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Introduction: Vitiligo, a common autoimmune acquired pigmentary skin
disorder, poses challenges due to its unclear pathogenesis. Evidence suggests
inflammation and metabolism’s pivotal roles in its onset and progression. This
study aims to elucidate the causal relationships between vitiligo and inflammatory
proteins, immune cells, and metabolites, exploring bidirectional associations and
potential drug targets.

Methods: Mendelian Randomization (MR) analysis encompassed 4,907 plasma
proteins, 91 inflammatory proteins, 731 immune cell features, and 1400
metabolites. Bioinformatics analysis included Protein-Protein Interaction (PPI)
network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis. Subnetwork discovery and hub protein
identification utilized the Molecular Complex Detection (MCODE) plugin.
Colocalization analysis and drug target exploration, including molecular
docking validation, were performed.

Results: MR analysis identified 49 proteins, 39 immune cell features, and 59
metabolites causally related to vitiligo. Bioinformatics analysis revealed significant
involvement in PPI, GO enrichment, and KEGG pathways. Subnetwork analysis
identified six central proteins, with Interferon Regulatory Factor 3 (IRF3) exhibiting
strong colocalization evidence. Molecular docking validated Piceatannol’s
binding to IRF3, indicating a stable interaction.

Conclusion: This study comprehensively elucidates inflammation, immune
response, and metabolism’s intricate involvement in vitiligo pathogenesis.
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Identified proteins and pathways offer potential therapeutic targets, with IRF3
emerging as a promising candidate. These findings deepen our understanding
of vitiligo’s etiology, informing future research and drug development endeavors.
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1 Introduction

Vitiligo is a common autoimmune acquired pigmentary skin
disorder, affecting approximately 0.5%–2% of the global population
(Eidsmo, 2022). Despite its prevalence, the exact etiology and
pathogenesis of vitiligo remain elusive, involving a complex
interplay of genetic predisposition and environmental triggers
(Wang et al., 2021). While depigmented patches on the skin are
the hallmark of vitiligo, the underlying mechanisms driving the
disease extend beyond the visible symptoms. Recent advancements
in research have illuminated the critical roles of inflammation and
metabolic processes in the pathogenesis of vitiligo (Lyu and
Sun, 2022).

Previous studies have confirmed abnormal inflammation and
immune system activity to be associated with various autoimmune
diseases (Needell and Zipris, 2017; Municio and Criado, 2021;
Ruacho et al., 2022). As an autoimmune skin disorder, the
pathogenesis of vitiligo has undergone extensive investigation,
implicating widespread involvement of inflammatory factors and
immune cells (Bergqvist and Ezzedine, 2021). Notably, interleukin
(IL)-6, tumor necrosis factor (TNF)-α, IL-1β, interferon (IFN)-γ, IL-
10, along with C-X-C motif chemokine ligand 10 (CXCL10),
CXCL9, dendritic cells, natural killer cells, and CD8+ T cells, play
pivotal roles in the onset and progression of vitiligo (Beyzaee et al.,
2022; Hlača et al., 2022). Additionally, metabolic abnormalities have
been linked to the pathogenesis of vitiligo, with some studies
demonstrating significant differences in metabolic products in the
blood of vitiligo patients compared to healthy controls (Tsoukalas
et al., 2019; Ding et al., 2023).

However, past research has primarily consisted of observational
studies, constrained by sample size and confounding factors, resulting in
conflicting findings in some instances. For example, Laddha et al. (2012)
reported elevated levels of TNFα in vitiligo patients compared to the
control group, while several other studies have reached the opposite
conclusion, finding no significant difference in TNFα concentration
compared to normal controls (Pichler et al., 2009; Singh et al., 2012;
Camara-Lemarroy and Salas-Alanis, 2013). Furthermore, although
many observational studies have yielded relatively consistent results,
such as increased expression of CXCL10 in vitiligo patients compared to
the control group (Speeckaert et al., 2023), they often only provide
correlational conclusions, making it challenging to establish causal
relationships with vitiligo.

