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Introduction: There are considerable similarities between the pathophysiology of
gout flare and the dysregulated inflammatory response in severe COVID-19
infection. Monocytes are the key immune cells involved in the pathogenesis
of both diseases. Therefore, it is critical to elucidate the molecular basis of the
function of monocytes in gout and COVID-19 in order to develop more effective
therapeutic approaches.

Methods: The single-cell RNA sequencing (scRNA-seq), large-scale genome-
wide association studies (GWAS), and expression quantitative trait loci (eQTL) data
of gout and severe COVID-19 were comprehensively analyzed. Cellular
heterogeneity and intercellular communication were identified using the
scRNA-seq datasets, and the monocyte-specific differentially expressed genes
(DEGs) between COVID-19, gout and normal subjects were screened. In addition,
the correlation of the DEGs with severe COVID-19 and gout flare was analyzed
through GWAS statistics and eQTL data.

Results: The scRNA-seq analysis exhibited that the proportion of classical
monocytes was increased in both severe COVID-19 and gout patient groups
compared to healthy controls. Differential expression analysis and MR analysis
showed that NLRP3 was positively associated with the risk of severe COVID-19
and involved 11 SNPs, of which rs4925547 was not significantly co-localized. In
contrast, IER3was positively associated with the risk of gout and involved 9 SNPs,
of which rs1264372 was significantly co-localized.
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Discussion: Monocytes have a complex role in gout flare and severe COVID-19,
which underscores the potential mechanisms and clinical significance of the
interaction between the two diseases.
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1 Background

The 2019 coronavirus (COVID-19) pandemic was an
unprecedented global health crisis, and is expected to remain
the leading cause of infection-related deaths in the coming years
(Nasrullah et al., 2023). Most patients infected with the novel
coronavirus present with mild or moderate symptoms, and only
a small proportion progress to severe disease. The heterogeneity
of outcomes highlights the necessity for a deeper understanding
of COVID-19 pathogenesis. Gout is a crystal-associated
arthropathy caused by monosodium urate (MSU) deposition
in the joints, which manifests as recurrent pain, limited joint
movement or leads to deformities and gouty nephropathy in
severe cases. During the COVID-19 pandemic, gout patients
experienced an increased frequency of acute attacks and elevated
urate levels (Garcia-Maturano et al., 2022). Furthermore, gout
increased the likelihood of positive COVID-19 diagnosis by
1.5 times (Topless et al., 2021).

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) can trigger a pro-inflammatory state by activating
inflammasomes in infected monocytes and macrophages
(Junqueira et al., 2021). Hyperuricemia, the key pathological
factor of gout, can induce monocyte-associated inflammation
and induce the production of chemokine ligand 2 and other
inflammatory factors, leading to an increase in the immune
response to secondary stimuli (Kluck et al., 2023; Li et al.,
2023; Tanaka et al., 2017). COVID-19 and gout can occur
simultaneously, which could exacerbate the symptoms by
inducing systemic inflammation, immune cell overactivation,
and inflammatory cytokine storm.

COVID-19 and gout share several risk factors, such as age,
metabolic syndrome, and underlying disease. In addition, the
severity of COVID-19 is highly dependent on host factors, and
gout is caused by combination of genetic and environmental
factors (Tin et al., 2019; Zhang et al., 2020). Studies show that
innate immune cells, particularly monocytes, play a key role in
driving the progression of gout and severe COVID-19. However,
the exact role of monocytes in the interaction between the two
diseases has not been fully elucidated. Due to the recent advances
in genomics, transcriptomics, proteomics, and metabolomics, it
is now possible to explore the pathogenesis of various diseases at
the molecular level, and identify functional changes associated
with disease progression. Furthermore, Mendelian
randomization (MR) can overcome the limitations of
observational studies and provide new insights into disease
etiology and treatment by using genetic variants as
instrumental variables. In this study, we integrated RNA
sequencing (RNA-seq) data and genome-wide association
studies (GWAS) data to explore the molecular basis of
monocyte function in severe COVID-19 and gout flare.

2 Methods

2.1 Bioinformatics data sources

RNA-seq datasets were retrieved from the Gene Expression
Omnibus (GEO) database. GSE192391 included the scRNA-seq
data for severe COVID-19; GSE211783 included the scRNA-seq
data of six samples from three gout patients. GSE157103 consisted of
the bulk RNA-seq data of 50 severe COVID-19 patients and
26 healthy individuals.

