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Introduction: ALS is a fatal neurodegenerative disease for which underlying
mechanisms are incompletely understood. The motor neuron is a central
player in ALS pathogenesis but different transcriptome signatures have been
derived from bulk analysis of post-mortem tissue and iPSC-derived motor
neurons (iPSC-MNs).

Methods: This study performed a meta-analysis of six gene expression studies
(microarray and RNA-seq) in which laser capturemicrodissection (LCM) was used
to isolate lower motor neurons from post-mortem spinal cords of ALS and
control (CTL) subjects. Differentially expressed genes (DEGs) with consistent
ALS versus CTL expression differences across studies were identified.

Results: The analysis identified 222 ALS-increased DEGs (FDR <0.10, SMD >0.80)
and 278 ALS-decreased DEGs (FDR <0.10, SMD < −0.80). ALS-increased DEGs
were linked to PI3K-AKT signaling, innate immunity, inflammation, motor neuron
differentiation and extracellular matrix. ALS-decreased DEGs were associated
with the ubiquitin-proteosome system, microtubules, axon growth, RNA-binding
proteins and synaptic membrane. ALS-decreased DEG mRNAs frequently
interacted with RNA-binding proteins (e.g., FUS, HuR). The complete set of
DEGs (increased and decreased) overlapped significantly with genes near ALS-
associated SNP loci (p < 0.01). Transcription factor target motifs with increased
proximity to ALS-increased DEGs were identified, most notably DNA elements
predicted to interact with forkhead transcription factors (e.g., FOXP1) and motor
neuron and pancreas homeobox 1 (MNX1). Some of these DNA elements overlie
ALS-associated SNPs within known enhancers and are predicted to have
genotype-dependent MNX1 interactions. DEGs were compared to those
identified from SOD1-G93A mice and bulk spinal cord segments or iPSC-MNs
from ALS patients. There was good correspondence with transcriptome changes
from SOD1-G93A mice (r ≤ 0.408) but most DEGs were not differentially
expressed in bulk spinal cords or iPSC-MNs and transcriptome-wide effect
size correlations were weak (bulk tissue: r ≤ 0.207, iPSC-MN: r ≤ 0.037).

Conclusion: This study defines a robust transcriptome signature from LCM-
based motor neuron studies of post-mortem tissue from ALS and CTL subjects.
This signature differs from those obtained from analysis of bulk spinal cord
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segments and iPSC-MNs. Results provide insight into mechanisms underlying gene
dysregulation in ALS and highlight connections between these mechanisms, ALS
genetics, and motor neuron biology.
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1 Introduction

ALS is a fatal disease involving death of motor neurons leading
to progressive muscle weakness with eventual paralysis (Feldman
et al., 2022). After frustrating decades of limited progress,
tremendous steps have been made in recent years, yielding
multiple new drug approvals, which has finally given clinicians a
choice of medications to offer ALS patients (Mead et al., 2023).
Previously, the only approved disease-modifying ALS treatments
were riluzole (Bensimon et al., 1994) and non-invasive ventilation
(Bourke et al., 2006). More recently, however, newly approved
treatments have included edaravone (Edaravone MCI-186 ALS
19 Study Group, 2017), AMX0035 (sodium phenylbutyrate and
taurursodiol) (Paganoni et al., 2020) and tofersen (for patients
carrying SOD1 mutations) (Miller T. M. et al., 2022). Despite
these milestones, ALS remains an incurable disease with many
unanswered questions regarding upper and lower motor neuron
failure and its underlying pathophysiology. Existing data has
supported diverse pathomechanisms related to processes shared
by other neurodegenerative conditions, which include defects in
DNA/RNA, protein aggregation, proteostasis, neuronal networks,
cytoskeleton structure, energy metabolism, inflammation and cell
death pathways (Wilson et al., 2023). For all these processes,
moreover, disease mechanisms are multilayered and influenced
by specific genetic mutations, background disease-modifying
genetic variants, environmental factors, and finally, by the ageing
process itself (Akçimen et al., 2023). Increasingly, it has been
appreciated that unraveling this complexity will require guidance
from large-scale hypothesis-generating investigations that fully
leverage multi-omics technologies (Morello et al., 2020). For this
work, motor neurons, although a difficult cell type to isolate and
study in humans, represent an epicenter of the ALS disease cascade
and thus warrant special focus in efforts to understand disease
mechanisms.

