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Background: Obesity and gastric cancer (GC) are prevalent diseases worldwide.
In particular, the number of patients with obesity is increasing annually, while the
incidence and mortality rates of GC are ranked high. Consequently, these
conditions seriously affect the quality of life of individuals. While evidence
suggests a strong association between these two conditions, the underlying
mechanisms of this comorbidity remain unclear.

Methods: We obtained the gene expression profiles of GSE94752 and
GSE54129 from the Gene Expression Omnibus database. To investigate the
associated biological processes, pathway enrichment analyses were
conducted using Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes for the shared differentially expressed genes in obesity and GC. A
protein–protein interaction (PPI) network was subsequently established based on
the Search Tool for the Retrieval of Interacting Genes (STRING) database,
followed by the screening of the core modules and central genes in this
network using Cytoscape plug-in MCODE. Furthermore, we scrutinized the
co-expression network and the interplay network of transcription factors
(TFs), miRNAs, and mRNAs linked to these central genes. Finally, we
conducted further analyses using different datasets to validate the significance
of the hub genes.

Results: A total of 246 shared differentially expressed genes (209 upregulated and
37 downregulated) were selected for ensuing analyses. Functional analysis
emphasized the pivotal role of inflammation and immune-associated
pathways in these two diseases. Using the Cytoscape plug-in CytoHubba, nine
hub genes were identified, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4,
CXCL2, CD4, and CCL2. IL6 and CCL4 were confirmed as the final hub genes
through validation using different datasets. The TF-miRNA-mRNA regulatory
network showed that the TFs primarily associated with the hub genes
included RELA and NFKB1, while the predominantly associated miRNAs
included has-miR-195-5p and has-miR-106a-5p.

Conclusion: Using bioinformatics methods, we identified two hub genes from
the Gene Expression Omnibus datasets for obesity and GC. In addition, we
constructed a network of hub genes, TFs, and miRNAs, and identified the
major related TFs and miRNAs. These factors may be involved in the common
molecular mechanisms of obesity and GC.
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Introduction

Obesity has become a serious global public health problem that
primarily affects adults, though childhood obesity cannot be
ignored. The prevalence of obesity is increasing yearly worldwide
and has almost tripled since 1975. In 2016, >1.9 billion adults were
overweight, while >650 million individuals were obese (World
Health Organization, 2021). The number of deaths due to
overweight and obesity is also increasing. In 2017, >4 million
individuals expired due to overweight or obesity (World Health
Organization, 2024). Obesity is strongly associated with several
chronic diseases, including hypertension, type 2 diabetes,
cardiovascular disease, dyslipidemia, and osteoarthritis (Pi-
Sunyer, 2009). Additionally, obesity has been implicated in the
genesis of numerous cancer types, including colorectal, gastric
cardia, liver, gallbladder, pancreatic, renal, and esophageal
adenocarcinoma (da Cruz et al., 2022; Kolb et al., 2016; Madka
et al., 2023). Gastric cancer (GC) is the fifth most common type of
cancer worldwide and the fourth leading cause of cancer-related
death (Sung et al., 2021). Some observational studies have reported a
positive association between obesity and gastric cardia cancer (Chen
et al., 2013; Turati et al., 2013). Other studies have reported a positive
association between obesity and non-cardia gastric cancer (Mao
et al., 2017). Xing A et al. conducted a large-scale, two-sample

Mendelian randomization analysis in order to confirm the causal
relationship between obesity and gastric cancer (Xing et al., 2023).
However, the specific biological mechanisms underlying this
association remain unclear.

A number of studies have demonstrated the important role of
inflammation in the development of obesity and cancer (Iyengar
et al., 2016). The tumor microenvironment (TME) shares similar
features with a healing wound (Mantovani et al., 2008). Similar to
the wound healing process following tissue injury, inflammation in
adipose tissue creates an environment that promotes tumor
formation (de Visser et al., 2006). In addition to inflammatory
cells, cancer cells can be involved in the tissue repair process, thus
promoting tumor growth and infiltration. Obesity is widely
recognized as a contributing factor to chronic inflammation, both
systemically and within tissues (Iyengar et al., 2015). In obese
individuals, many immune cells (e.g., macrophages and
lymphocytes) are present in adipose tissues (Connaughton et al.,
2016). Consequently, the adipose tissue in obese individuals
resembles chronically injured tissue and has the capacity to
release pro-inflammatory substances, potentially facilitating
tumor growth.