2.2 GWAS and eQTL data sources for MR and
colocalization analysis

In this study, we performed MR Analyses by using the R software
package TwoSampleMR to identify single nucleotide polymorphisms
(SNPs) associated with severe COVID-19 and gout, which were defined
as instrumental variables. The GWAS data were obtained from the
website (http://gwas.mrcieu.ac.uk/datasets), including the severe COVID-
19 dataset (ebi-a-GCST011075, n = 1,388,342) and the gout dataset (finn-
b-M13_GOUT, n = 150,797). The expression quantitative trait loci
(eQTL) data were also publicly available from the IEU OpenGWAS
project accession code eQTL-a-ENSG00000162711 and eQTL-a-
ENSG00000137331. Our study design was summarized in Figure 1.

2.3 Single-cell data analysis

Quality control of datasets was performed using the Seurat package
(version 4.4.0) in R software (version 4.3.1). Samples were first
converted to Seurat objects using the “CreateSeuratObject”. Cells
with mitochondrial gene percentages < 25% and unique gene counts
between 200 and 6,000 were used. The data were normalized using the
“NormalizeData” function, scaled for all genes using the ScaleData
function, and subjected to principal component analysis (PCA).
Hypervariable genes were identified by the FindVariableFeatures
function and used for downstream analysis. Since the data were
obtained from different samples, batch correction was performed
using the R package “Harmony” (1.0.3) to avoid any batch effects
interfering with downstream analysis. Cell clustering and classification
were performed by using the FindClusters function. The SingleR
package (2.2.0) was then used to match the single-cell RNA-seq data
to a known reference dataset and manually calibrated to improve the
accuracy and reliability of cell type annotation. Marker genes are shown
in Supplementary Figures S1A, S1B. Monocyte subpopulations were
categorized as classical monocytes (CCR2, SELL, S100A8, S100A9, LYZ,
SERPINB2, CD14), non-classical monocytes (NAP1L1, FCGR3A,
FCGR3B, CSTA, CX3CR1, ITGAL), and intermediate monocytes
(HLA-DRA, HLA-DPB1, EVL) based on markers genes listed in
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literature. Dot plots show the proportion and average expression of cell
clusters expressing the marker gene in monocytes from COVID-19,
gout flare and healthy samples (Supplementary Figure S1C), and the
marker gene in monocytes from COVID-19, gout remission and
healthy samples (Supplementary Figure S1D). The correspondence
between cell clusters, cell marker and cell types from COVID-19,
gout flare and healthy samples are shown in Supplementary Figure
S2A, and cell types from COVID-19, gout remission and healthy
samples are shown in Supplementary Figure S2B. The
FindAllMarkers function was used to find differentially expressed
genes between monocyte and other clusters. The communication
between monocytes and other cells was determined by analyzing the

ligand-receptor pairs using CellChat (version 1.6.1) R package, with
CellChatDB.human as the reference database. The R package
scMetabolism was used to quantify the metabolic activities of the
different types of cells at the single-cell level.

2.4 eQTL MR analysis

To ensure the robustness and reliability of the findings, we
followed the STROBE-MR guidelines and used a two-sample MR
approach (Skrivankova et al., 2021). Two sample MR analysis was
performed by using the TwoSampleMR package (0.5.7), with genes

FIGURE 1
The summary of the study design.
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as the exposure and the disease as the outcome. Variants in multiple
regions of the genome were selected as instrumental variables in this
study. The significantly associated SNPs (P < 5 × 10−8) were
screened, and the threshold for removing linkage disequilibrium
(LD) was set to r2 < 0.001. The instrumental strength for each SNP
was assessed using the F statistic, with an F statistic >10 indicating a
strong tool. The F statistic was calculated using the formula:
F � R2 × (N−2)

1−R2 , where R2 �
2 × β2 × EAF × (1−EAF)

2 × β2 × EAF × (1−EAF)+2 × SE2 × N × EAF × (1−EAF) (Papadimitriou et al.,
2020; Levin et al., 2020; Gill et al., 2019; He et al., 2024). For
genes with only one instrumental variable (IV), the Wald ratio
method was used; otherwise, the inverse variance weighting method
(MR-IVW) was used. In this study, P = 0.00052 (0.05/96) after
correction of the Bonferroni method. Therefore, P < 0.00052 was
considered significant.

