different learning rates on five datasets. (D) The AUC values under the different
dimensions selected by PCA on five datasets.

TABLE 2 The performance using different numbers of GCN and GAT layers on Dataset 1, Dataset 2, and Dataset 3.

GAT×1 GAT×2 GAT×3

Datasets AUC AUPR AUC AUPR AUC AUPR

GCN×1

Dataset 1 0.8640 0.8463 0.9434 0.9059 0.9514 0.9346

Dataset 2 0.7924 0.7733 0.8958 0.8575 0.9280 0.9271

Dataset 3 0.9516 0.9215 0.9845 0.9651 0.9986 0.9800

GCN×2

Dataset 1 0.8990 0.8925 0.9101 0.8946 0.9111 0.8746

Dataset 2 0.7941 0.7732 0.7783 0.7395 0.7965 0.7648

Dataset 3 0.9542 0.9056 0.9158 0.8623 0.8954 0.8547

GCN×3

Dataset 1 0.8898 0.8766 0.8643 0.8019 0.8717 0.8856

Dataset 2 0.7625 0.7722 0.7865 0.7581 0.7381 0.7052

Dataset 3 0.9485 0.9156 0.9284 0.8956 0.9051 0.8451

The best performance on three datasets is highlighted in bold.
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3.3 Ablation experiment

To further study the influence of GCN and GAT on the model
performance, we also conduct ablation experiments on five
datasets. Specifically, we individually use the GCN and GAT
modules, as well as their combined module for LDA prediction.
As shown in Figure 3, among the three modules, the combined
GCN and GAT modules obtain the optimal performance across all
five datasets, followed by the GAT module, with the GCN module
exhibiting the poorest performance. GCN module learns the

feature representation of lncRNA and drug nodes by
aggregating their neighbor information, which enables GCN to
capture the spatial local structure of nodes. GAT module
introduces an attention mechanism that allows the model to
dynamically assign weights and integrate the global information
of the lncRNA-drug bipartite graph, rather than just the neighbors
of the lncRNA and drug nodes. Therefore, combining GCN and
GAT modules enables the model to take full advantage of their
strengths, complement each other, and further improve the
prediction performance.

TABLE 3 The performance of the method on five datasets.

Benchmark datasets Combined datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

AUC 0.9514 ± 0.0027 0.9280 ± 0.0058 0.9986 ± 0.0013 0.9690 ± 0.0143 0.9675 ± 0.0133

AUPR 0.9346 ± 0.0063 0.9271 ± 0.0078 0.9800 ± 0.0835 0.9623 ± 0.0170 0.9763 ± 0.0318

Recall 0.9420 ± 0.0183 0.9487 ± 0.0140 0.9372 ± 0.0036 0.9838 ± 0.0194 0.9560 ± 0.0120

Precision 0.7213 ± 0.0114 0.7328 ± 0.0080 0.9507 ± 0.0028 0.9411 ± 0.0268 0.9723 ± 0.0180

Accuracy 0.8057 ± 0.0052 0.7485 ± 0.0100 0.9094 ± 0.0029 0.9513 ± 0.0221 0.9615 ± 0.0130

F1-Score 0.8375 ± 0.0064 0.7918 ± 0.0101 0.9799 ± 0.0030 0.9620 ± 0.0209 0.9723 ± 0.0117

FIGURE 3
The results of the ablation experiment on five datasets.
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3.4 Case study

3.4.1 Predicting potential lncRNAs and drugs
In this section, we conduct a case study to further demonstrate

the performance of the proposed method, we predict LDAs for two
drugs (Berberine and Panobinostat) and two lncRNAs (NEAT1 and
MEG3), respectively. First, we predict two drug-related lncRNAs
using all known LDAs in Dataset 4 excluding those in Dataset 3 as
the training data. Dataset 3 is used as the ground truth to test the
predicted LDAs. Second, given that Dataset 1 contains more
lncRNA information compared to drugs, two lncRNA-related
drugs are predicted by employing all known LDAs in Dataset
1 except for those in Dataset 2 as the training data. Dataset 2 is
the ground truth to test the predicted drugs. The top 10 predicted
LDAs are ranked according to their prediction scores, among those,
for any associations not shown in the test datasets (Dataset 3 and
Dataset 2), we manually search relevant literature in PubMed to
provide supporting evidence.

Figure 4 shows the top 10 predicted LDAs for the two drugs and
two lncRNAs where the line width indicates the magnitude of the
association score and the green lines indicate the confirmed LDAs in
the test datasets. The blue lines indicate those LDAs that are not

confirmed by the test dataset but have literature support. Generally,
all the confirmed associations have large predicted scores. The red
dotted lines represent LDAs having no support indication up to
now. As shown in Figure 4A, 8 out of 10 predicted lncRNA-
Berberine associations are validated, among which lncRNA
“MALAT1” and “H19” are confirmed in the literature. Cao et al.
(2020) demonstrated that lncRNA MALAT1 in cerebral ischemia
was significantly reduced after treatment with the drug Berberine,
highlighting its anti-inflammatory effects in mice after MCAO
surgery. Song et al. (2022) identified lncRNA H19 as a potential
key regulatory lncRNA of Berberine. Among the top 10 lncRNAs
predicted associated with Panobinostat (Figure 4B), 8 lncRNAs are
confirmed in test datasets. And for lncRNA NEAT1, 6 out of
10 predicted drugs related to NEAT1 are verified (Figure 4C).
And 8 predicted drug-MEG3 associations have evidence in test
datasets and literature (Figure 4D).

