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Psoriasis is a chronic inflammatory skin disease, the etiology of which has not
been fully elucidated, in which CD8+ T cells play an important role in the
pathogenesis of psoriasis. However, there is a lack of in-depth studies on the
molecular characterization of different CD8+ T cell subtypes and their role in the
pathogenesis of psoriasis. This study aims to further expound the pathogenesy of
psoriasis at the single-cell level and to explore new ideas for clinical diagnosis and
new therapeutic targets. Our study identified a unique subpopulation of CD8+

T cells highly infiltrated in psoriasis lesions. Subsequently, we analyzed the hub
genes of the psoriasis-specific CD8+ T cell subpopulation using hdWGCNA and
constructed a machine-learning prediction model, which demonstrated good
efficacy. The model interpretation showed the influence of each independent
variable in the model decision. Finally, we deployed the machine learning model
to an online website to facilitate its clinical transformation.
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1 Introduction

Psoriasis is a usual chronic inflammatory skin disease with scaly erythema or plaques as the
main clinical manifestations, long duration and easy to recur (Rapalli et al., 2020). The global
prevalence of psoriasis is about 3% and is increasing year by year (Scher et al., 2019). Currently,
the diagnosis of psoriasis is mainly based on the characteristics of skin lesions and skin imaging,
while histopathology is needed to assist in the diagnosis of some atypical lesions, but due to the
traumatizing nature of biopsy, more portable auxiliary diagnostic methods are needed in clinical
working. At present, psoriasis is still incurable. Mild psoriasis is mainly treated with topical
therapy, while moderate to severe psoriasis needs to be treated with combined systemic
medication, and patients who have poor response to traditional therapeutic drugs need to
choose biological agents or small molecule drug therapy. The pathogenesis of psoriasis is
complex, and it is currently believed that it is caused by immune abnormalities induced by
genetic and environmental factors (Liu et al., 2024), in which a variety of cells and the cytokines
they release play an considerable role in the pathogenesy of psoriasis (Hawkes et al., 2017), but
the current treatment methods are only aimed at some of the links, and thus have limited
efficacy, and an in-depth understanding of the cellular and molecular pathogenesis of psoriasis
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can help to find new therapeutic targets to optimize the combination of
treatment options. This is of great clinical significance.

Through the application of single-cell sequencing technology, we
are granted the opportunity to delve deeply into the immunological
microenvironment within psoriatic tissues. Meticulous analyses of
cellular components in both diseased and normal tissues have
revealed specific subpopulations exhibiting heightened expression
within psoriatic tissues. Through cell communication analyses, we
have unveiled the molecular mechanisms through which these
subpopulations exert their influence within the tissue
microenvironment, offering a novel perspective for a nuanced
comprehension of the finely tuned dynamics of the immune system
during disease progression. This not only provides unprecedented
opportunities for personalized therapies but also establishes the
groundwork for more precise interventions.

Ultimately, we introduce the power ofmachine learning, employing
various algorithms to construct a diagnostic model for psoriasis based
on single-cell-level information within bulk RNA sequencing (The
flowchart is shown in Figure 1). This model not only accurately
distinguishes psoriasis patients but also serves as an intelligent tool
for clinicians (https://hesijia.shinyapps.io/Psoriasis/), facilitating early
diagnosis and more personalized treatment approaches. This
comprehensive research methodology opens new avenues for in-
depth exploration of psoriasis, contributing positively to the
enhancement of patients’ quality of life and treatment outcomes.

2 Materials and methods

2.1 Data acquisition

We downloaded the scRNA-seq dataset GSE151177 (13 human
psoriasis skin and 5 healthy volunteer skin) from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/) (Kim et al., 2021). Bulk RNA-seq dataset GSE54456
(92 psoriatic and 82 normal punch biopsies) were obtained from
the GEO database (Li et al., 2014).