2.5 Co-localization analysis

We performed a Coloc test to examine the probability that SNPs
associated with disease and gene expression (eQTL) are shared genetic
causal variants. Colocalization analyses were performed respectively by
using eqtl-a-ENSG00000162711 as exposure data, ebi-a-
GCST011075 as outcome data, and eqtl-a-ENSG00000137331 as
exposure data and finn-b-M13_GOUT as outcome data. The

instrumental variables were determined based on 1 MB upstream
and downstream of the SNP with the lowest p-value associated with
gene. Coloc package is used in R to evaluate Bayesian factors under
various colocalization assumptions. Based on Bayesian statistical
modeling, five posterior probabilities were generated, corresponding
to the five hypotheses described by Wallace et al. Two hypotheses were
the focus of this study: 1) PPH3, association with the severe COVID-19
or gout risk and expression of the gene, with distinct causal variants; 2)
PPH4, association with the severe COVID-19 or gout risk and
expression of the gene, with a shared causal variant. Posterior
probabilities (PP) were used to quantify support for all hypotheses,
and co-localization analyses were restricted to genes that achieved
PPH3+PPH4 ≥ 0.8 (Giambartolomei et al., 2014). Finally, we
obtained the genotype data of the target genes including eqtl-a-
ENSG00000162711 and eqtl-a-ENSG00000137331, which were used
to drawing the regional associations plots.

2.6 SMR analysis

Summary-data-based Mendelian randomization (SMR), based
on Mendelian randomization, was proposed in 2016 by Zhu et al.
(2016). The SMR analysis used single nucleotide variants of the top
cis-eQTL as instrumental variables and combined GWAS and eQTL
data to detect associations between gene expression and traits. In this

FIGURE 2
Single-cell analysis of severe COVID-19, gout flares and healthy samples. (A) UMAP plot displays the results after clustering. NK cells, T cells, B cells,
pDCs, cDCs, monocytes, neutrophils, and platelets were identified. (B) Depicts the proportion of each monocyte subgroup in different samples.
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study, we used the default settings in the SMR software. The P-value
threshold for selecting the relevant eQTL for the SMR test is 5.0 ×
10−8, and the window around the probe center for selecting cis-eQTL
is 1 Mb. The eQTL data were obtained from two sources.
Respectively, we used a study conducted by Westra et al. (Westra
et al., 2013), which was an eQTL meta-analysis of peripheral blood
samples from 5,311 healthy European individuals, and CAGE eQTL
whole blood expression data, including 2,765 subjects of European
ancestry (Lloyd-Jones et al., 2017). The criteria of significant results
were as follows: PSMR<0.05 and PHEIDI > 0.05.

3 Results

3.1 Cell clustering and annotation

In this study, we focused on the relationship between severe
COVID-19 and gout flare. The scRNA-seq data of PBMCs obtained

from patients with severe COVID-19, gout flare, and healthy samples
revealed significant differences in the cellular composition of different
groups. Based on specific gene markers, PBMCs were clustered into
20 distinct subclusters. Six clusters (clusters 13, 14, 15, 17, 18, 19) were
considered “mixed” as the marker genes were not associated with any
common or specific cell type, and were subsequently excluded due to
the small number of cells. The final cell clusters including natural killer
(NK) cells, T cells, B cells, plasmacytoid dendritic cells (pDCs), classical
DCs (cDCs), monocytes, neutrophils, and platelets, and theUMAPplot
is shown in Figure 2A. Themonocytes were analyzed further given their
critical role in gout and severe COVID-19 progression. Based on the
expression of marker genes, we identified seven distinct monocyte
clusters, including classical monocytes (CMs; clusters 0, 1, 4, and 6),
non-classical monocytes (NCMs; clusters 2 and 5), and intermediate
monocytes (IMs; cluster 3). As shown in Figure 2B, the proportion of
classical monocytes was higher in gout flare and severe COVID-19
samples compared to the healthy controls. The differentially expressed
genes (Supplementary Table S1) in the monocytes included those

FIGURE 3
Cellular communication analysis in severe COVID-19 and gout. (A, C)Cellular communication networks constructed for classical monocyte and other cells
in COVID-19 and gout samples, respectively. (B, D) Differential enrichment signaling pathway analysis between classical monocyte and other cells.
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related to cytokines (IL1B, NFKBIA, NLRP3), inflammation (CCR1),
cell adhesion (JAML), and apoptosis (IER3, MCC1). Similar to the
above results, scRNA-seq dataset from patients with severe COVID-19
and during gout remission were analyzed, and the distribution of

identified cell populations is shown in Supplementary Figure S3A. The
proportion of monocyte subsets is shown in Supplementary Figure S3B
and differentially expressed genes are shown in
Supplementary Table S2.