In this study, a bioinformatics approach was utilized to screen
for shared differentially expressed genes (DEGs) in patients with
obesity and GC using Gene Expression Omnibus (GEO) datasets. A

FIGURE 1
Volcano diagram and Venn diagram. (A) The volcano map of GSE54129. (B) The volcano map of GSE94752. Upregulated genes are marked in light
red; downregulated genes are marked in light blue. (C, D) The two datasets showed an overlap of 246 DEGs, including 209 upregulated genes and
37 downregulated genes.
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total of 209 upregulated genes and 37 downregulated genes were
shared between the two diseases. Enrichment analysis, including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG), revealed a predominant enrichment of these
genes in inflammatory and immune-related pathways. Through the
construction of a protein–protein interaction (PPI) network and
Cytoscape module analysis, nine hub genes were identified using six
algorithms from the CytoHubba plugin. Subsequently, miRNA-
gene-transcription factor (miRNA-gene-TF) regulatory networks
were constructed for these nine hub genes. Finally, we validated
the nine hub genes using different datasets. We sought to explore
common molecular markers between obesity and GC.

Materials and methods

Raw data collection

We conducted a search for gene expression datasets related to
GC and obesity using keywords in the GEO database (http://www.
ncbi.nlm.nih.gov/geo) (Edgar et al., 2002). The GEOwas created and
is maintained by the National Center for Biotechnology Information
(Bethesda, MD, United States of America). It contains high-
throughput gene expression data and microarray data submitted
by research organizations worldwide. The purpose of this search was
to identify relevant datasets that could provide valuable insights into
gene expression patterns associated with GC and obesity. Based on

the inclusion criteria we specified, two microarray datasets were
downloaded: GSE54129 and GSE94752. These datasets were chosen
because they were widely used in previous literature (Duarte et al.,
2023; Yi et al., 2023). Both datasets were based on different
Affymetrix platforms: GPL570 and GPL11532. The
GSE54129 dataset comprises 111 patients with GC who
underwent subtotal gastrectomy, along with 21 volunteers who
underwent gastroscopy for health examination. This dataset
provides gene expression profiles specifically related to GC. The
GSE94752 dataset includes nine lean patients and 39 patients with
obesity. This dataset focuses on the comparison of gene expression
patterns between lean and obese individuals, providing insights into
the molecular mechanisms associated with obesity. By analyzing
these two datasets, we can gain valuable information regarding gene
expression changes in GC and the molecular differences between
lean and obese individuals.

Identification of DEGs

The Limma package (version: 3.58.1) within R software was
employed to examine the differential expression of mRNAs. We set
“p < 0.05 and fold-change ≥0.5” as the cut-off criteria for the
identification of differentially expressed mRNAs. Genes with
more than one probe set were removed. The Venn package
(version: 1.7.3) of R software was used to obtain overlapping
DEGs between the two datasets, which were subsequently analyzed.

FIGURE 2
Functional enrichment: (A) enrichment result of upregulated DEGS GO term. (B) enrichment result of downregulated DEGS GO term. (C)
enrichment result of upregulated DEGS KEGG pathway. (D) enrichment result of downregulated DEGS KEGG pathway.
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FIGURE 3
PPI network constructed using the STRING database.

FIGURE 4
The protein interaction network obtained by analyzing PPI with Cytoscape plugin MCODE, (A–C) represent the three sub-modules obtained by
MCODE plugin.
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Enrichment analyses of DEGs

The DEGs were subjected to enrichment analyses to evaluate
their roles and interactions within biological pathways. Using the R
package, we analyzed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways for upregulated and
downregulated DEGs, respectively. Adjusted
p-values <0.05 indicate statistically significant differences. The
p-values are adjusted by Benjamini and Hochberg.

Protein–protein interaction (PPI) network
construction and module analysis

The Search Tool for the Retrieval of Interacting Genes
(STRING) database (version: 12.0) (Franceschini et al., 2013) is a
valuable resource for investigating PPIs and constructing PPI
networks. The STRING database utilizes information from
multiple public databases to generate a comprehensive network
of protein interactions and allows its visualization. Interactions
with a cumulative score >0.9 were deemed statistically significant.
The PPI network data were imported into Cytoscape (http://www.
cytoscape.org) (version 3.9.1) (Smoot et al., 2011) for further
analysis. Screening of key functional modules was performed
using the Molecular Complex Detection (MCODE) plugin in
Cytoscape. We established the selection parameters as follows:
K-core = 2, degree cutoff = 2, maximum depth = 100, and node

score cutoff = 0.2. Subsequently, we conducted KEGG and GO
analyses for the genes implicated in these modules.