2.2 scRNA-seq data analysis

R package Seurat was utilized for conducting the scRNA-seq
analysis. Cell clustering was implemented by the
“FindNeighbors” and “FindCluster” functions of the Seurat
package. We manually annotated cell types using the original
literature. Intercellular communication networks with annotated
scRNA-seq data were analyzed using the R package CellChat and
examined for ligand-receptor-mediated interplays between
diverse cell types. Assessing major signal inputs and outputs
in cell subpopulations by CellChatDB.Human on cellchat. The
functional enrichment analysis of cell types was performed by R
package clusterProfiler.

2.3 hdWGCNA analysis

The hdWGCNA workflow in R was implemented using the
“hdWGCNA” package (Morabito et al., 2021; Morabito et al., 2023).
Briefly, the hdWGCNA pipeline consists of the following steps: 1)
data preprocessing, 2) gene network construction, 3) module
identification, 4) module preservation analysis. The first step is to
preprocess the gene expression data to get rid of noise and batch
effects. The next step is to construct the gene co-expression network
according to the pairwise correlation between genes. The third step
involves identifying modules or gene clusters of highly related genes
and further calculate module genes. The fourth step is to perform a
module preservation analysis to evaluate the stability of the
identified modules.

FIGURE 1
The flow chart of this study.
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2.4 Machine learning and deep learning

We applied univariate logistic regression to recognize key
diagnostic genes in IS CD8+ T cells. In addition, the variables
were filtered using the Least Absolute Shrinkage and Selection
Operator Logistic Regression (LASSOLR) algorithm, Boruta and

Random Forest (RF) (Kang et al., 2021; Younis et al., 2021). Machine
learning models were developed by the tidymodels package (https://
www.tidymodels.org/). Nine machine learning models were used to
select the optimum model, including, Logistic Regression, Enet,
k-nearest neighbor (KNN), RF, SVM, multilayer perceptron (MLP),
LightGBM, XGBoost and decision tree (DT). All models were

FIGURE 2
Heterogeneity of cellular composition in normal and psoriatic tissues revealed by single-cell RNA sequencing analysis according to dataset
GSE151177. (A) UMAP scatter plot showing increased proportion of CD8+ T cells in psoriatic lesions. (B) Stacked bar graphs showing changes in the
proportion of each cell type. (C) Functional enrichment plot showing the most significant enrichment terms for each cell type.
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evaluated on the test data. SHapley Additive exPlanations (SHAP)
was used for model interpretation (Wang et al., 2021). A
convolutional neural network (CNN) based deep learning model
was developed using the Keras and TensorFlow frameworks.

2.5 Statistical analysis

R version 4.2.2. was used for analysis. The statistical significance
level was set at p < 0.05. Pearson correlation analysis was used to
reveal the correlation between the 6 hub genes and 10 types of
immune cells.

3 Results

3.1 Single-cell RNA sequencing analysis
identifies CD8+ T cells upregulated in
psoriasis skin lesions

To explore the differences in cellular composition between
psoriatic lesions and normal skin tissues, we used GSE151177 to
analyze the cellular component of the two. UAMP analysis identified
nine major cell populations, and after integration through harmony,
dimensionality reduction, clustering and cell type annotation, we
found that the alteration in the proportion of CD8+ T cells was most
significant in psoriatic lesions (Figures 2A, B). To further
understand the functions of various cell types in psoriasis lesions,
we performed gene enrichment analysis, which showed that CD8+ T
cell-related genes were mainly involved in positive regulation of
leukocyte activation, T cell receptor signaling pathway, αβT cell
activation and other processes (Figure 2C). Keratinocyte (KC)
-related genes located in different locations of the epidermis were
involved in different response processes, for example, KC-related
genes located in the basal layer were mainly involved in receptor-
mediated endocytosis, KC-related genes located in the stratum
spinosum were mainly involved in lipopolysaccharide response,
and KC-related genes located in the stratum granulosum were
mainly involved in protein refolding process. With the gradual
migration of KC to the stratum corneum, KC-related genes play
an important role in keratinization and epidermal development. In
addition, mature dendritic cell (DC) -related genes were mainly
involved in epidermal development and keratinization, while semi-
mature DCsmainly mediated phagocytosis and leukocyte migration.
Macrophage-related genes are mainly involved in antigen processing
and presentation.