FIGURE 4
Mendelian randomization analysis of key genes and severe COVID-19. (A) Volcano plot illustrates the association between key genes and the risk of
severe COVID-19. (B) Forest plot to visualize causal effect of each single SNP on the risk of severe COVID-19. (C)Mendelian randomization analysis shows
associations of NLRP3, CD93, and IL17RA gene variants with severe COVID-19 risk. (D) The funnel plot indicates the effect of key genes on the risk of
severe COVID-19. (E) Scatter plot demonstrates the effect of SNPs with exposure and outcome.
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FIGURE 5
Mendelian randomization analysis of key genes and gout flares. (A) Volcano plot illustrates the association between key genes and the risk of gout
flares. (B) Forest plot illustrates the effect sizes for the associations. (C) Mendelian randomization analysis shows associations of IER3, LRP1, MCL1, and
RBP7 gene variants with the risk of gout flares. (D) The funnel plot indicates the effect of key genes on the risk of gout flare. (E) Scatter plot demonstrates
the effect of SNPs with exposure and outcome.
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3.2 Cell-cell interactions in gout flare and
severe COVID-19

In the following analysis, we continued to focus on the
association between severe COVID-19 and gout flares. The
intercellular communication was analyzed by the CellChat
algorithm. In the severe COVID-19 datasets, the CMs showed

high interaction with IMs, NCMs, cDCs, and pDCs (Figure 3A).
On the other hand, the major interaction partners of CMs in gout
flare were IMs, NCMs, cDCs, and neutrophils (Figure 3C). We also
identified several ligand-receptor pairs, and found that LGALS9 and
CD45 were the predominant interacting pair in both diseases. RETN
and CAP1 mediated the interactions between CM and the other cell
subsets. In addition, MIF and (CD74+CXCR4) mediated significant

FIGURE 6
Regional association map. (A, B) Regional association plot depicts correlation of SNPs within specific genomic regions with gene and disease.
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interactions between CMs and B cells in the COVID-19 samples
(Figure 3B). In the gout dataset, CMs and neutrophils showed strong
interaction via ANXA1 and FPR1(Figure 3D).

3.3 Identification of genes related to severe
COVID-19 and gout risk

The genes associated with severe COVID-19 infection and gout risk
were identified byMR analysis as described in themethods. The volcano
map highlights genes associated with COVID-19 that have significant
p-values (Figure 4A). Forest plot shows the effect of NLRP3-associated
SNPs on the risk of COVID-19 (Figure 4B). As shown in Figure 4C,
higher expression levels of NLRP3 and CD93 were associated with an
increased risk of severe COVID-19, whereas IL17RA was negatively
correlated with severe COVID-19 risk. NLRP3 showed the association
with the risk of severeCOVID-19 (OR1.12, 95%CI 1.01–1.25,P=3.70 ×
10−2). The funnel plot was drawn to assess heterogeneity (Figure 4D), and
scatter plot of SNP effects on exposure and outcome is shown in
Figure 4E. Furthermore, 4 genes were significantly associated with
gout (Figure 5A). Forest plot shows the effect of IER3-associated
SNPs on the risk of gout (Figure 5B). IER3 was found a positive
correlation, whereas LRP1, MCL1 and RBP7 were negatively
correlated with the risk of gout (Figure 5C). IER3 showed the
association with gout risk (OR 1.2, 95% CI 1.04–1.39, P = 1.17 ×
10−2). The scatter plot and funnel plot are shown in Figures 5D, E. MR-
Egger test did not show evidence ofmultiplicity of effects in both diseases
(Supplementary Table S3; Supplementary Table S4). Cochran’s Q-test
results showed no heterogeneity concerning severe COVID-19 but the
analysis of gout showed heterogeneity. The results are detailed in
Supplementary Tables S5, S6. We used an online tool (https://sb452.
shinyapps.io/power) to calculate the minimum sample size required for
this MR analysis. Calculations suggested the minimum sample size for
COVID-19 and gout is 2,387,400 and 39,900, respectively, to reach
80% power.

We selected the SNP with most significant association with
NLRP3 and IER3 as a representative for co-localization analysis.
Colocalization analyses between NLRP3 and severe COVID-19
showed, PPH3 = 0.31, PPH4 = 0.11, and PPH3+PPH4 = 0.42.
Colocalization analyses between IER3 and gout showed, PPH3 =
0.99, PPH4 = 0.00, and PPH3+PPH4 = 0.99. NLRP3 and severe
COVID-19 were possibly associated with SNP loci in the genomic
region, but were affected by different causal variants. On the other

hand, IER3 and gout were significantly associated with SNP loci in the
genomic region, and were affected by different causal variants. The
genetic variants near the region ofNLRP3 association with COVID-19
were shown in the regional association plot (Figure 6A), and the lead
SNP was rs59215952. The regional association plot between IER3 and
gout is shown in Figure 6B, and the lead SNPwas rs35267732.We also
performed SMR analysis to verify the causal relationship between
NLRP3 and severe COVID-19, and the causal relationship between
IER3 and gout. The results showed that the two probes ofNLRP3 gene
were ILMN_2310896 (PSMR = 0.1324, PHEIDI>0.05, β = 0.1325, OR =
1.1417), and the topSNP was rs12143966; and ILMN_1712026
(PSMR<0.05, PHEIDI>0.05, β = 0.1822, OR = 1.2000), and the
topSNP was rs10925027. Meanwhile, we found that the expression
of IER3 gene was associated with gout and there was no significant
heterogeneity in the eQTL signaling (PSMR<0.05, PHEIDI>0.05, β =
0.0970, OR = 1.1018). The SMR results are shown in Table 1.