Identification and evaluation of hub genes

Hub genes were screened using the CytoHubba plugin in
Cytoscape. We used six commonly used algorithms (Maximal
Clique Centrality, Maximum Neighborhood Component, Degree,
Closeness, Radiality, EcCentricity). The genes obtained from these
algorithms were subsequently intersected using the online Venn tool
(https://bioinfogp.cnb.csic.es/tools/v-enny/index.html) (Bardou et al.,
2014) to identify common hub genes. Thereafter, these hub genes
were imported into theGeneMANIA tool (http://www.genemania.org/)
(Warde-Farley et al., 2010) to construct the co-expression network; the
GeneMANIA tool is a trusted instrument for the construction of co-
expression networks and the identification of intrinsic relationships
within gene clusters. It utilizes genomics and proteomics data to identify
functionally similar genes, and predicts the function of these genes.

Analysis of the regulatory network involving
transcription factors (TFs), miRNAs,
and mRNAs

We sought to understand the interactions between the
acquired hub genes. To this end, we utilized the TRRUST

FIGURE 5
Bubble plot of KEGG enrichment analysis results.
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(transcriptional regulatory relationships unraveled by sentence-
based text-mining) (version:2) database to obtain TF-target
interactions. The TRRUST database utilizes text mining
techniques to extract information from scientific literature,
and curates a comprehensive collection of experimentally
validated TF-target interactions (Han et al., 2018). In addition,
we utilized miRWalk (a public miRNA target gene database
including information of multiple species) (version: 3), which
provides a comprehensive collection of experimentally validated
and predicted miRNA-target interactions (Sticht et al., 2018). In
this analysis, we considered only predicted miRNA-target
interactions that have been verified by experiments to improve
the accuracy of the results. The interactions between these two
targets were subsequently fused using Cytoscape to construct a
comprehensive TF-miRNA-mRNA regulatory network.

Validation of hub genes

To validate the reliability of our findings, we performed the
Wilcoxon test to assess the expression of hub genes. For this
purpose, we utilized the GSE25401 dataset, which comprises
26 nonobese samples and 30 obese samples. Additionally, we
employed the GSE220917 dataset, which includes 18 GC samples

and five normal samples, for further verification.
p-values <0.05 indicate statistically significant differences.

Results

Detection of DEGs

We identified 2,081 and 1,227 DEGs in the GSE54129 and
GSE94752 GEO datasets, respectively (Figures 1A, B). A Venn
diagram computation revealed 209 overlapping upregulated genes
and 37 overlapping downregulated genes in these datasets
(Figures 1C, D).

Functional characteristic analysis of
shared DEGs

The GO analysis revealed that the upregulated genes were
predominantly enriched in processes related to Leukocyte
migration (p. adjust = 4.09E-34), Leukocyte chemotaxis
(p. adjust = 8.56E-30), Cell chemotaxis (p. adjust = 4.59E-28),
and Myeloid leukocyte migration (p. adjust = 1.02E-23)
(Figure 2A). The downregulated genes were mainly enriched in

FIGURE 6
Bar plot of GO enrichment analysis results. MF, Molecular Function; BP, Biological Process; CC, Cellular Component.
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TABLE 1 The top 15 hub genes identified using CytoHubba.

MCC MNC Degree Closeness Radiality EcCentricity

CXCL10 CXCL10 CXCR4 IL6 IL6 IL6

CXCR4 CXCR4 CXCL10 CD4 FN1 FN1

CCR1 CXCL8 CXCL8 FN1 CD4 CD4

CXCL8 CCR7 IL6 CD44 TNF TNF

CXCL9 IL6 CD4 TNF CD44 CXCR4

CCR7 CCR1 FN1 CXCR4 CXCR4 SELL

CCL2 CXCL9 CCR7 CXCL8 SELL TIMP1

CXCL2 CCL2 TNF CXCL10 TIMP1 MMP9

CCL19 CXCL2 CD44 SELL MMP9 CXCL8

CCL21 TNF CCL2 CCR7 CXCL8 CXCL10

CCL4 CD4 CCR1 CCL2 CXCL10 CCL2

CCL8 CD44 CXCL9 CXCL2 CCL2 CCL4

IL6 CCL21 CXCL2 MMP9 CCL4 CXCL2

TNF CCL4 CCL21 CCL4 ITGB2 ITGA4

CD4 FN1 CCL4 ITGB2 CXCL2 CD163

MCC, maximal clique centrality; MNC, maximum neighborhood component.