The evaluation of ALS motor neuron pathology has included
studies of post-mortem CNS tissues as well as motor neurons
differentiated from induced pluripotent stem cells (iPSCs)
(Dimos et al., 2008). This latter approach has been implemented
on a large scale as part of the Answer ALS project, which has now
generated >1000 iPSC lines from ALS patients and controls along
with transcriptome data from hundreds of these lineages (Workman
et al., 2023). This approach offers the potential to obtain a functional
genomic signature for ALS, based on motor neurons, using a much
larger sample size than has been practical in post-mortem tissue
studies. Results from this strategy, however, have been puzzling. An
initial transcriptome comparison of 341 ALS and 92 control (CTL)
iPSC lines from the Answer ALS project identified only
13 differentially expressed genes (DEGs) (Workman et al., 2023).
Similarly, meta-analysis of 15 transcriptome datasets generated from

iPSC-derived motor neurons identified only 43 genes differentially
expressed between ALS (n = 323) and CTL (n = 106) samples (Ziff
et al., 2023). Much larger numbers of differentially expressed genes,
however, have been obtained from post-mortem tissue studies. A
recent analysis, for example, used bulk tissue RNA-seq to compare
post-mortem spinal cord segments between ALS (n = 154) and CTL
subjects (n = 49), and identified 7349 and 4694 DEGs in the cervical
and lumbar cord regions, respectively (FDR <0.05) (Humphrey
et al., 2023). It is unclear why this degree of differential
expression has not been replicated by iPSC transcriptome studies.
On the one hand, bulk tissue RNA-seq may capture transcriptome
changes stemming from multiple cell types, including microglia and
astrocytes, leading to more profound differential expression (Yadav
et al., 2023). Alternatively, iPSC-MNs may not be sufficiently
differentiated to model the disease state of postmitotic motor
neurons in ALS (Ho et al., 2016), leading to loss or diminution
of in situ transcriptome differences that separate ALS from CTL
motor neurons.

The application of laser capture microdissection (LCM) to post-
mortem CNS tissue offers an approach for evaluating in situ motor
neurons and their distinctive transcriptome signature in ALS
patients (Jiang et al., 2005; Cox et al., 2010; Rabin et al., 2010;
Kirby et al., 2011; Highley et al., 2014; Cooper-Knock et al., 2015;
Ladd et al., 2017; Krach et al., 2018; Nizzardo et al., 2020). LCM
allows RNA to be isolated from a motor neuron-enriched cellular
pool, with less contribution from surrounding cell types as would
occur with bulk tissue analysis (EmmertBuck et al., 1996). These
studies have been informative but sample sizes have been limited
and studies have varied with respect to laboratory methods,
expression profiling platforms and statistical methods.
Additionally, most analyses have focused on newly generated
data only, without comparisons to previously published data.
Conclusions have thus varied, although functional annotations of
ALS dysregulated genes in LCM studies have related to cytoskeleton
structure, RNA metabolism, RNA splicing and
phosphatidylinositol-3 kinase signaling (Jiang et al., 2005; Cox
et al., 2010; Rabin et al., 2010; Kirby et al., 2011; Highley et al.,
2014; Cooper-Knock et al., 2015; Ladd et al., 2017; Krach et al., 2018;
Nizzardo et al., 2020). There has been one meta-analysis study of
three LCM-generated datasets comparing motor neuron expression
between ALS and CTL samples, which identified 206 DEGs in
common among datasets (p < 0.05, FC ≥ 2 or FC ≤ 0.50) (Lin
et al., 2020). This study, however, did not include RNA-seq datasets,
did not utilize a formal meta-analysis model, and only included
studies of sporadic but not familial ALS patients.

This study reports findings from meta-analysis of six datasets in
which LCM-dissected motor neurons were targeted for genome-
wide expression profiling (Cox et al., 2010; Rabin et al., 2010; Kirby
et al., 2011; Highley et al., 2014; Cooper-Knock et al., 2015; Krach
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et al., 2018; Nizzardo et al., 2020). The study incorporates both
microarray and RNA-seq data and applies a random effects meta-
analysis model to define differentially expressed genes (DEGs). The
identified DEGs are compared to those linked to ALS by genome-
wide association (GWA) studies as well as to genes altered in iPSC-
derived motor neurons (Workman et al., 2023; Ziff et al., 2023) and
bulk spinal cord segments (Humphrey et al., 2023). A novel
approach utilizing nearest neighbor statistics is applied to identify
putative transcription factor (TF) binding sites near DEGs and to
further identify ALS-associated SNPs that may disrupt such sites.
Results from this study define a high-confidence ALS transcriptome
signature that provides a window into the in situ properties of motor
neurons, cis regulatory mechanisms, and connections between ALS
genetics and motor neuron biology.

2 Materials and methods

Table 1 lists datasets incorporated into the meta-analysis.
Preprocessing, normalization and differential expression analysis
steps for each dataset are described below. All samples correspond to
RNA pools from LCM-dissected lower motor neurons from post-
mortem spinal cord segments. Prior to performing the meta-
analysis, DEGs were identified with respect to each dataset
individually using the same statistical thresholds
(i.e., FDR <0.10 with FC > 1.50 or FC < 0.67).

2.1 GSE18920

The dataset consisted of 22 samples from 12 sporadic ALS
subjects (6 males, 6 females) and 10 CTL subjects (8 males,
2 females) (Rabin et al., 2010). The average age of ALS and CTL
subjects was 66.4 (±3.2) and 72.8 (±3.3) years, respectively (Rabin
et al., 2010). The average post-mortem sample collection interval
was 4.4 (±0.33) and 5.1 (±1.05) hours for ALS and CTL subjects,
respectively (Supplementary Figure S1A) (Rabin et al., 2010). RNA
expression profiling was performed using the Affymetrix Human
Exon 1.0 ST array platform. No prominent spatial artifacts were

identified from microarray pseudo-images (Supplementary Figures
S1B–W). Raw signal intensities had a similar distribution for each
array, with the exception of CTL-1 (GSM468741), which
had an increased frequency of low-intensity probes
(Supplementary Figure S1X).