Mendelian randomization (MR) is a genetic epidemiological
research method that utilizes single nucleotide polymorphisms
(SNPs) as instrumental variables (IVs) (Burgess et al., 2019). It
infers potential causal relationships based on Mendel’s laws of
inheritance, offering several advantages over observational
studies. Genetic variations are determined at conception,
preceding disease development, and are generally not influenced

by confounding factors such as postnatal factors and social
environment. Therefore, causal relationships derived from MR
studies exhibit more credible temporality, reducing confounding
bias and minimizing the likelihood of reverse causation (Smith et al.,
2007). This study employs a bidirectional two-sample MR research
design, incorporating extensive datasets that encompass various
biological factors, including inflammatory proteins, immune cell
characteristics, and metabolites. Through bioinformatic analysis, we
aim to elucidate the roles of the identified core proteins in cellular
pathways and functions, providing potential targets for vitiligo
treatment. Ultimately, through drug target exploration and
molecular docking validation, we seek to propose potential
therapeutic strategies based on biomarkers (Davies et al., 2018).

2 Materials and methods

2.1 Study design

To investigate the role of inflammation and metabolism in the
pathogenesis of vitiligo, and to identify potential pharmacological
targets and biomarkers, we employed a bidirectional two-sample
MR analysis along with bioinformatics analysis, using primary data
sourced from genome-wide association studies (GWAS)
(Uitterlinden, 2016). Please refer to Figure 1 for detailed procedures.

2.2 Data sources

The data can be broadly categorized into exposure data and
outcome data. The outcome data pertaining to vitiligo is sourced
from the latest and most comprehensive Finnish database,
R10 version (https://www.finngen.fi/en/access_results). Exposure data
primarily consists of two major components: inflammation and
metabolism. For metabolism analysis, we have incorporated
1,091 blood metabolites and 309 metabolite ratios obtained from the
GWAS catalog (https://www.ebi.ac.uk/gwas/studies/GCST90199621-
902010209).Inflammation analysis is further subdivided into three
components: 4,907 plasma proteins, 91 inflammatory proteins, and
731 immune cells. All GWAS data included in this study for MR
analysis are of European ancestry. Refer to Supplementary Table S1 for
detailed information regarding the data.

2.2.1 Plasma protein screening
We utilized the circulating protein expression level GWAS study

from deCODE Genetics (35,559 Icelanders, 4,907 proteins) to identify
protein quantitative trait loci (pQTL). However, due to the presence of
numerous proteins in plasma unrelated to inflammation and immunity,
further filtering is necessary. We utilized the Gene Set Enrichment
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Analysis (GSEA) website (link: https://www.gsea-msigdb.org/gsea) to
download human-relevant gene sets (H, C1-C8) from the Molecular
Signatures Database. Subsequently, we filtered these gene sets using the
keywords ‘inflammation’ and ‘immunity,’ resulting in 5,886 genes
related to inflammation and immunity, as detailed in Supplementary
Table S11. Next, we conducted an intersection operation between these
genes and the 4,907 plasma proteins obtained from the deCODE
dataset, yielding 925 proteins. Our focus was primarily on proteins
associated with inflammation and immunity, thus completing the
screening of plasma proteins.

2.2.2 Merging with GWAS catalog for final
protein selection

Merging the 925 proteins selected from Section 2.2.1, which are
associated with inflammation and immunity, with the
91 inflammatory proteins from the GWAS catalog (https://www.
phpc.cam.ac.uk/ceu/proteins), resulting in a final set of
1,016 proteins included in the MR analysis.

2.2.3 Selection of immune cells
Data for 731 immune cell features are sourced from the GWAS

catalog database (http://ftp.ebi.ac.uk/pub/databases/gwas/
summary_statistics).

2.3 Genetic instrumental variable selection

In this section, we employed a rigorous process for the selection
of genetic instrumental variables to ensure the robustness and

reliability of our study. The steps involved in this selection are
outlined below.

2.3.1 Identification of SNPs significantly associated
with the phenotype

We initially identified SNPs that exhibited a significant
association with the phenotype, utilizing a stringent threshold
(P < 5E-06) (He et al., 2024). All GWAS datasets included in
this study provided p-values for the association between SNPs
and exposure, similar to the p-value.exposure displayed in
Supplementary Tables S2–S4.