FIGURE 7
Venn diagram and co-expression network of hub genes. (A) The Venn diagram showed that six algorithms have screened out nine overlapping hub
genes. (B) Hub genes and their co-expression genes were analyzed via GeneMANIA.
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Alcohol metabolic process (p. adjust = 0.02), Ethanol oxidation
(p. adjust = 0.02), Glycerol-3-phosphate metabolic process
(p. adjust = 0.02), and Retinol metabolic process (p. adjust =
0.02) (Figure 2B). Based on the KEGG pathway analysis, the
upregulated genes were primarily enriched in the Hematopoietic
cell lineage (p. adjust = 2.14E-10), Viral protein interaction with
cytokine and cytokine receptor (p. adjust = 2.14E-10), Chemokine
signaling pathway (p. adjust = 1.70E-07), and Cytokine-cytokine
receptor interaction (p. adjust = 3.22E-06) (Figure 2C). The
downregulated genes were predominantly enriched in the
Pyruvate metabolism (p. adjust = 0.01), Retinol metabolism
(p. adjust = 0.02) (Figure 2D).

Construction of a PPI network and
module analysis

The PPI network of overlapping DEGs comprised 245 nodes and
213 interaction pairs (Figure 3). Three highly interconnected gene
modules were identified, which included 20 common DEGs and
59 interaction pairs (Figure 4). The KEGG analysis revealed that

these modules were predominantly involved in cytokine-cytokine
receptor interaction, viral protein interaction with cytokine and
cytokine receptor, and the chemokine signaling pathway (Figure 5).
The GO analysis demonstrated that these genes are associated with
various biological processes, cellular components, and molecular
functions. Specifically, they are involved in the inflammatory
response, immune response, and chemokine-mediated signaling
pathway (biological processes), and are associated with cell
maturation, extracellular space, and the extracellular region
(cellular components). Furthermore, they exhibit protein binding,
plasma membrane association, and chemokine activity (molecular
functions) (Figure 6).

Identification and analysis of hub genes

We identified the top 15 key genes, which are shown in Table 1.
Using the Venn tool online, we obtained nine overlapping hub
genes, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2,
CD4, and CCL2 (Figure 7A). Table 2 shows the full names and
functions of these genes. Using the GeneMANIA database, we

TABLE 2 Details of the hub genes.

No. Gene
symbol

Full name Function

1 CXCR4 C-X-C motif chemokine
receptor 4

The gene encodes a distinct receptor, CXCR4, which specifically binds to the chemokine stromal cell-derived
factor-1. CXCR4 is a G-protein-coupled receptor (GPCR) composed of 352 amino acids and characterized by
a seven-transmembrane domain structure. It exhibits widespread expression in numerous tissues and organs

2 CXCL8 C-X-C motif chemokine
ligand 8

This gene belongs to the CXC-type chemokine family and plays a crucial role as a key mediator in the
inflammatory response. It can be secreted by various cell types, including leukocytes, fibroblasts, endothelial
cells, and malignant tumor cells. Its biological effects are mediated through the binding of two GPCRs,
namely, CXCR1 and CXCR2

3 CXCL10 C-X-C motif chemokine
ligand 10

CXCL10 is a member of the CXC chemokine family. It is produced and secreted by several cell types in the
body, including monocytes, endothelial cells, and fibroblasts. CXCL10 serves multiple functions, including
the chemotaxis of monocytes/macrophages, natural killer cells, and dendritic cells. Additionally, it inhibits
bone marrow colony formation and angiogenesis (the process of new blood vessel formation)

4 IL6 Interleukin 6 IL6 is a cytokine closely associated with inflammation. It plays a crucial role in regulating immune and
inflammatory responses within the body. IL6 can be produced by various lymphocytes, including
T-lymphocytes, B-lymphocytes, and others. It exerts its effects by promoting the proliferation and
differentiation of various cell types

5 TNF Tumor necrosis factor This gene is a prototypical pro-inflammatory cytokine that belongs to the TNF superfamily. It is primarily
produced by macrophages in the body. It plays a crucial role in regulating diverse biological processes, such as
cell proliferation, differentiation, and apoptosis

6 CCL4 C-C motif chemokine ligand 4 This gene encodes a CC chemokine that specifically binds to the C-Cmotif chemokine receptor 5 (CCR5). It is
considered one of the key human immunodeficiency virus suppressors produced by CD8+ T cells. It functions
by attracting and guiding various immune cells, including natural killer cells and monocytes, through the
process of chemotaxis