Quality control metrics were calculated using probe level models
(PLM) (R package: oligo, function: fitProbeLevelModel) (McCall
et al., 2011). PLM residuals were similar among arrays
(Supplementary Figure S1Y). One sample (CTL-1) had a
relatively increased normalized unscaled standard error (NUSE)
median and interquartile range (Supplementary Figures S1Z, S1AA)
(McCall et al., 2011). Likewise, CTL-1 had a relatively increased
relative log expression (RLE) median (Supplementary Figure S1BB)
although the RLE IQR was similar among arrays (Supplementary
Figure S1CC) (McCall et al., 2011). Microarray normalization was
performed using robust multichip average (RMA), including
background subtraction, quantile normalization and median-
polish summarization (R package oligo, function: rma) (Irizarry
et al., 2003). RMA generated normalized intensity estimates for
22011 meta-probesets (MPS), of which 14303 could be
unambiguously assigned to a single human gene symbol. In some
cases, a human gene was represented by more than one MPS. The
14303 MPS were therefore filtered to include only one MPS per
human gene, preferentially retaining the MPS for which mean
RMA-normalized expression was highest across samples. This
yielded 14141 MPS uniquely representing the same number of
human genes, which were further filtered to include only
13611 MPS assigned to a protein-coding gene.

Since quality concerns were noted for CTL-1, MPS were
excluded if expression of the CTL-1 sample was the highest or
lowest among all samples, with a z-score-normalized expression
estimate greater than 3 or less than −3. This yielded 13501 MPS. Of
these, those with detectable expression in at least 15% of samples
were retained (i.e., ≥4 of 22 samples), with detectable expression
defined as an RMA-normalized expression value above the 15th
percentile. This yielded 12064 MPS upon which differential
expression analyses were based.

Linear models for differential expression analyses were
estimated by generalized least squares using both sex and

TABLE 1 Meta-analysis datasets. The table lists the 6 expression datasets incorporated into themeta-analysis. Sample sizes are listed for each dataset along
with the number of genes included in each differential expression analysis. The final two columns list the number of differentially expressed genes identified
with respect to each dataset individually. See footnotes for further details.

GEO series n (ALS) n (CTL) Gene counta ALS-increasedb ALS-decreasedc

GSE18920d 12 10 12064 3 0

GSE19332e 6 7 9629 0 0

GSE56500d 6 6 12112 98 411

GSE68605e 8 3 7687 17 12

GSE76220f 13 7 8759 0 0

GSE115130g 7 4 3293 93 82

aNumber of protein-coding genes included in differential expression analyses.
bNumber of ALS-increased genes identified (FDR <0.10, FC > 1.50).
cNumber of ALS-decreased genes identified (FDR <0.10, FC < 0.67).
dAffymetrix Human Exon 1.0 ST, array.
eAffymetrix Human Genome U133 Plus 2.0 array.
fIllumina Genome Analyzer II.
gIllumina HiSeq 2000.
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phenotype (ALS vs. CTL) as variables (R package: limma, function:
lmFit) (Smyth, 2004). Sex was included in models since, as noted
above, the proportion of males and females was dissimilar between
ALS and CTL subjects. Moderated t-statistics were calculated using
empirical Bayes shrinkage of the standard errors (R package: limma,
function: eBayes) (Smyth, 2004). To control for multiple hypothesis
testing among the 12064 MPS, raw p-values were FDR-corrected
using the Benjamini-Hochberg method (Benjamini and
Hochberg, 1995).

2.2 GSE19332

The dataset consisted of 13 samples from 6 ALS and 7 CTL
subjects (Table 1). Of the 6 ALS samples, 3 were from subjects
carrying CHMP2B mutations (Cox et al., 2010) while 3 were from
subjects carrying SOD1 mutations (Kirby et al., 2011). For brevity,
these data are referenced by the accession GSE19332 throughout this
manuscript. However, CTL samples were submitted under two GEO
accessions (GSE19332 and GSE20589), whereas samples for ALS
patients with CHMP2B or SOD1 mutations are available under
GSE19332 and GSE20589, respectively.

Gene expression was profiled using the Affymetrix Human
Genome U133 Plus 2.0 array. Inspection of microarray pseudo-
images did not reveal prominent spatial artifacts (Supplementary
Figures S2A–M). Raw signal intensities showed good
correspondence among samples (Supplementary Figure S2N).
Probe-level model residual distributions were consistent among
samples (Supplementary Figure S2O) (R package: oligo, function:
fitProbeLevelModel) (McCall et al., 2011). Sample CTL-7
(GSM480310) had relatively elevated NUSE median and IQR
values (Supplementary Figures S2O, P) but was otherwise
unremarkable with respect to RLE median and IQR
(Supplementary Figures S2R, S) (McCall et al., 2011). Expression
summary scores for 54675 probe sets (PS) were calculated using
RMA normalization (R package: affy, function: justRMA) (Irizarry
et al., 2003). To limit redundancy (Li et al., 2008), a single PS was
chosen to represent each human gene. To choose a representative
PS, those PS with less specific probe sequences that may cross-
hybridize with non-targeted transcripts (i.e., Affymetrix identifiers
with an _x_ or _s_ suffix) were preferentially excluded. If there
remained multiple PS after applying this criterion, the PS for which
mean RMA-normalized expression was highest among the
13 samples was chosen as the representative.