3.2 Identification of CD8+ T cell
subpopulations in psoriatic lesions and
analysis of cellular communication

To further elucidate the variations in the composition of CD8+

T cell subpopulations in psoriatic lesions, we further identified ten
different CD8+ T cell subsets by dimensionality reduction and
clustering, which showed that not all CD8+ T cells were
upregulated in psoriatic lesion samples, there was a significant
increase in CD8+ T cell subsets 0, 3, 4, 6, and 9, as compared to

the normal skin tissue samples (Figures 3A, B), which resulted in an
elevated proportion of CD8+ T cells. Therefore, we selected the five
subpopulations that were specifically upregulated in psoriatic lesions
for further analysis and defined them as the psoriasis-specific CD8+

T cell subpopulation (IS CD8+ T cells), and defined the other CD8+

T cell subpopulations as the non-psoriasis-specific CD8+ T cell
subpopulation (Other CD8+ T cells). To further explore the cell-
cell communication network between IS CD8+ T cells and other cell
types, we performed intercellular communication analysis and
found that IS CD8+ T cells had even more and closer
connections with other cell types, particularly with melanocytes
(MC) and Other CD8+ T cells (Figure 3C). Moreover, among the ten
cell types, MC emitted the most signals while IS CD8+ T cells
received the most signals (Figure 3D). IS CD8+ T cells emitted more
IL16 signals compared to Other CD8+ T cells and this signal was
mostly received by Semimature DC (Figures 3E, F). Based on the
above results, we speculated that such enhanced signaling might
enhance the antigen presenting ability of semimature DC cells and
the ability to activate CD4+ T cells, thus promoting the immune
response. In addition, IS CD8+ T cells received more TNF signals
fromKC located in the stratum granulosum than Other CD8+ T cells
(Figure 3G). From this, we inferred that specifically receiving too
much TNF signaling and sending too much IL16 signaling may
make IS CD8+ T cells a pathogenic subpopulation in psoriasis.
Therefore, targeted intervention of IL16 signaling emitted by IS
CD8+ T cells, as well as interfering with the reception of TNF
signaling by IS CD8+ T cells, may be potential therapeutic targets
for psoriasis.

3.3 hdWGCNA shows that IS CD8+ T cells are
characterized by brown, yellow, green, red,
and turquoise modules

We further investigated the function and characteristics of IS
CD8+ T cells using hdWGCNA. We chose a power value of 9 to
construct a scale-free network, and 8 gene modules were generated
accordingly (Figures 4A, B). Among these modules, brown, yellow,
green, red, and turquoise modules were highly expressed in
subpopulations 0, 3, 4, 6, and 9 (Figure 4C). We then screened
the top 25 genes most associated with each color module
(Figure 4D), for a total of 125 genes, for use to develop machine
learning diagnostic models described below. To obtain a more
comprehensive understanding of these 125 genes, we performed
gene enrichment analysis with Metascape (https://metascape.org/).
The results showed that these genes were mainly involved in cell
biosynthesis, IL12 pathway, cytokine signaling and immune
response (Figure 4E).