7 CXCL2 C-X-C motif chemokine
ligand 2

CXCL2, also known as macrophage inflammatory protein-2 (MIP-2), is a chemokine that plays multiple roles
in the cellular and immune systems. It functions by inducing cell chemotaxis, promoting the release of
inflammatory mediators, modulating the immune response, and facilitating tissue repair

8 CD4 CD4 molecule CD4 is a crucial gene that encodes a membrane glycoprotein with diverse functions in both in vivo and in vitro
immune responses. It is primarily expressed on the surface of T helper cells, regulatory T cells, monocytes,
macrophages, and dendritic cells. CD4 plays a pivotal role in promoting T cell activation and development,
thereby contributing to the overall immune response

9 CCL2 C-C motif chemokine ligand 2 CCL2, a chemokine belonging to the CC subfamily, plays a crucial role in chemotaxis of monocytes,
macrophages, and T-lymphocytes. By orchestrating these migratory processes, CCL2 contributes to the
immune system’s defense against invading microorganisms. Additionally, CCL2 exerts its effects across
various cellular functions, thereby resulting in a wide range of physiological impacts. Its expression is
observed in multiple locations throughout the body, further highlighting its significance in immune responses
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FIGURE 8
The regulatory network of nine hub genes. Red circles represent hub genes; green diamonds represent transcription factors (TFs); blue triangles
represent microRNAs (miRNAs).

FIGURE 9
Hub genes expression in the GSE25401 (A) and GSE220917 (B) datasets. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. GC: gastric cancer, Nor:
normal individuals.
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explored genes with similar functions to those genes, established the
co-expression networks, and analyzed their major biological
pathways (Figure 7B). The PPI network included physical
interactions (11.7%), co-expression (59.03%), predicted (6.08%),
co-localization (5.91%), and pathway (0.99%). This network
showed that the nine hub genes had significant interactions with
CCL3, CCL8, CXCL3, CXCL15, CXCL11, and other important genes.
The biological functions of these genes are related to the regulation
of inflammatory response, cytokine binding, and
leukocyte migration.

TF-miRNA-mRNA regulatory
network analysis

Using the TRRUST and miRWalk databases, we identified
25 TFs and 67 miRNAs that potentially regulate the expression
of hub genes. To investigate the underlying regulatory mechanism,
we constructed a regulatory network that integrates these genes.
Furthermore, we utilized information on miRNA, TF, and mRNA
interactions to create an “TF-miRNA-mRNA” regulatory network,
consisting of 67 miRNAs, nine mRNAs, 25 TFs, and a total of
139 edges (Figure 8).

Verification of hub gene expression

The results demonstrated that the expression of nine genes in
the two datasets. The levels of IL6, CCL4, CD4 and CCL2 were
significantly elevated in the obese group compared with the
nonobese group (Figure 9A). In addition, the levels of IL6, CCL4,
CXCR4, CXCL8, CXCL10 and CXCL2 were higher in patients with
GC compared with healthy individuals (Figure 9B). However, only
IL6 and CCL4 were significantly different in both two datasets.

Discussion

In this research study, we employed bioinformatics techniques
to investigate the shared DEGs in patients with obesity and GC.
Enrichment analysis showed that these DEGs were mainly enriched
in inflammatory and immune-related pathways. PPI network
construction, module analysis, GO and KEGG enrichment
analyses indicated that these closely connected genes were mainly
involved in inflammatory and immune-related pathways. Based on
the intersection of the genes obtained by different algorithms of the
plugin cytoHubba, we identified nine key genes. Using these nine
hub genes, we constructed a regulatory network. The results revealed
that CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, and CCL2
may involve common regulatory factors, such as RELA and NFKB1.

The miRNAs play major roles in cell differentiation and
apoptosis, and well as disease progression. Aberrant miRNA
expression may promote the development of various cancer types
(Xu et al., 2019). Moreover, miRNAs can be used as diagnostic and
prognostic markers, and therapeutic targets in cancer (Milanesi
et al., 2020). Numerous miRNAs have been implicated in various
tumor phenotypes (Garzon et al., 2010). TFs, which are abundant
across a vast array of human tissues and cells, perform the critical

function of gene expression modulation. They achieve this by
identifying and interacting with specific DNA sequences
(Lambert et al., 2018). By establishing a gene interaction
network, we found that certain TFs (RELA and NFKB1) and
miRNAs (has-miR-195-5p and has-miR-106a-5p) may play key
roles in the development of obesity and GC.