3.4.2 Functional enrichment analysis
Since one lncRNA may regulate the expression of multiple

downstream genes, therefore intervening with one lncRNA may
involve a variety of biological functions. In addition, a drug may
target a certain lncRNA to alter its expression, thereby regulating the

FIGURE 4
The predictive results of the top 10 lncRNAs associated with drugs Berberine (A) and Panobinostat (B), and the top 10 drugs related to lncRNA
NEAT1 (C) and MEG3 (D). LncRNAs are represented by red nodes, while drugs are denoted as green nodes. The thickness of the edge indicates the
predicted ranking, and the thicker the edge, the higher the ranking. Moreover, the LDAs found in test datasets are shown in green edges. Associations
supported by existing literature are shown in blue edges, accompanied by their corresponding PMID references. Unconfirmed associations are
represented by red dotted edges.
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expression of lncRNA target genes or modifying the activity of
signaling pathways to realize its biological functions. For instance,
Guo et al. (2016) showed that aspirin could significantly induce the
expression of lncRNA OLA1P2 in human colorectal cancer, thereby
affecting the activity of the STAT3 signaling pathway. To gain
insights into the functional implications of the drugs and
lncRNAs of concern, we conduct functional enrichment analysis

on their related genes by an online tool DAVID (Sherman et al.,
2022), which is widely used for functional annotation and
enrichment analysis of gene lists.

Based on the results of the first part of the case study, firstly, we
perform functional enrichment analysis on the target genes of
lncRNAs predicted associated with two drugs (Berberine and
Panobinostat). We search the literature demonstrating that drug

FIGURE 5
The results of functional analysis. (A,B) represent the top 15 KEGG pathways of the top 10 predicted Berberine-related lncRNA target genes and
Panobinostat-related lncRNA target genes, respectively. (C,D) show the top 15 KEGG pathways of NEAT1 target genes and MEG3 target genes,
respectively. The PMID of references are listed to confirm the interactions between pathways and known biological functions of drugs. The PMIDs
marked in red represent literature confirming associations between KEGG pathways and the biological functions of drugs, but these drugs in Figures
4C, D are unconfirmed associated with lncRNA NEAT1 and MEG3.
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functions are related to the enrichment pathways of lncRNA target
genes. In Figure 5A, among the top 15 KEGG pathways of
Berberine-related lncRNA target genes, 12 have been confirmed
associated with the existing functions of Berberine. For example,
Ayati et al. (2017) demonstrated that Berberine can play an
anticancer role by regulating the expression of oncomiRs and
tumor-suppressive miRs in various cancer cells (Hepatocellular
carcinoma, gastric cancer, ovarian cancer, colorectal cancer).
Okuno et al. (2022) evidenced that Berberine overcomes
gemcitabine-related chemical resistance by modulating rap1/
PI3K-akt signaling in pancreatic ductal adenocarcinoma. In
Figure 5B, there are 12 KEGG pathways of predicted
Panobinostat-related lncRNA target genes that are found to be
associated with the functions of Panobinostat. Lee et al. (2017)
demonstrated that Panobinostat overcame resistance to gefitinib in
KRAS-mutant/EGFR wild-type non-small-cell lung cancer by
targeting TAZ. Studies have also shown that Panobinostat can
restore the sensitivity of endocrine-resistant and triple-negative
breast cancer cell lines to estrogen receptors (Tan et al., 2016).

Further, the functional enrichment analysis is also conducted
on the target genes of two lncRNAs (NEAT1 and MEG3). Figures
5C, D show the top 15 KEGG pathways of lncRNA NEAT1 and
MEG3, respectively, among which 13 pathways are found
associated with the known functions of predicted NEAT1-
related drugs. Regarding the MEG3 KEGG pathways,
14 pathways are associated with the established functions of
predicted MEG3-related drugs.

Among all KEGG pathways in Figures 5A–D, there are two
common pathways, “MicroRNAs in cancer” and “pathways in
cancer,” which are closely related to the occurrence and
development of cancer. This demonstrates that lncRNAs, such as
NEAT1 and MEG3, and lncRNAs associated with the drugs
Berberine and Panobinostat, are widely involved in human
pathogenesis. The biological function of the drugs Berberine and
Panobinostat is related to the two common pathways, indicating that
they can inhibit the proliferation of cancer cells by regulating the
expression of lncRNAs’ target genes or changing the activity of the
pathways. For example, Wang and Zhang (2018) showed that
Berberine inhibits the proliferation and metastasis of endometrial
cancer cells by inhibiting the expression of miR-101 target gene
COX-2. LncRNA PINT is significantly downregulated in acute
lymphoblastic leukemia (ALL), and drugs Panobinostat and
Curcumin can reduce the proliferation of ALL cells by inducing
the expression of PINT (Garitano-Trojaola et al., 2018). The results
of functional enrichment analysis validated the importance of LDAs
prediction for discovering potential lncRNA-targeted drugs to
treat diseases.