3.4 Development of a machine learning
diagnostic models on account of psoriasis-
associated CD8+ T cell hub genes

As mentioned, we have identified five modules, including
brown, yellow, red, green and turquoise. The top 25 genes in
each module were selected, resulting in a total of 125 hub genes,
which represent psoriasis-associated CD8+ T cell subsets hub genes.
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FIGURE 3
CD8+ T cell subset analysis and cell communication analysis (A) UMAP scatter plot showing the distribution of CD8+ T cell subtypes in psoriatic
lesions and normal skin. (B) Stacked bar graph showing the proportion of CD8+ T cell subtypes in psoriatic lesions and normal skin. (C) The number and
strength of intercellular communication between various cell subtypes. The colors of the bubbles and lines in the graph indicate different cellular sources.
(D) Scatter plot showing the strength of input and output interactions of various cell subtypes. (E) Signaling role analysis on the aggregated cell-cell
communication network of all signaling pathways among various cell subtypes. (F) Role of various cell subtypes in the IL-16 signaling pathway network.
(G) Role of Various cell subtypes in the TNF signaling pathway network.
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FIGURE 4
High dimensional weighted gene co-expression network analysis (hdWGCNA) further characterizes IS CD8+ T cells. (A) Power value equal to 9when
the network reached a scale-free distribution. (B) 8 modules were identified by hdWGCNA clustering tree. (C) Feather plots depict the scores of the
corresponding modules in IS CD8+ T cells. (D) Network plots show the top 25 genes most associated with the five color modules. (E) The enrichment
analysis diagram shows the most significant enrichment items of 125 genes.
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A total of 110 hub genes were included in the bulk RNA-seq cohort.
Then, univariate analysis was performed on the 110 hub genes and
95 genes with p < 0.05 remained for the following analysis. Finally,
three machine learning algorithms including Boruta, least absolute
shrinkage and selection operator (LASSO) and RF were applied to
feature selection (Figure 5A). Six features including GZMB, GNAS,
GBP5, FOXP3, LSP1 and CD81 were obtained by interacting the
three machine learning algorithms.

Nine machine learning algorithms were used to fit models based
on the six features, including Logistic Regression, Enet, KNN, RF,

SVM, multilayer perceptron (MLP), LightGBM, XGBoost and
decision tree (DT). We randomly divided the bulk RNA-seq data
into training set and test set in a ratio of 7:3. Nine machine learning
models were trained on the training set and comprehensively
evaluated on the test set (Figure 5B). We noticed that nearly all
models exhibit great performance on test set. To better understand
the contribution of features to model predictions, we selected the
logistic regression model to conduct model explanatory analysis
using SHAP. Among the six features, GZMB plays the most
important role on influencing the prediction results (Figure 5C).

FIGURE 5
Development of machine learning models. (A) A three-step pipeline for hub genes selection. Step1: identification of five psoriasis-associated
module genes. Step2: univariate analysis to screen the psoriasis-associated genes. Step3: Three machine learning algorithms for further selection of the
psoriasis-associated genes. (B) Evaluation of robustness of the nine machine learning algorithms on test data. (C) The absolute value of the SHAP value of
each feature. The higher SHAP value represents higher importance in predicting the presence of psoriasis. (D) Scatter plot of gene expression levels
versus SHAP values for each feature in each sample.
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The relationship between the expression of each feature and the
SHAP value is shown in Figure 5D. A SHAP value greater than
0 means that it has a positive contribution to predicting the outcome
as psoriasis. As the expression level of GZMB increases, the SHAP
value gradually increases, indicating that the high expression of
GZMB in CD8+ T cells drives the pathogenesis of psoriasis.
Similarly, decreased expression level of GNAS in CD8+ T cells
also promotes the development of psoriasis (Figure 5D). In
summary, we identified 6 markers and constructed machine
learning models to improve psoriasis diagnosis. Additionally, we
also provided novel targets for CD8+ T cell-targeted therapy in
psoriasis patients. For example, the use of GZMB knockout CAR-T
cells in patients may delay psoriasis progression.

3.5 Establishment and validation of the novel
convolutional neural network deep
learning model

Given that interactions exist between hub genes and other
immune cells in the immune microenvironment, and these
interactions may be associated with the progression of psoriasis.
We developed a novel gene-immune image-based convolutional
neural network (CNN) model. The advantage of the model is
independent of the batch effect of different datasets. We
constructed a heatmap for each patient, and the value of each

square was the ratio of that patient’s gene expression to the
infiltration of specific immune cells (Figure 6A). Based on the
heatmaps, the CNN was trained using 100 epochs in the training
set and tested in the testing set (Figure 6B). The CNN model
performed well in both the training and testing sets (training
AUC = 1, sensitivity = 100%, specificity = 100%, testing AUC =
1, sensitivity = 100%, specificity = 100%), suggesting good diagnostic
performance (Figure 6C).