By validation in the other two datasets, we found that only
IL6 and CCL4 of the nine core genes had significant differences in
expression in both datasets. Theymay play a role in the development
of obesity and GC.

Virchow proposed that chronic inflammation creates a
favorable environment for the development and progression of
cancer (Ikwegbue et al., 2019). Some tumors develop from and
are closely related to inflammation. Several examples highlight
the close association between inflammation and specific types of
cancer. For instance, GC is linked to Helicobacter pylori infection
(Kim and Wang, 2021), nasopharyngeal cancer is associated with
herpes virus infection (Okunade, 2020), and liver cancer is
associated with hepatitis virus infection (Shen et al., 2023).
Chronic inflammation is considered a hallmark of
tumorigenesis and progression (Coussens and Werb, 2002).
Cytokines produced during chronic inflammation can disrupt
normal inflammatory signaling pathways by causing gene
mutations, altering the expression and activation of
oncogenes, inhibiting apoptosis, and promoting
neovascularization (DeNardo et al., 2010). These changes in
the cellular environment can create a favorable setting for
tumor growth and progression. Moreover, chronic
inflammation can contribute to the formation of an immune-
suppressive TME. The presence of large numbers of
immunosuppressive cells in the TME significantly inhibits the
infiltration and function of cytotoxic lymphocytes. These
immune cells play a role in suppressing the immune response,
thereby promoting tumor initiation and progression (Wen
et al., 2022).

Obesity is considered a chronic systemic inflammatory disease
(Engin, 2017). It is typically the result of excess nutrients, and
inflammation associated with obesity is often found in metabolic
tissues, such as white adipose tissue (WAT) (Caputo et al., 2021)
WAT consists of different cell types, including adipocytes and immune
cells. It produces various pro-inflammatory cytokines and integrates
immune signals in a dysfunctional metabolic state. WAT releases
inflammatory molecules, such as IL6, TNF, and CCL2, which can
contribute to cancer progression by promoting inflammation (Murphy
et al., 2018). These cytokines can recruit a variety of immune cells, such
as tumor-associated macrophages, which are the most abundant
immune cells in the TME. The presence of a large number of
inflammatory cells within the TME is associated with cell
proliferation, migration, and angiogenesis. Chronic inflammation is
also involved in immunosuppression, creating an internal
environment conducive to tumorigenesis, infiltration, and
metastasis (Zhao et al., 2021). The formation of an inflammatory
TME induces the expression of numerous cytokines and inflammatory
factors, thereby mediating multiple pathways and promoting tumor
growth and invasion (Ben-Baruch, 2020). In summary, the release of
pro-inflammatory cytokines from WAT and the recruitment of
immune cells contribute to the establishment of a chronic
inflammatory environment, which can promote tumor progression.
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IL6 (a cytokine with pleiotropic effects) regulates a wide range of
functions related to hematopoiesis, tissue homeostasis, metabolism,
and immunity (Jones and Jenkins, 2018). Its dysregulation is
implicated in various diseases, such as chronic inflammation,
autoimmune disorders, and cancer. CCL4 (a CC chemokine)
induces the recruitment of tumor-associated macrophages and
regulatory T cells that exert pro-tumorigenic effects. Other cells
in the TME, such as mesenchymal fibroblasts and vascular
endothelial cells, are also affected by CCL4, contributing to
tumor growth (Mukaida et al., 2020). IL6 and CCL4 may play
important roles in the microenvironment of obesity and GC.
Further data analysis is required to comprehensively investigate
the importance of these factors.

It is important to acknowledge the limitations of this study. The
present analysis was based on microarray data, which have not been
experimentally validated. Therefore, further basic research and
clinical validation are warranted to investigate the specific
signaling pathways of these hub genes, and further clarify the
relationship between obesity and GC.

Conclusion

In this study, we investigated the DEGs in obesity and GC and
identified potential common molecular mechanisms underlying the
development of both conditions using bioinformatics methods. A
PPI network was constructed, and nine hub genes were identified:
CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, CD4, and CCL2.
Subsequently, regulatory networks of miRNAs, mRNAs, and TFs
were created. Thereafter, the hub genes were validated using
different datasets. Finally, IL6 and CCL4 were confirmed as the
hub genes associated with both obesity and GC. The present findings
may facilitate future investigations into underlying mechanisms and
predictions of therapeutic targets.
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