The above steps yielded 20824 PS uniquely assigned to the
same number of human genes, of which 17892 were assigned to a
protein-coding gene. The MAS 5.0 algorithm was applied to
determine which PS had detectable expression in each sample
(R package: affy, function: mas5calls) (Liu et al., 2002).
Differential expression testing was then performed using a
subset of 9629 PS with detectable expression in at least 15% of
samples (i.e., at least 2 of 13). Differential expression testing was
performed as described above using general linear models and
moderated t-statistics (R package: limma, functions: lmFit,
eBayes) (Smyth, 2004). To correct for multiple hypothesis
testing among the 9629 PS, raw p-values were FDR-corrected
using the Benamini-Hochberg method (Benjamini and
Hochberg, 1995).

2.3 GSE56500

The dataset consisted of 12 samples from 12 subjects,
including 6 ALS subjects (4 males, 2 females) and 6 CTL
subjects (5 males, 1 female) (Highley et al., 2014). The average
age of ALS and CTL subjects was 60.2 (±3.5) and 61.7 (±3.9)
years, respectively. Of the 6 ALS patients, 3 had sporadic disease
and 3 carried C9ORF72 mutations. Expression profiling was
performed using the Affymetrix Human Exon 1.0 ST array.
Inspection of microarray pseduo-images did not reveal
prominent spatial artifacts (Supplementary Figures S3A–L).
Raw signal intensities differed among samples although no
single sample emerged as an outlier (Supplementary Figure
S3M). Likewise, the distribution of PLM residuals, NUSE
median/IQR and RLE median/IQR did not identify any
problematic samples (Supplementary Figures S3N–R).

Data normalization and processing steps mirrored those
described above for GSE18920, which utilized the same
microarray platform. RMA normalization was performed (R
package oligo, function: rma) (Irizarry et al., 2003) and
subsequent filtering steps yielded 13617 MPS uniquely
corresponding to the same number of protein-coding human
genes. Of these, 12112 MPS had detectable expression in at least
15% of the 12 samples (i.e., at least 2 of the 12 samples). Differential
expression testing was performed on these 12112 MPS using
generalized linear models with moderated t-statistics (R package:
limma, functions: lmFit, eBayes). To correct for multiple hypothesis
testing among the 12112 MPS, raw p-values were FDR-corrected
using the Benjamini-Hochberg method (Benjamini and
Hochberg, 1995).

2.4 GSE68605

The dataset included 11 samples from 8 ALS (3males, 5 females)
and 3 CTL (1 male, 2 females) subjects (Cooper-Knock et al., 2015).
The average age of ALS and CTL samples was 62 (±1.5) and 60
(±4.0) years, respectively (Cooper-Knock et al., 2015). Expression
profiling was performed using the Affymetrix Human Genome
U133 Plus 2.0 array. Inspection of microarray pseudo-images
revealed minor spatial artifacts for some samples, including CTL-
1 (GSM1676861), CTL-2 (GSM1676862) and ALS-2 (GSM1676854)
(Supplementary Figures S4A–K). However, raw signal intensity
distributions were similar among samples (Supplementary Figure
S4L) and no consistent outlier pattern was evident with respect to
PLM residuals, NUSE median/IQR and RLE median/IQR
(Supplementary Figures S4M–Q). Preprocessing and
normalization steps were similar to those described above for
GSE19332, which utilized the same array platform. RMA
normalization generated signals for 17892 PS (R package: affy,
function: justRMA) (Irizarry et al., 2003), of which 7687 had
detectable expression in at least 15% of samples (i.e., at least 2 of
11 samples). Differential expression testing for these 7687 PS was
performed using generalized linear models with moderated
t-statistics (R package: limma, functions: lmFit, eBayes) (Smyth,
2004). To control for multiple hypothesis testing among the
7687 PS, raw p-values were FDR-adjusted using the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995).
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2.5 GSE76220

The initial dataset consisted of 21 samples (Krach et al., 2018).
However, fastq files downloaded for CTL-3 (GSM1977029) and
CTL-8 (GSM1977034) were identical. The latter sample CTL-8
(GSM1977034) was therefore dropped from the analysis, after
which there remained 20 samples from 13 ALS (9 males,
4 females) and 7 CTL (5 males, 2 females) subjects. The average
age of ALS and CTL subjects was 63.3 (3.8) and 74.8 (2.8) years,
respectively. The average post-mortem sample collection interval
was 4.2 h (Supplementary Figure S5A) and the average RNA
integrity number (RIN) was 5.7 (Supplementary Figure S5B).