3.6 Development of an online web tool to
deploy the machine learning model

To make it easier for patients and clinicians to use the psoriasis
diagnosticmodelwe developed, we deployed themachine learningmodel
on an online website (https://hesijia.shinyapps.io/Psoriasis/) (Figure 7).

4 Discussion

As a chronic inflammatory skin disease mediated by
T-lymphocytes under the background of polygenic inheritance,
psoriasis is stubborn and prone to recurrent episodes, and can
lead to a variety of complications such as metabolic syndrome,
cardiovascular disease, and arthritis (Griffiths et al., 2021), which
critically affects the living quality of patients and their physical and

FIGURE 6
Establishment and validation of the novel CNN deep learning model. (A) Image of a patient used for training CNNmodel. (B) Training process of the
CNN model. (C) Performance of the CNN model in the training and testing data.

Frontiers in Genetics frontiersin.org08

He et al. 10.3389/fgene.2024.1387875

https://hesijia.shinyapps.io/Psoriasis/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1387875


mental health. The etiology of psoriasis has not been fully elucidated,
among which genetic, environmental and immune factors play a
significant role in the occurrence and development of psoriasis
(Armstrong and Read, 2020). In recent years, the treatment of
psoriasis with biologics has made great breakthroughs, but it still
cannot meet the treatment needs of all psoriasis patients, suggesting
that there are still blind spots in the underlying pathogenesis of
psoriasis, so it is particularly important to gain a deeper
understanding of the complex molecular mechanisms of
psoriasis. In recent years, the development of single-cell RNA
sequencing technology and machine learning has made it
possible to utilize molecular genetic information to improve the
precise diagnosis of psoriasis. In our study, we used single-cell RNA
sequencing technology and hdWGCNA to identify psoriasis-specific
CD8+ T cell subpopulations and screened psoriasis-specific CD8+

T cell signature genes, which may be used in the future to assist in
the diagnosis of psoriasis and provide a theoretical basis for an in-
depth understanding of the immune microenvironment of psoriasis.

CD8+ T cells play a crucial role in autoimmune diseases, anti-
tumor immunity and anti-infection immunity. Previous researchs
have revealed that CD8+ T cells infiltrate the skin lesions and blood
of psoriasis patients and CD8+ T cells can produce IFN-γ, IL-17 and
IL-22 (Hijnen et al., 2013), suggesting that CD8+ T cells play an
important role in the development of psoriasis, but their role in
psoriasis has not yet been fully elucidated, and very few studies have
explored the specific subtypes and corresponding functions of CD8+

T cells. We identified a distinct subset of CD8+ T cells based on
single-cell RNA sequencing, termed the psoriasis-associated CD8+

T cell subset, which is highly infiltrated in psoriatic lesions. We
identified GZMB, GNAS, GBP5, FOXP3, LSP1 and CD81 as