3.4 Cellular distribution of genes related to
severe COVID-19 and gout flare

As shown in the UMAP plot (Figure 7A), the monocytes
expressed higher levels of CD93, NLRP3, and IL17RA compared
to the other cell populations. Furthermore, NLRP3 was highly
expressed in the CMs, and showed lowest expression levels in the
NCMs (Figure 7B). The network of interactions between the
different subsets further showed strong interaction of the CMs
with IMs, NCMs and cDCs (Figure 7C). The genes related with
gout including IER3, LRP1, MCL1 and RBP7, were predominantly
expressed in monocytes (Figure 8A), of which IER3 was expressed at
higher levels in CMs compared to the other cell populations
(Figure 8B). The network of interactions was shown in Figure 8C.

3.5 Key pathways related to severe COVID-
19 and gout flare

Results of the ligand-receptor interaction analysis showed
that the NLRP3-positive CMs had more inter-cellular
interactions compared to the NLRP3-negative CMs
(Figure 9A). Furthermore, MIF and (CD74+CD44), MIF and
(CD74+CXCR4) showed more cell-to-cell interactions. As
shown in Figure 9B, the IER3-positive CMs showed more

TABLE 1 SMR analysis and Heidi test results.

Ch Gene Gene probe Top SNP PSMR PHEIDI BESMR OR

Probe position SNP position NHEIDI SESMR 95% CI

1 NLRP3 ILMN_2310896 rs12143966 0.1385 0.77 0.1325 1.1417

247611978 247601357 20 0.0894 0.97–1.32

ILMN_1712026 rs10925027 0.0477 0.7832 0.1822 1.1998

247612006 247612562 20 0.092 1.10–1.38

6 IER3 ILMN_1682717 rs2233980 0.0092 0.055 0.097 1.1018

30711220 31079644 20 0.0373 1.03–1.18
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interactions than IER3-negative CMs involving MIF and
(CD74+CD44), MIF and (CD74+CXCR4), RETN and CAP1,
and RETN and TLR4 in gout flare. As a multifunctional
cytokine, MIF mainly interacts with the CXC family of
receptors (such as CXCR2, CXCR4, CXCR7, CXCR12), CD74,
and CD44 to activate the downstream signaling pathways.

3.6 Metabolic profiles of the different cell
populations

The metabolic activities in the cell populations were identified
using scMetabolism. Notably, glycosphingolipid biosynthesis-
related pathways, riboflavin metabolism and cytochrome P450-

FIGURE 7
Expression of key genes associated with severe COVID-19 in different subsets and analysis of cellular communication between different cell susets.
(A) The UMAP plot shows the distribution of key genes concerning severe COVID-19 in different cell subsets. (B) Violin plot shows the expression level of
NLRP3 in CM, IM and NCM. (C) Cellular communication networks between NLRP3+CM and NLRP3-CM cell subgroups in COVID-19 samples.
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related metabolic pathways were enriched in the CMs.
Sphingolipids are indispensable components of cell
membranes, and not only maintain membrane stability but
also regulate cell adhesion, proliferation, apoptosis,
differentiation, and recognition. Sphingolipids can act as
exogenous or endogenous ligands for some immune cells and

stimulate the secretion various cytokines, including TNF, IL-6,
and IL-8, and therefore play key roles in inflammation-related and
autoimmune diseases. Riboflavin plays a critical role in
mitochondrial energy metabolism, redox homeostasis, cell
apoptosis and inflammatory response. Cytochrome P450 is
widely involved in pathological processes such as apoptosis,

FIGURE 8
Expression of key genes associated with gout flares in different subsets and analysis of cellular communication between different cell susets. (A) The
UMAP plot shows the distribution of key genes concerning gout flare in different cell subgroups. (B) Violin plot shows the expression level of IER3 in CM,
IM and NCM. (C) Cellular communication networks between IER3+CM and IER3-CM cell subgroups in gout samples.
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inflammatory response, oxidative stress and endoplasmic
reticulum stress. NLRP3-positive CMs showed higher
porphyrin and chlorophyll metabolism in the COVID-19
patients (Figure 10A), while the glycosaminoglycan
biosynthesis-keratin sulfate pathway was enriched in the IER3-
positive CMs in gout patients (Figure 10B). In contrast, the IER3-
negative and NLRP3-negative CMs showed increased biosynthesis
of glycosylphosphatidylinositol-anchored proteins (GPI-Aps).
These results are indicative of the metabolic differences
between the NLRP3/IER3-positve and NLRP3/IER3-negative
CMs. Furthermore, we created a heat map to illustrate the
levels of NLRP3, CD93 and IL17RA genes expression by using
bulkRNA-seq data from COVID-19 and healthy samples

(Figure 10C). The bulk RNA-seq data confirmed the
significantly higher expression of NLRP3 in the severe COVID-
19 patients compared to the healthy samples (Figure 10D),
indicating that NLRP3 plays a key role in disease progression.