Sequencing reads were generated using the Illumina Genome
Analyzer II. Fastq file statistics were calculated using the FastQC
software (Andrews, 2010). Prior to read filtering, there was an
average of 28.7 million reads per sample, with no less than
11.3 million reads in any one sample (Supplementary Figure
S5C). Read correction was performed using Rcorrector (Song and
Florea, 2015) and adaptor and quality trimming was carried out
using TrimGalore (Krueger, 2015). Sequences matching rRNA
sequences were filtered out using the bbduk.sh shellscript
contained within the BBTools software suite (Bushnell, 2018).
Following these filtering steps, there was an average of
26.5 million reads per sample, with all samples having at least
10.4 million reads (Supplementary Figure S5D). Quality-filtered
reads were mapped to the UCSC GRCh38/hg38 genome
sequence using the STAR aligner (Dobin et al., 2013).
Quantification of gene counts was performed with StringTie
(Pertea et al., 2015). This protocol mapped 94.4% of reads on
average (Supplementary Figure S5E), with 99.0% of reads on
average assigned to intragenic sequence (Supplementary Figure
S5F). An average of 87.1% of reads were assigned to exons
(Supplementary Figure S5G) and only 0.4% of reads on average
were assigned to ribosomal sequence (Supplementary Figure S5H).

Gene counts were generated for 18220 protein-coding genes. A
gene was considered to have detectable expression if there was at
least one mapped read and the Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) was greater than 0.3 (Ramsköld
et al., 2009; Hart et al., 2013). Initially, analyses were performed on
10921 genes meeting these criteria for expression in at least 15% of
samples (i.e., at least 3 of 20 samples; Supplementary Figure S6).
However, inspection ofMA plots revealed a relationship between FC
estimates and gene abundance (Supplementary Figure S6D). This
relationship was no longer apparent when the analysis was
performed using 8759 genes with detectable expression in at least
50% of samples (i.e., at least 10 of 20 samples). This more stringent
inclusion criteria was thus applied. For differential expression
testing, raw gene counts were normalized using Trimmed Mean
of M-values (TMM) (Robinson and Oshlack, 2010) and transformed
to log-counts per million using the voom algorithm (Law et al.,
2014) (R package: edgeR, functions: calcNormFactors, voom).
Differential expression testing was then performed using
precision weights estimated from the global mean-variance trend
(Law et al., 2014), followed by fitting of generalized linear models
and calculation of moderated t-statistics in a manner similar to that
described above for microarray datasets (Smyth, 2004). To control
for multiple hypothesis testing among the 8759 genes, raw p-values

were FDR-corrected using the Benjamini-Hochberg algorithm
(Benjamini and Hochberg, 1995).

2.6 GSE115130

The initial dataset consisted of 28 samples with sequencing reads
generated from the Illumina HiSeq 2000 platform, which had been
uploaded under three GEO series accessions (GSE115130,
GSE76514, GSE93939) (Nichterwitz et al., 2016; Nizzardo et al.,
2020). Throughout this manuscript, for brevity, only the GEO
accession linked to ALS samples (GSE115130) is mentioned
when referring to these data. The 28 samples included 10 from
7ALS subjects and 18 from 10 CTL subjects. Of the 18 CTL, samples,
there were six sample pairs for which fastq files were identical or
nearly identical (GSM2027414:GSM3615509, GSM2027415:
GSM3615511, GSM2027416:GSM3615501, GSM2027417:
GSM3615503, GSM2027418:GSM3615504, GSM2027419:
GSM3615505). Six of the duplicated samples were thus dropped
from further analysis (GSM3615509, GSM3615511, GSM3615501,
GSM3615503, GSM3615504, GSM3615505). This yielded a filtered
dataset with 22 samples overall, including 10 ALS samples from
7 subjects and 12 CTL samples from 9 subjects.

There was an average of 6.6 million reads per sample prior to
filtering (Supplementary Figure S7A). Read processing and
filtering steps described above were applied, yielding an
average of 4.8 million reads per sample (Supplementary Figure
S5B). Quality-filtered reads were then mapped to the UCSC
GRCh38/hg38 genome sequence using the STAR/StringTie
pipeline described above (Dobin et al., 2013; Pertea et al.,
2015). An average of 80.2% of reads were mapped
(Supplementary Figure S7C), with an average of 97.1% of
mapped reads assigned to intragenic sequence (Supplementary
Figure S7D) and an average of 77.6% of mapped reads assigned to
exonic sequence (Supplementary Figure S7E). Only 1.2% of reads
on average mapped to ribosomal sequences (Supplementary
Figure S7F). Nine samples were excluded from further analysis
because the post-filter read count was less than 4 million reads,
yielding 13 samples from 11 subjects. For cases in which more
than one sample was available from the same subject, the sample
with highest post-filter read count was retained. Following these
steps, the dataset contained 7 ALS samples from unique subjects
(GSM2465366, GSM2465372, GSM2465365, GSM2465370,
GSM2465364, GSM2465363, GSM2465369) and 4 CTL
samples from unique subjects (GSM3615508, GSM2027417,
GSM2027419, GSM3615507).