2.3.2 Removal of linkage disequilibrium (LD)
Removal of LD by applying quality control standards: r2 <

0.001, kb > 10,000 (Pierce et al., 2011). This step was
implemented using the “clump_data” function within the
“TwoSampleMR” package.

2.3.3 Integration, concordance, and correction of
palindromic SNPs

We integrated and assessed the concordance of the exposure-
outcome dataset. Additionally, we corrected palindromic SNPs
with ambiguous strands based on allele frequency information,
ensuring accurate alignment and interpretation. This step was
primarily implemented using the “harmonise_data” function
within the “TwoSampleMR” R package. It automatically
removes SNPs with palindromic sequences (e.g., where the
effect allele is base C and the other allele is base G) during the
final MR analysis.

FIGURE 1
Study design. GO, gene ontology, IVs instrumental variables, KEGG, kyoto encyclopedia of genes and genomes, MR, mendelian randomization, PPI,
protein–protein interaction.
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2.3.4 Assessment of instrumental variable
(IV) strength

To evaluate the strength of the instrumental variables, we calculated
the F-value. We excluded potentially weak IVs by setting a threshold
(F > 10) to mitigate bias between the instrumental variables and
exposure factors. The formula for calculating F is as follows:
F=(R̂2×(N-2))/(1-R̂2), R̂2=(2×β̂2×EAF×(1-EAF))/(2×β̂2×EAF×(1-
EAF)+2×[SE]̂2×N×EAF×(1-EAF)). Where (R̂2) is the proportion of
variation in the exposure database explained by SNPs, (N) represents
the number of participants in the GWAS sample, (β) is the estimated
effect size of the SNP, (SE) represents the standard error of the effect
estimate, and (EAF) represents the effect allele frequency.

Refer to Supplementary Tables S2–S4 for detailed information
regarding the SNP data.

2.4 MR analysis and sensitivity analysis

In this study, analysis was conducted using the “Two-Sample MR”
and “MRPRESSO” packages in R 4.1.0 software. The primary method
employed was the Inverse Variance Weighted (IVW) method to
calculate the odds ratio (OR) and its 95% confidence interval (CI),
assessing the potential causal relationship between exposure and
outcome. Additionally, supplementary analyses were performed using
MR-Egger regression and Weighted Median Method (WME), with the
Wald Ratio method applied for exposures with only one SNP (Bowden
et al., 2015; Bowden et al., 2016; Perry et al., 2021). Subsequently,
sensitivity analyses were conducted to ensure the validity and robustness
of the MR analysis results. For heterogeneity assessment, Cochran’s Q
was employed to test SNP heterogeneity. If p < 0.05, indicating
heterogeneity, a random-effects model was used; otherwise, a fixed-
effects model was applied. To assess horizontal pleiotropy, MR-Egger
method and MRPRESSO (MR pleiotropy residual and outlier) method
were jointly utilized. Exposure data exhibiting horizontal pleiotropy were
removed to ensure the reliability of conclusions. To address the issue of
multiple testing, the Benjamini–Hochbergmethodwas employed, which
incorporates the false discovery rate (FDR). The significance threshold
was set at p < 0.05. The exposure with both original p values and FDR-
corrected p values less than 0.05 is considered to have a significant causal
relationship with vitiligo, while the exposure with an original p-value less
than 0.05 but an FDR-corrected p-value greater than 0.05 is considered
to have a potential causal relationship with vitiligo.

2.5 Bioinformatics analysis

Following the outlined procedures, we identified a total of
49 inflammation-immune-related proteins causally associated
with vitiligo. Subsequent bioinformatics analysis was executed on
this protein set.

2.5.1 Protein-Protein Interaction (PPI) network
construction

Utilizing the STRING database (https://string-db.org/), we
retrieved and validated the aforementioned 49 inflammation-
immune-related proteins. Leveraging known physical interactions
and functional relationships, we constructed a comprehensive
Protein-Protein Interaction (PPI) network (Szklarczyk et al., 2023).

2.5.2 GO and KEGG analysis
Conducting Gene Ontology (GO) functional enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis on the 49 proteins offered additional insights into
their roles across biological processes (BP), cellular components
(CC), molecular functions (MF), and pathways.