4 Discussion

This study integrated GWAS and scRNA-seq data to identify cell
types and key genes associated with gout flares and severe COVID-
19. Our results showed that classical monocytes play a critical role in
the progression of gout flare and severe COVID-19, and may involve
the genes including NLRP3 and IER3.

FIGURE 9
Ligand-receptor interactions identified in scRNA-seq data. (A) Differential signaling pathways enriched in communications involving NLRP3+CM
cells compared to others. (B) Differential signaling pathways enriched in communications involving IER3+CM cells compared to others.
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FIGURE 10
The role of NLRP3 and IER3 in monocyte metabolism and the difference of key genes expression in COVID-19 between different groups. (A)
Metabolic pathway analysis reveals differences in metabolic activities and metabolic pathway between NLRP3+CM and NLRP3-CM cell subgroups. (B)
Metabolic pathway analysis reveals differences in metabolic activities and metabolic pathway between IER3+CM and IER3-CM cell subgroups. (C) Heat
map shows the expression levels of key genes in severe COVID-19 and healthy groups. (D) Box plot indicates significant differential expression of
NLRP3 in severe COVID-19 and healthy groups.
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First, we analyzed scRNA-seq data from COVID-19 and gout to
verify the presence of monocytes, T cells, DCs, etc. in peripheral
blood. Among them, monocytes play an integral role in the immune
response, but the role of monocytes in the interaction of gout and
severe COVID-19 has not been established. Therefore, we focused
on the relationship between monocytes and these two diseases.
Monocytes originate from the hematopoietic stem cells and
develop in the bone marrow, and play a central role in immune
responses and host defense by activating lymphocytes, eliminating
pathogens, and promoting tissue repair (Jakubzick et al., 2017;
Merad and Martin, 2020; Qin et al., 2021). Several studies have
shown that monocytes play an important role in the development of
severe COVID-19 and gout (Amrute et al., 2022; Yu et al., 2023). For
instance, SARS-CoV-2 infects monocytes via ACE2-dependent and
ACE2-independent pathways, and triggers the release of large
amounts of chemokines and inflammatory mediators (Jafarzadeh
et al., 2020; Selva and Chung, 2022). In addition, gout flares are
accompanied by the massive recruitment of circulating monocytes
to the inflamed region, wherein they differentiate into pro-
inflammatory macrophages and exacerbate tissue inflammation
(Qadri et al., 2024). Monocytes are classified into three distinct
subgroups: classical, intermediate, and nonclassical. Classical
monocytes contribute to the pro-inflammatory defense
mechanisms, intermediate monocytes are associated with antigen
presentation, and non-classical monocytes mediate vascular
patrolling and surveillance (Hally et al., 2022). Since pro-
inflammatory cytokines like TNF and IL-1β are upregulated in
the CMs of severe COVID-19 and gout patients, these cells likely
contribute to the inflammatory response during gout flares and
severe COVID-19. In the present study, we observed a significant
increase in the proportion of CM subsets in severe COVID-19 and
gout samples, which is consistent with previous findings. This
suggests that an aberrant increase in the proportion of CMs is
associated with the development of severe COVID-19 and gout.

There are many intersections between COVID-19 and gout
flares. This study reveals the upregulated cell subsets in both
diseases and further explores the characteristic pathways of each
cell subset. Intercellular communication analysis showed that
LGALS9 and CD45 were the predominant interacting pair in
both diseases. LGALS9 is expressed in various cell types and
mediates proliferation, differentiation, inflammation and
formation of immune cells. LGALS9 and CD45 are significantly
upregulated in rheumatoid arthritis patients (Zhang and Lee, 2022).
Furthermore, RETN and CAP1 mediated the interactions between
CM and the other cell subsets. CAP1 is a functional receptor of
human resistin that can regulate the inflammatory response. Sun
et al. (2023) showed that the RETN-CAP1 signaling pathway was
activated in the C10_ULK1 cell cluster identified in patients with
Escherichia coli sepsis, and these cells promoted systemic
inflammation by secreting RETN.