Gene counts were quantified for 18220 protein-coding genes.
Given that sequencing depth was limited, differential expression
testing was performed for only 3293 genes with detectable
expression in all 11 samples, where detectable expression was
defined as indicated above (i.e., at least one mapped read with
FPKM ≥0.30) (Ramsköld et al., 2009; Hart et al., 2013).
Differential expression analysis was performed using the
voom-limma approach described above (Law et al., 2014), and
the Benjamini-Hochberg method was used to correct for multiple
hypothesis testing among the 3293 genes (Benjamini and
Hochberg, 1995).
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2.7 Meta-analysis

Differential expression effect size was calculated based on the
standardized mean difference (SMD) using the Hedge’s g estimator
(R package: effsize, function: cohen.d) (Hedges, 1981; Hedges and
Olkin, 2014). For microarray datasets (GSE18920, GSE19332,
GSE56500, GSE68605), SMD was estimated using log2 scale
RMA-normalized expression values (Irizarry et al., 2003). For
RNA-seq datasets (GSE76220, GSE115130), SMD was estimated
using TMM-normalized gene counts transformed to log2-counts per
million (Robinson and Oshlack, 2010; Law et al., 2014), such that
SMD estimates from both the array and RNA-seq datasets were
calculated using a log2-based expression scale. SMD was only
calculated for genes meeting the above-stated criteria for having
detectable expression in a sufficient number of samples. If these
criteria were not met for a given study, the overall SMD meta-
estimate was based on fewer than 6 individual study estimates. Given
this approach, an SMD meta-estimate was calculated for
9882 protein-coding genes for which at least 3 study-specific
estimates were available (3 estimates for 2680 genes, 4 for
2776 genes, 5 for 2576 genes, and 6 for 1850 genes). Genes with
2 or fewer study-specific estimates were excluded from the meta-
analysis. The SMD meta-estimate was calculated using a random
effects meta-analysis model with inverse variance weighting (R
package: meta, function: metacont) (Schwarzer, 2007). DEGs
were identified based upon an FDR-adjusted p-value less than
0.10 with meta-SMD estimate greater than 0.80 or less
than −0.80. The FDR threshold of <0.10 is consistent with prior
transcriptome meta-analysis studies (Burguillo et al., 2010; Huan
et al., 2016; Vora et al., 2018; Medina et al., 2023). The meta-SMD
threshold of ±0.80 has been viewed as representing a “large”
treatment effect in meta-analysis studies (Cohen, 2013), with
SMD values exceeding 0.80 in absolute value corresponding to
53% or less overlap between two comparison groups
(Andrade, 2020).

2.8 Analysis of over-represented gene
annotations

ALS-increased and -decreased DEGs were evaluated to assess for
overrepresentation of annotations related to processes, functions,
cell components or pathways (Maleki et al., 2020). The “universe” of
background genes in all analyses was limited to the 9882 motor
neuron-expressed protein-coding genes included in the meta-
analysis. Enrichment of Gene Ontology (GO) biological process
(BP), molecular function (MF) and cell component (CC) terms was
assessed using a conditional hypergeometric test (R package:
Gestates; function: hyperGTest) (Falcon and Gentleman, 2007).
Fisher’s exact test was used to evaluate for enrichment with
respect to terms from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2016), WikiPathways
(Agrawal et al., 2024), Reactome (Fabregat et al., 2018), Disease
Ontology (DO) (Kibbe et al., 2015), Pathway Commons
(Rodchenkov et al., 2020), Medical Subject Headings (MeSH)
(Yu, 2018), Drug Signatures Database (DSigDB) (Yoo et al.,
2015), Molecular Signatures Database (MSigDB) (Liberzon et al.,
2015) databases (R packages clusterProfiler (Yu et al., 2012),

ReactomePA (Yu and He, 2016), DOSE (Yu et al., 2015),
paxtoolsr (Luna et al., 2016), meshes (Yu, 2018) and msigdbr
(Dolgalev, 2022)). Fisher’s exact test was also used to determine
if any non-coding RNA targets were enriched among DEGs, based
on ncRNA-target associations provided by the LncRNA2Target
(Cheng et al., 2019), miRTarBase (Chou et al., 2018), miRDB
(Chen and Wang, 2020) and TargetScan (Agarwal et al., 2015;
McGeary et al., 2019). Likewise, Fisher’s exact test was used to
identify protein interaction partners frequently interacting with
mRNAs linked to DEGs, based on RNAInter database
annotations (Kang et al., 2022).