2.5.3 Subnetwork discovery and identification of
hub proteins

To unveil functional modules and hub regulatory proteins
within the PPI network, we employed the Molecular Complex
Detection (MCODE) plugin in Cytoscape software for
subnetwork discovery. We set parameters (degree cutoff = 2,
node score cutoff = 0.2, k-core = 2, and max. depth = 100) for
optimal results (Menon and Elengoe, 2020).

2.5.4 Colocalization analysis
For the six hub proteins identified by MCODE, we performed

co-localization analysis using the R package coloc (Wallace, 2021).
Bayesian co-localization assesses the probability that a protein and
vitiligo share the same SNP, mitigating bias introduced by linkage
disequilibrium (LD) in MR analysis (Giambartolomei et al., 2014).
In co-localization analysis, five hypotheses were considered.

(1) H0: Unrelated to both vitiligo and the protein (PP0).
(2) H1: Related to the protein, unrelated to vitiligo (PP1).
(3) H2: Related to vitiligo, unrelated to the protein (PP2).
(4) H3: Related to either the protein or vitiligo, but with

independent SNPs (PP3).
(5) H4: Related to both the protein and vitiligo, with shared

SNPs (PP4).

Particular attention was given to the H4 hypothesis, and when
PP.H4 exceeded 0.75, it was considered strong evidence of co-
localization.

2.5.5 Exploration of drug targets and molecular
docking validation

Through successive filtering, we identified hub proteins with
promising drug target potential. Records of past or ongoing clinical
drug development projects for these proteins were retrieved from the
Therapeutic Target Database (http://db.idrblab.net/ttd/) and
ClinicalTrials.gov (https://clinicaltrials.gov/). To assess the binding
affinity and interaction patterns between the candidate drug/small
molecule and its target, molecular docking validation was conducted
using Autodock software (Morris et al., 2008). Two-dimensional protein
structures were obtained from the Protein Data Bank (PDB) (https://
www.rcsb.org/), and the chemical structures of drugs were searched on
PubChem (https://pubchem.ncbi.nlm.nih.gov/) (Wang et al., 2017).

3 results

3.1 Results of MR analysis and
sensitivity analysis

Through conducting MR analysis on multiple plasma proteins,
inflammatory proteins, immune cell features, and metabolites
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related to inflammation, immunity, and metabolism, we have
identified a series of biomarkers causally associated with vitiligo.
Detailed results can be found in Figure 2; Supplementary Tables
S5–S7. Sensitivity analysis results can be found in Supplementary
Tables S8–S10.

3.1.1 Proteins
From the initial screening of 925 inflammation-immune-

related proteins and 91 inflammatory proteins, a total of
49 proteins causally related to vitiligo were identified through
MR analysis. No horizontal pleiotropy was observed among these
proteins. After FDR correction, the p values of six proteins
remain less than 0.05: IRF2, IRF3, ISG15, PGM2,
ST3GAL1, GNLY.

3.1.2 Immune cell
Through MR analysis of 731 immune cell features, we identified

45 immune cell features causally associated with vitiligo.
Due to the presence of horizontal pleiotropy in six features, they were

excluded from the final results, resulting in 39 immune cell features. After
FDR correction, the p values of eight immune cell phenotypes remain less
than 0.05: CD8 on Effector Memory CD8+ T cell, CD20 on IgD- CD38−

B cell, CD25 on CD39+ CD4+ T cell, CD39+ CD4+ T cell %T cell, CD39+

CD8+ T cell Absolute Count, CD39+ CD8+ T cell %T cell, CD28+

CD45RA- CD8dim T cell %T cell, and BAFF-R on CD20− CD38− B cell.

3.1.3 Metabolites and metabolite ratios
MR analysis of 1,400 metabolites and metabolite ratios revealed

61 causal relationships with vitiligo.

FIGURE 2
MR analysis illustrates the causal relationships between inflammatory-immune-related proteins, immune cells, metabolites, and metabolite ratios
with vitiligo. (A) The volcano plot displays the causal relationships between 49 inflammatory-immune-related proteins and vitiligo. However, certain
protein names, including TNFRSF11B, TNFSF12, SELL, TLR3 (all with odds ratios less than 1), were not displayed due to overlapping positions, represented
by gray circles; (B) The volcano plot displays the causal relationships between 39 immune cell features and vitiligo; (C) The forest plot presents the
causal relationships between 19 metabolite ratios and vitiligo; (D) The forest plot presents the causal relationships between 40 metabolites and vitiligo.
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Two were excluded due to horizontal pleiotropy, resulting in a
final set of 59 metabolites and metabolite ratios. After FDR
correction, the p values of 59 metabolites and metabolite ratios
are all greater than 0.05, suggesting potential causal relationships
with vitiligo.