To further investigate the role of core subsets, we identified the
DEGs of CMs. DEGs were used for MR analysis and key genes
causally associated with disease were identified. NLRP3 and IER3
have the highest ORs in key genes associated with COVID-19 and
gouty flares, respectively. To ensure the reliability of the results, we
performed co-localization and SMR analyses. The results of MR,
SMR and Colocalization analysis showed thatNLRP3 and IER3 were
causally associated with the risks of COVID-19 and gout flare.

NLRP3 was positively correlated with the risk of severe COVID-19,
and IER3 was positively correlated with gout, although the analysis
results were not significant after correction by Bonferroni method.
Given this paper is an exploratory study, the potential association
evidence is also valuable for further exploration of the disease. On
the other hand, since the effect of genotype on phenotype is usually
small, Mendelian randomization analysis may require a very large
sample size to achieve sufficient effects. The calculated minimum
sample size was 2,387,400, while the actual sample size collected was
1,388,342 in the study of COVID-19. Therefore, it may lead to a lack
of significance in the results. Large-scale studies are still needed for
further verification. The bulk RNA-seq data of severe COVID-19
patients also indicated significant NLRP3 upregulation. This further
validates the results of our analysis.

The NLRP3 inflammasome is mainly expressed in peripheral
macrophages, monocytes and dendritic cells. Excessive
inflammasome activation may be involved in the development of
gout, sepsis, type 2 diabetes, atherosclerosis, neurological disorders,
and other inflammation-related diseases (Sharma and Kanneganti,
2021). NLRP3 inflammasome consists of a sensor protein (NLR
family PYRIN structural domain containing-3, NLRP3), a junction
protein (apoptosis-associated speck-like protein, ASC), and effector
proteins (caspase-1) (Kelley et al., 2019). Upon receiving danger
signals such as infection, NLRP3 recruits and activates pro-caspase-
1 via ASC, and the activated caspase-1 cleaves IL-1β and IL-18
precursors into the active pro-inflammatory forms (Fu and Wu,
2023). IL-1β then stimulates the release of inflammatory factors such
as TNFα, IL-6, and IL-8, which can lead to a “cytokine storm” in
acute inflammatory diseases (Pan et al., 2021). The NLRP3
inflammasome is activated in mononuclear phagocytes by
exogenous stimuli ranging from crystalline microparticles to viral
proteins, including SARS-CoV virus channel protein, hepatitis C
virus core protein, and influenza virus M2 protein (Honda et al.,
2023). Gout is also an NLRP3 inflammasome-associated disease and
involves multiple inflammatory cytokines (Wu et al., 2020). Overall,
NLRP3-induced inflammation is a key driver of the development of
COVID-19 and gout, and may play an important role in the mutual
promotion of both diseases. Therefore, inflammasome inhibitors
can potentially prevent or slow down disease progression.

IER3 (immediate early response 3) is a stress-inducible gene
involved in the pathogenesis of multiple diseases, and can be rapidly
induced in response to viral infections, inflammatory cytokines,
chemical carcinogens, and other types of stimuli (Wu et al., 2013).
The IER3-knockout mice develop persistent hypertension with little
signs of vascular or renal inflammation, indicating that IER3may be
involved in inflammation (Shahid et al., 2010). Moreover, IER3
deficiency impairs the ability of macrophages and T cells to respond
to stimuli (Shahid et al., 2018). IER3 excerts effects in regulating
cellular proliferation and apoptosis, for instance, overexpression of
IER3 in T cells inhibited apoptosis and increased susceptibility to
lupus-like autoimmune diseases (Arlt and Schafer, 2011).
Furthermore, the absence of IER3 gene can reduce inflammatory
responses and induce an increased cell apoptosis mediated through a
reduction in VEGF-A/MCP-1 axis and MMP-9 (Brahmbhatt et al.,
2014). On the other hand, IER3 plays a pro-apoptotic role in various
tumors, ischemic acute kidney injury, and other diseases (Morinobu
et al., 2016; Tang et al., 2023). Apoptosis is involved in the
pathogenesis of gouty arthritis, and has been observed in
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macrophages of gouty stones from GA patients (Chen et al., 2023).
Furthermore, MSU crystal-induced removal of downstream
apoptotic inflammatory cells can indirectly abort acute gout
attacks (Steiger and Harper, 2014). Inhibition of monocyte
apoptosis by IER3 prolonged the response to MSU
crystallization-induced inflammation, which in turn promoted
their differentiation into macrophages, resulting in greater
monocyte recruitment and tissue damage. COVID-19
development has also been linked to apoptotic mechanisms (Chu
et al., 2021; Pan et al., 2023). Nevertheless, the exact role of IER3 in
gout and severe COVID-19 remains to be elucidated further.