Networks were generated to illustrate topological relationships
among GO BP terms enriched with respect to ALS-increased and
-decreased DEGs, respectively. In each case, the network was
generated by drawing connections between enriched GO BP
terms for which associated genes overlapped by at least 50% (R
package: igraph) (Csardi and Nepusz, 2006). Groups of similar
enriched GO BP terms were identified to color-code the network
based on broader GO categorizations, with GO BP term groups
identified using hierarchical cluster analysis with Euclidean distance
and average linkage. For this analysis, the distance between two GO
BP terms A and B was calculated using the distance metric 1—max
(pA, pB), where pA and pB represent the proportions of overlapping
genes associated with terms A and B, respectively. Groups of similar
GO BP terms associated with overlapping gene sets were then
defined based on the resulting dendrogram using variable height
branch pruning (R package: dynamicTreeCut; function:
cutreeDynamicTree) (Langfelder et al., 2008).

2.9 Protein-protein interaction network

Protein-protein interactions were obtained from the STRING
database (version 12.0) (Szklarczyk et al., 2023). Only high-
confidence protein interactions were considered (confidence
score ≥0.700). Of the 1850 genes having detectable expression in
each of the 6 meta-analysis datasets, 1343 were linked to a protein
having at least one high-confidence STRING database interaction,
with an overall total of 4449 interactions among the 1343 proteins.
The 1343 proteins were assigned to 12 subgroups based on average
linkage hierarchical clustering (Euclidean distance), using a distance
matrix with entries calculated from the confidence score between
protein pairs (i.e., 1—confidence score) (R package:
dynamicTreeCut, function: cutreeDynamicTree) (Langfelder
et al., 2008). The dominant functional theme for each protein
group was determined based upon the most significant GO BP
term overrepresented in each group (R package: GOstats) (Falcon
and Gentleman, 2007). The Kamada-Kawai algorithm was used to
generate the protein-protein interaction network layout (R package:
igraph, function: layout_with_kk) (Kamada and Kawai, 1989; Csardi
and Nepusz, 2006). Network vertices and edges were color-coded
based upon protein subgroup or SMD estimate.

2.10 Motif analyses

Motif analyses were performed using the Jaspar Core
vertebrate collection, consisting of 841 non-redundant
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experimentally-determined TF binding sites (Rauluseviciute et al.,
2023). The 841 position frequencymatrices (PFMs) were converted to
position probability matrices (PPMs) using a pseudocount of 0.8
(Nishida et al., 2009). Genome analyses were performed using the
telomere-to-telomere (T2T-CHM13) human genome sequence with
annotated sequence coordinates for 19969 protein-coding genes
(Nurk et al., 2022). The T2T genome sequence was used for motif
analysis because it corrects assembly gaps from the GRCh38 genome,
providing an additional 200 million base pairs with improved
accuracy and coverage of complex repetitive genomic regions
(Nurk et al., 2022). For each T2T-CHM13 chromosome, PPMs
were converted to position weight matrices (PWMs) based on
background nucleotide frequencies calculated for that chromosome
(Wasserman and Sandelin, 2004). The chromosome sequence was
scanned for PWMmatches using a multinomial model with Dirichlet
conjugate prior (R package: Biostrings, function: matchPWM)
(Wasserman and Sandelin, 2004). Background nucleotide
frequencies were calculated for each chromosome separately. A
PWM model was considered to match a given locus if the
correspondence score exceeded 80% of the theoretical PWM
maximum score (Wasserman and Sandelin, 2004). Further
analyses were performed on 798 motifs having at least one PWM
match to each chromosome.

Transcription factors can regulate gene expression through
binding at enhancer sites located far from target genes, with
regulatory interactions spanning distances extending far beyond
the upstream windows of 1 kb, 2 kb or 5 kb often recognized as gene
promoter regions (Shlyueva et al., 2014; Chen et al., 2020). The
current study therefore used a threshold-free nearest neighbor
statistic to test for associations between PWM match locations
and DEG transcription start sites (TSSs). For each PWM model
and each protein-coding gene, the nearest neighbor (NN) distance
was calculated, defined as the distance between the gene’s TSS and
the closest PWMmatch on the chromosome. For these calculations,
the most downstream TSS was used for genes associated with
multiple isoforms with alternative TSS locations. NN distances
among genes approximated a Poisson distribution for each PWM
model. The distance ratio was defined as NNFG/NNBG, where NNFG

represents the average NN distance among foreground genes
(i.e., DEGs), and NNBG represents the average NN distance
among background genes (i.e., all other genes included in the
meta-analysis). A ratio less than one indicates that a PWM
model has genome matches closer on average to the TSS of
foreground genes. To evaluate the significance of this ratio, log10-
transformed NN distances were compared between foreground and
background genes using Welch’s two-sample two-tailed t-test (R
function: t.test). To correct for multiple hypothesis testing among
the 798 motifs, raw p-values were FDR-corrected using the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995).
ALS-associated PWMs (AAPs) were defined as PWM models for
which the average NN distance between genomic match locations
and FG gene TSSs is lower (FDR <0.10) than that of BG gene TSSs.