3.2 Reverse MR analysis

Using vitiligo as the exposure and the aforementioned
49 proteins, 39 immune cell features, and 59 metabolites and
ratios as outcomes, we analyzed for bidirectional associations.
The results revealed four proteins, three metabolites and ratios,
and one immune cell phenotype exhibiting bidirectional causal
relationships. Detailed results can be found in Figure 3.

3.3 Bioinformatics analysis

3.3.1 PPI analysis results
We subjected the 49 proteins to Protein-Protein Interaction

(PPI) analysis using the STRING website, with a minimum required
interaction score set to high confidence (0.700). Under this criterion,

we identified interactions among 19 proteins, and these
relationships are detailed in Figures 4A, B. Notably, TNF and
CXCL10 had the highest number of connections with other proteins.

3.3.2 GO and KEGG analysis
We conducted GO and KEGG analyses on the 49 proteins

through the STRING website. The results revealed the most
significant BP as the immune system process, CC primarily
located in the extracellular region, and MF involving signaling
receptor binding. Additionally, KEGG pathway analysis
highlighted the most significant pathway as cytokine-cytokine
receptor interaction. These findings collectively underscore the
importance of these proteins in the immune system. For a more
detailed analysis, please refer to Figure 5.

3.3.3 Results of subnetwork discovery and
identification of hub proteins

Utilizing Cytoscape’s MCODE plugin, we identified two
subnetworks comprising six hub proteins: CD86, granzyme B
(GZMB), selectin L (SELL), toll like receptor 3 (TLR3), interferon
regulatory factor 3 (IRF3), and ISG15. These proteins may play more
pivotal regulatory roles. For further details, please refer to
Figures 4C, D.

FIGURE 3
The forest plot illustrates the results of the reverse Mendelian Randomization analysis when vitiligo is considered as the exposure.
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3.3.4 Results of colocalization analysis
Only IRF3 among the six hub proteins passed the co-

localization analysis (PP.H4 > 0.75). Detailed results can be
found in Figure 6. However, it is noteworthy that a negative co-
localization result does not necessarily imply the ineffectiveness of
the MR analysis.

3.3.5 Results of exploration of drug targets and
molecular docking validation

The molecular structure of Piceatannol (Compound CID:
667,639) was obtained from the PubChem compound database
(https://pubchem.ncbi.nlm.nih.gov/). The 3D coordinates of the
protein IRF3 (PDB code: 3QU6; resolution: 2.3 Å) were
downloaded from the Protein Data Bank (PDB) (http://www.
rcsb.org/). Molecular docking results indicate that Piceatannol
binds to IRF3 through visible hydrogen bonds and strong
electrostatic interactions. Piceatannol successfully occupies the
hydrophobic pocket of IRF3. The binding energy is −7.293 kcal/
mol, suggesting a highly stable binding. Detailed results can be found
in Figure 7.

4 Discussion

In this study, through MR analysis, we validated the causal
relationships between 49 inflammation-immune-related proteins
and vitiligo. Notably, proteins such as IL-17C, CXCL10, NKR2B4
(CD244), and TNF receptor superfamily member 11b (TNFRSF11B)
exhibited bidirectional causality with vitiligo. GO enrichment
analysis unveiled the involvement of these proteins in multiple
biological processes, including inflammatory responses, immune
regulation, and positive regulation of interferon-gamma
production. Additionally, they were associated with cellular
components such as extracellular region and vesicles, as well as
molecular functions like receptor binding, receptor ligand activity,
and cytokine receptor binding. KEGG analysis further underscored
the significance of the Cytokine-cytokine receptor interaction
pathway. PPI analysis revealed the interplay among these
proteins, with TNF and CXCL10 showing the highest
connectivity. The MCODE plugin identified six hub proteins,
including CD86, GZMB, SELL, TLR3, IRF3, and ISG15. IRF3,
supported by co-localization analysis, was associated with vitiligo