Finally, according to the expression of NLRP3 and IER3, CMs
was divided into two subgroups: NLRP3/IER3-positive CMs and
NLRP3/IER3-negative CMs. We identified cellular communication
and assessed metabolic activities between NLRP3/IER3-positve CMs
and other monocyte subsets. Differences in cellular communication
between the NLRP3/IER3-positve and NLRP3/IER3-negative CMs
were observed and involved the MIF signaling pathway. MIF usually
bind to membrane receptors in the form of complexes (CXCR4/
CD74, CXCR2/CD74, CD74/CD44) and regulate cellular functions.
For example, the binding of MIF to CD74/CD44 complexes can
regulate immune responses and trigger inflammation, tumors, and
autoimmune diseases (Christopoulou et al., 2024; Ma et al., 2024;
Zhao et al., 2023). Given that the pathogenesis of gout flare and
severe COVID-19 involves inflammation and immune responses,
we surmise that the MIF-related pathways play key roles in their
occurrence and development. Meanwhile, the glycosphingolipid
biosynthesis pathway, riboflavin metabolism and cytochrome
P450-related metabolic pathways were enriched in CMs. These
pathways could be related to the role of classical monocytes in
inflammation regulation, infection control and tissue repair.
Additionally, increased biosynthesis of
glycosylphosphatidylinositol anchor-protein was observed in the
NLRP3/IER3-negative CMs. The GPI-Aps are ubiquitous in
eukaryote cells and mediate ligand recognition, enzyme activity,
cell-to-cell interactions, host infection, and defense responses (Chun
et al., 2022).

There are some limitations in this study that ought to be
recognized. First, the sample size was relatively small, and further
studies on larger cohorts are necessary. Second, we focused on
PBMCs, which may not fully represent the local inflammatory and
immune responses that occur during gout flares and remissions.
Third, the Mendelian analyses involved data from a European
population, which may limit the applicability of our findings to
other populations. In addition, mendelian randomization is an
emerging study strategy that reduces confounding and reverse
causality but relies heavily on gene-level analysis whose reliability
is still being tested.

5 Conclusion

In conclusion, our findings provide new insights into the
pathogenesis of COVID-19 and gout from genetic and
immunologic perspectives, along with potential biomarkers and
therapeutic targets. Subsequent studies should be validated using
multiple experimental methods, which may be helpful to guide the
diagnosis and treatment of patients with gout and COVID-19.
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SUPPLEMENTARY FIGURE S1
The expression profiles of characteristic genes in different cell clusters. (A)Dot plot
shows the proportion (point size) and average expression (color scale) of cell
clusters identified in PBMC which express marker genes from COVID-19, gout
flareandhealthysamples. (B)Dotplot shows theproportion (point size) andaverage
expression (color scale) of cell clusters identified in PBMC which express marker
genes from COVID-19, gout remission and healthy samples. (C) Dot plot shows
the proportion and average expression of cell clusters expressing the marker gene
inmonocytes fromCOVID-19, gout flare and healthy samples. (D)Dot plot shows
theproportionandaverageexpressionofcell clustersexpressing themarkergene
in monocytes from COVID-19, gout remission and healthy samples.

SUPPLEMENTARY FIGURE S2
Identification of cell subpopulations. (A) Total cell subclusters and monocyte
subclusters from severe COVID-19, gout flare, and healthy samples. (B)
Total cell subclusters and monocyte subclusters from severe COVID-19,
gout remission, and healthy samples.

SUPPLEMENTARY FIGURE S3
Single-cell analysis of severe COVID-19, gout remission and healthy samples.
(A) UMAP plot displays the results after clustering. NK cells, T cells, B cells,
pDCs, cDCs, monocytes, neutrophils, and platelets were identified. (B)
Depicts the proportion of each monocyte subgroup in different samples.

SUPPLEMENTARY TABLE S1
List of DEGs betweenmonocytes and other cell types from samples of severe
COVID-19, gout flare and healthy controls.

SUPPLEMENTARY TABLE S2
List of DEGs betweenmonocytes and other cell types from samples of severe
COVID-19, gout remission and healthy controls.

SUPPLEMENTARY TABLE S3
The table shows the results of pleiotropy tests performed for key genes and
severe COVID-19.

SUPPLEMENTARY TABLE S4
The table shows the results of pleiotropy tests performed for key genes and
severe gout.

SUPPLEMENTARY TABLE S5
The table shows the results of heterogeneity tests performed for key genes
and severe COVID-19.

SUPPLEMENTARY TABLE S6
The table shows the results of heterogeneity tests performed for key
genes and gout.
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