4 Discussion

Predicting LDAs is beneficial for understanding the
mechanism of drug-targeting lncRNAs to treat diseases at the
lncRNA level, accelerating drug discovery and facilitating the
development of targeted therapies. However, the identification
of LDAs by traditional biological experiments has the
disadvantages of high cost, long cycle, and low efficiency.

Therefore, it is necessary to develop efficient computational
methods to identify potential LDAS.

This study proposes a method based on GCN and GAT to
predict potential LDAs. The results of five-cross-validation
experiment on the five datasets show that our method achieves
an excellent ability for LDA prediction. However, the performance
of our model varies across the five datasets, mainly due to the
following reasons: 1) the number of known LDAs in each dataset is
different. Generally speaking, the more known LDA samples that
can be trained on themodel, the stronger the generalization ability of
the model and the better the prediction performance. For example,
our model performs better overall on combined Dataset 4 and
Dataset 5 than on benchmark Dataset 1 and Dataset 2 (see
Table 3). 2) the number distribution of lncRNAs and drugs may
lead to a difference in the model’s predictive performance. For
instance, although the number of lncRNAs and drugs in Dataset 3 is
extremely unbalanced, the performance of the model on Dataset 3 is
better than that in Dataset 4 (see Tables 1, 3).

In the case study, although some predicted LDAs could not be
found in the test datasets, we verify the associations by reviewing the
literature. Dong et al. (2022) found that NEAT1 promotes apoptosis
and autophagy in Parkinson’s disease (PD) and inhibits the
reproduction of dopaminergic neurons by targeting miR-107-5p
(see Figure 4C). Wei et al. (2023) demonstrated that lncRNA
NEAT1 can induce paclitaxel resistance in the breast cancer
tumor microenvironment (see Figure 4C). Liu et al. (2022)
revealed that Metformin plays a therapeutic role in endometrial
hyperplasia by regulating the lncRNA MEG3/miR-233/
GLUT4 signaling pathway (see Figure 4D). Ye et al. (2019)
showed that Anisomycin inhibits angiogenesis, proliferation, and
invasion of ovarian cancer cells by attenuating the molecular sponge
effect of the lncRNA-MEG3/miR-421/PDGFRA axis
(see Figure 4D).

For the LDAs that have not been verified in the case study, the
functional analysis further elucidates their potential associations
from the aspect of the relationship between the biological functions
of drugs and the target gene pathways of lncRNAs. In particular,
although no evidence is found for the drugs Butein and Bisphenol A
(see Figure 4C) to be directly associated with lncRNA NEAT1, we
find literature in which they are related to the pathways. For
instance, Cioce et al. (2022) revealed that Butein weakened the
pro-tumorigenic features of malignant pleural mesothelioma
(MPM) via the miR-185-5p-TWIST1 axis. Deng et al. (2021)
demonstrated that Bisphenol A promoted the proliferation of
breast cancer cells by inhibiting miR-381-3p expression.
Similarly, for the unconfirmed drugs Memantine and
Aminohippuric acid associated with MEG3 (see Figure 4D),
Memantine was found to induce apoptosis in prostate cancer
cells and inhibit cell cycle progression (Albayrak et al., 2018),
and Aminohippuric acid was identified as a gene-targeted
therapy for ACBD4 in hepatocellular carcinoma (Huang
et al., 2022).

Overall, this study demonstrates an efficient method to identify
LDAs and provides an important basis for targeted therapy. To the
best of our knowledge, this study is the first application of a deep
learning-based model for inferring LDAs. Although our proposed
method is used for predicting LDAs, it can also be extended to
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predict other association types, such as drug-drug interactions and
drug-target interactions.

5 Conclusion

In this paper, we propose a model to identify potential LDAs, by
integrating lncRNA and drug similarities after PCA denoising as
attributes of nodes in the lncRNA-drug pair subgraphs. Leveraging
the inherent graph structures of LDA network and similarity
networks, GCN and GAT are used on each subgraph, allowing
the model to selectively focus on important local information and
integrate global information in the graph. The ablation experiments
and cross-validation experiments on five datasets show that the
method has good performance in LDA prediction. Furthermore, the
case studies and functional enrichment analysis indicate the ability
of the method to predict potential LDAs.

Although the model demonstrates great performance in predicting
LDAs, it still has room for improvement. In the future, firstly, we still
need to collect large-scale, high-quality datasets, which is crucial to
improve the performance of LDA prediction. Secondly, our current
model has not yet considered the drug structure feature representation
and the lncRNA sequence feature representation. We will integrate
them as lncRNA feature vectors and drug feature vectors in the future.
Finally, we plan to develop more efficient deep learning methods (Lin
et al., 2023) based on more types of association networks (Xu et al.,
2020; Xu et al., 2022) to improve the prediction performance of LDAs.
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