characteristic genes of psoriasis-associated CD8+ T cells, among
which, Granzyme B (GzmB), a serine protease, is produced by
natural killer (NK) cells and CD8+ T cells, and is an vital
mediator of skin injury, inflammation and repair (Turner et al.,
2019). Studies have shown that the expression of GZMB is elevated
in skin lesions and plasma of psoriasis patients (Yawalkar et al.,
2001; Kamata et al., 2016), suggesting that GzmBmay be involved in
CD8+ T cell-mediated cell damage and inflammation. The Gαs
protein encoded by GNAS gene is a G protein-coupled receptor,
which is involved in various signaling pathways, including cell
growth, differentiation and apoptosis. The role of GNAS in
psoriasis remains unclear. We speculate that GNAS may
indirectly affect the development of psoriasis due to its role in
immune response and cell proliferation. Guanylate binding protein
5 (GBP5), a member of the guanosine triphosphatase family, is
involved in immune and inflammatory responses, and its expression
is induced by type I and type II interferons (Kutsch and Coers,
2021), suggesting a potential role for the GBP5 in inflammatory skin
diseases. We speculate that GBP5 may be involved in the
pathogenesis of psoriasis by regulating inflammatory signaling
pathways, such as IFN-γ signaling pathway. Forkhead box
protein-3 (FOXP3) is a marker of regulatory T cells (Tregs),
especially CD4+ Tregs, however, FOXP3 is also expressed in
CD8+ T cells (Niederlova et al., 2021) and FOXP3 expression is
increased in psoriasis lesions (Fujimura et al., 2008). Our results
suggest that the high expression of GZBM, GBP5 and FOXP3 in
CD8+ T cells drives the pathogenesis of psoriasis, therefore,
inhibiting the expression of GZBM, GBP5 and FOXP3 is
expected to be a new strategy to alleviate the progression of
psoriasis. Lymphocyte Specific Protein 1 (LSP1) is mainly

FIGURE 7
An online machine learning model for psoriasis diagnosis.
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involved in cytoskeleton construction and cell migration, so we
speculated that LSP1 may affect the migration and localization of
inflammatory cells such as T cells and indirectly participate in the
pathological process of psoriasis. CD81 is a transmembrane protein
that can affect the proliferation and activation of a variety of
immune cells. CD81 is highly expressed in both normal and
psoriatic tissues, but when CD81 expression is excessively
elevated, it promotes the development of psoriasis, which we
hypothesize may be related to CD81-mediated hyper- or over-
immunization, and this suggests that the immunohyperplasia of
CD81 in CD8+ T cell subsets may mediate the occurrence of
psoriasis, providing new clues for targeted therapy of psoriasis.

Currently, the diagnosis of psoriasis is primarily based on skin
lesion characteristics and skin imaging, and there are fewer studies
on molecular markers for the early identification of psoriasis
patients. In recent years, machine learning has shown great
potential in clinical image recognition and disease classification
(Anwar et al., 2018), and in the field of dermatology, machine
learning algorithms have been used in a variety of diseases such as
melanoma, basal cell carcinoma, and onychomycosis, etc. (Haenssle
et al., 2018; Harangi, 2018; Marchetti et al., 2018; Zhang et al., 2018),
which makes it possible to assist in the diagnosis of diseases by using
machine learning methods, of which the first results have been seen
in a number of aspects of psoriasis diagnosis, treatment and
management (Patrick et al., 2018; Yu et al., 2020; Hammad et al.,
2023). Verma et al. (2019) used a machine learning algorithm to
predict skin diseases such as psoriasis and achieved a maximum
accuracy of 98.64%. Kim et al. (2019) applied machine learning to
spectral classification and diagnosis of psoriasis, demonstrating 95%
accuracy, 95% sensitivity, and 100% specificity. Dash et al. (2019)
constructed a Deep Convolutional Neural Network (DCNN) model
to segment psoriasis lesions to assist in the diagnosis of psoriasis.
The accuracy of the model was 94.8%, the sensitivity was 89.6%, and
the specificity was 97.6%. Due to the diversity and large differences
of psoriasis skin lesions, our study obtains six characteristic genes
through three machine learning algorithms to predict the
occurrence of psoriasis and assist clinical diagnosis and
treatment, and shows 100% accuracy, which is higher than
previous machine learning image recognition and other methods,
and is more conducive to the disease management of psoriasis.

In conclusion, our study identified a psoriasis-specific CD8+

T cell subset and its characteristic genes, and established a machine-
learning prediction model that provides new ideas for future
psoriasis diagnosis. This study is unique in that it delves into the
pathogenesis of psoriasis at the single-cell level, identifying a new cell
subset specific to psoriasis. Through advanced bioinformatics
methods and machine learning/deep learning techniques, it

provides new big data-driven tools for the diagnosis of psoriasis,
as well as potential new targets for clinical treatment.
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