FIGURE 4
(A) The PPI graph created using the STRING website; (B) Further processing of the 19 proteins using Cytoscape software; (C,D) Identification of two
subnetworks comprising six hub proteins using the MCODE plugin.
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and holds potential as a therapeutic target. Drug target exploration
suggested that the small molecule Piceatannol could serve as an
inhibitor for IRF3, and molecular docking validated the stable
affinity between them. Further research is required to ascertain

whether Piceatannol can effectively treat vitiligo by inhibiting IRF3.
After conducting MR analysis on 1,400 metabolites and metabolite
ratios, we confirmed 40metabolites and 19metabolite ratios causally
linked to vitiligo, including 11 related to Bilirubin and its

FIGURE 5
(A) Results of GO enrichment analysis, sorted by FDR values, with only the top 10 BP pathways displayed; (B) Results of KEGG pathway analysis. BP,
biological processes; CC, cellular components, MF, molecular functions.
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metabolites, suggesting a potential protective role against vitiligo.
Zhang et al. (2018) revealed a significant decrease in serum Heme
Oxygenase-1 (HO-1) and its metabolites, including Bilirubin, CoHb,
and iron concentrations in vitiligo patients compared to the healthy
control group. They successfully controlled the progression of
vitiligo by using an HO-1 agonist to restore the functionality of
regulatory T cells (Tregs). This finding suggests that HO-1 might be
a potential therapeutic target for vitiligo. Based on our research
results, we speculate that the protective effect of HO-1 on vitiligo is
likely closely associated with Bilirubin. Additionally, we identified
causal relationships between 731 immune cell features and vitiligo.
We confirmed 39 immune cell features causally linked to vitiligo,
with CD8 on Effector Memory CD8+ T cells showing the highest
significance (p = 9.58E-05). In addition to CD8+ T cells, we should
also pay attention to other immune cells that may potentially have a
protective effect against vitiligo. For instance, the presence of CD66b
on Granulocytic Myeloid-Derived Suppressor Cells (p = 1.61E-02)
has drawn our attention. This is consistent with the findings of
Douguet et al. (2018), who utilized a transgenic mouse model
carrying the ret oncogene (Ret mice) that develops a spontaneous
metastatic melanoma and observed a reduction in the number of
Myeloid-Derived Suppressor Cells (MDSCs) at the primary tumor
site in mice with vitiligo. This suggests that MDSCs may play a
protective role in the development of vitiligo to some extent. It is
intriguing to note the close associations between MDSCs and
various inflammatory proteins and metabolites identified in our

study. For instance, Tran et al. (2020) found that Bilirubin enhances
the recruitment of MDSCs and suppresses the activities and
functions of T cells in blood in the sepsis mouse model.
According to Lu et al. (2021), upregulation of CXCL10 in a
murine renal cancer model was associated with a reduction in
the frequency and immunosuppressive activity of MDSCs.
Additionally, Cheng et al.’s research (Cheng et al., 2020)
indicated that cGAMP, by stimulating the cGAS-cGAMP-
STING-IRF3 pathway, decreased the quantity of MDSCs,
suggesting a potential inhibitory role of IRF3 in regulating
MDSCs numbers. Interestingly, our findings suggest a protective
role of both MDSCs and Bilirubin against vitiligo, while IRF3 and
CXCL10 may potentially increase the risk of vitiligo occurrence.

Current research suggests that vitiligo results from the combined
effects of genetic factors (approximately 80%) and environmental
stressors (about 20%) (Bergqvist and Ezzedine, 2021). Under this
interplay, melanocytes in vitiligo patients are more susceptible to
oxidative stress, leading to cellular damage (Jadeja et al., 2020; Chang
and Ko, 2023). This process promptsmelanocytes to release exosomes
containing specific antigens, activating CD8+ T cells to produce
various cytokines such as IFNγ, TNF, and GZMB. Notably, IFNγ
induces the secretion of CXCL9 and CXCL10 by keratinocytes, where
CXCL10, through interaction with CXCR3B, induces apoptosis of
melanocytes (Tulic et al., 2019; Su et al., 2020; Bergqvist and Ezzedine,
2021). Our research findings robustly confirm a bidirectional positive
causal relationship between CXCL10 and vitiligo. On one hand, the

FIGURE 6
Displays the colocalization analysis results between IRF3 and vitiligo. IRF3, interferon regulatory factor 3.
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increase in CXCL10 contributes to the development of vitiligo, and on
the other hand, the presence of vitiligo leads to a significant
upregulation of CXCL10 expression. This discovery aligns with
previous studies, emphasizing CXCL10 as a potential effective
target for treating vitiligo. Our study also addresses some
controversies in previous research, confirming a causal relationship
between TNF and vitiligo, indirectly supporting the rationale for using
TNF inhibitors in vitiligo treatment (Kemp, 2015). However, we also
note that some tumor necrosis factor inhibitors may induce the onset
of vitiligo, a phenomenon observed in patients with various other
conditions, such as hidradenitis suppurativa, ankylosing spondylitis,
Crohn’s disease, and psoriasis (Dunn et al., 2019; Anthony et al., 2020;
Phan et al., 2020). This paradoxical result prompts further
consideration. Interestingly, through MR analysis, we identified
TNFRSF11B, TNF alpha induced protein 3 (TNFAIP3), TNF
superfamily member 12 (TNFSF12) as potentially protective factors
against vitiligo, which may explain why some patients experience
depigmentation after using TNF inhibitors.

In our study, we made a notable discovery, revealing for the first
time the potential involvement of IRF3 in the pathogenic mechanism of
vitiligo. Previous research by Sen et al. (2019) indicated that the

inhibition of DNA damage repair proteins poly ADP-ribose
polymerase (PARP) and checkpoint kinase 1 (CHK1) significantly
increases PD-L1 expression in patients with small cell lung cancer
(SCLC), thereby activating the STING/TBK1/IRF3 immune pathway.
Activation of this pathway leads to the release of chemokines such as
CXCL10, inducing the activation of cytotoxic T lymphocytes. We
hypothesize that in vitiligo, IRF3 might contribute to the
development of the condition by promoting the release of CXCL10.
Furthermore, findings from the study by Dang et al. (2004) further
support the importance of IRF3 in immune regulation. Their
experiments in a mouse model of septic shock revealed that
Piceatannol exhibits inhibitory effects by effectively blocking
lipopolysaccharide (LPS)-mediated IRF3 activation. This inhibitory
effect, achieved by downregulating the expression of various
inflammatory factors, successfully suppressed the occurrence of
inflammation. These results provide additional support to our
discovery, suggesting that IRF3 may serve as a crucial node in the
regulation of inflammation. Piceatannol, acting as an inhibitor of IRF3,
may play a role in modulating the pathogenic mechanism of vitiligo.
Although our molecular docking validation demonstrated the affinity
between Piceatannol and IRF3, further in-depth research and validation

FIGURE 7
Binding mode of screened drugs to their targets by molecular docking. (A) Cartoon representation, overlay of the crystal structures of small
molecule compounds and their targets were illustrated by Molecule of the Month feature; (B) The PyMOL software displays the three-dimensional
structure of the binding pocket along with the linkage between the compound and its target; (C) The 3D structure of IRF3; (D) The 3D structure of
Piceatannol.
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are necessary to explore the therapeutic potential of Piceatannol
in vitiligo.

Our research has certain limitations that need to be
acknowledged. Firstly, we focused solely on the causal relationships
between peripheral blood protein levels, immune cells, metabolites,
and vitiligo, without considering skin tissue. This limitation arises
from the unavailability of large, publicly accessible GWAS datasets
specifically related to skin tissue. Secondly, our study exclusively
covers the European population, potentially restricting the
generalizability of conclusions to other ethnic groups.

In summary, our study revealed causal relationships between
49 proteins, 39 immune cell features, and 59 metabolites with
vitiligo. We addressed some controversies present in traditional
observational studies and conducted in-depth exploration. Notably,
we identified IRF3 as a potential novel therapeutic target for vitiligo.
These research findings provide crucial insights for a deeper
understanding of the pathogenic mechanisms of vitiligo and the
development of future therapeutic strategies.
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