2.11 ALS-associated genes and SNP loci

SNP loci previously associated with ALS by genome-wide
association (GWA) studies were identified from the NHGRI-EBI

GWAS catalog (file: All associations v1.0) (Sollis et al., 2023). SNP
loci were identified based on 7 catalog traits, including “ALS,” “ALS
(age of onset),” “ALS (C9orf72 mutation interaction),” “ALS
(sporadic),” “ALS in C9orf72 mutation negative individuals,”
“ALS in C9orf72 mutation positive individuals” and “Rapid
functional decline in sporadic ALS.” There were 175 unique
SNPs associated with these traits, which were together associated
with 323 genes based on reported, mapped, upstream and
downstream catalog genes. Based on the 175 SNPs, a broader set
of 2639 SNPs was identified by including those in linkage
disequilibrium with the initial set of 175 (R2 ≥ 0.90) (R package:
LDlinkR, function: LDproxy) (Myers et al., 2020). For each SNP, the
nearest human gene was identified, leading to an additional 60 ALS-
associated genes for an overall total of 383. Of these 383 genes,
204 were protein-coding motor neuron-expressed genes included in
the meta-analysis. The location of each SNP was evaluated to
determine if it was within an enhancer region, based on
annotations available from GeneHancer (Fishilevich et al., 2017),
the ENCODE Project (Consortium, 2012) and ORegAnno (Lesurf
et al., 2016). Both alleles of each SNP were evaluated to determine if
there was differential correspondence to any of the PWM models
described above. A genotype-dependent PWMmatch was defined as
one for which the correspondence score at a SNP-overlying locus
exceeded 80% of the theoretical maximum score of that PWM for
one allele but not the other (R package: Biostrings, function:
matchPWM) (Swindell et al., 2015).

2.12 Comparison to SOD1-G93A mouse
model of ALS

Expression changes seen in ALS patient motor neurons were
compared to those in LCM-dissected motor neurons from SOD1-
G93A mice (Gurney et al., 1994). Two datasets were evaluated
(GSE10953 and GSE46298). The first (GSE10953) compared
G93A to CTL mice on the C57BL6/J background at three time
points, corresponding to presymptomatic (day 60), symptomatic
(day 90) and late (day 120) stages of disease progression (n = 3 for
each treatment/time combination) (Ferraiuolo et al., 2007). The
second (GSE46298) evaluated mice from two strains (C57BL6/J and
129Sv), with comparisons between G93A and CTL mice at 4 time
points corresponding to presymptomatic (day 56), onset (C57: day
133, 129Sv: day 101), symptomatic (C57: day 152, 129Sv: day 111)
and endstage disease (C57: day 160, 129Sv: day 121) (n = 4 for each
treatment/time/strain combination) (Nardo et al., 2013).

The GSE10953 dataset was generated using the Affymetrix
Mouse Expression 430A array platform. Raw CEL files were
normalized using the RMA algorithm (R library: affy, function:
justRMA) (Irizarry et al., 2003) yielding signals for 22690 PS
representing 13091 unique genes, of which 12765 were protein-
coding. Of these, a subset of 11223 genes could be uniquely matched
to a human orthologue based upon homology information from the
Mouse Genome Database (Blake et al., 2021). Inspection of
microarray pseudoimages revealed minor spatial artifacts on two
arrays (Supplementary Figures S8Q, R) and these same arrays
differed with respect to their raw intensity distributions and
some quality-control metrics (Supplementary Figures S8S–X).
However, none of the 11223 genes with human orthologues had
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outlying expression values for these two array samples (i.e.,
|z-score| < 3 for all genes). Additionally, no single array emerged
as an outlier on cluster and PC analyses (Supplementary Figures
S9A, D). There was minimal separation between G93A and CTL
samples on cluster and PC analyses (Supplementary Figures S9A,
D), although G93A and CTL samples did differ significantly with
respect to the third PC axis (p < 0.05, two-sample two-tailed t-test;
Supplementary Figure S9G).

The GSE46298 dataset was generated using the Affymetrix
Mouse Genome 430 2.0 array platform. RMA normalization as
above yielded signals for 45101 PS corresponding to 20493 unique
mouse genes of which 17292 were protein-coding. Of the
17292 protein-coding genes, 14741 were uniquely matched to a
human orthologue (Mouse Genome Database) and thus included in
further analyses. No prominent spatial artifacts were detected on
microarray pseudoimages and quality-control metrics were within
an acceptable range for all microarray samples (Supplementary
Figures S10, 11). For both strains, there was good separation
between G93A and CTL samples in cluster and PC analyses
(Supplementary Figures S9B, C, E, F) and there was a significant
difference between G93A and CTL samples with respect to the first
and/or second PC axis (p < 0.05, two-sample two-tailed t-test;
Supplementary Figures S9H, I).

Differential expression testing (G93A vs. CTL) was
performed as described above using general linear models and
moderated t-statistics (R package: limma, functions: lmFit,
eBayes) (Smyth, 2004). Testing was performed only for those
protein-coding genes having human orthologues and detectable
expression in at least one of the 6–8 samples involved in each
comparison. Genes with detectable expression were defined as
above based upon the Mas 5.0 algorithm (Liu et al., 2002) (R
library: affy, function: mas5calls). Raw p-values were adjusted for
multiple hypothesis testing using the Benjamini-Hochberg
method (Benjamini and Hochberg, 1995).

2.13 Additional datasets

Cell type-specific expression of genes was evaluated using single-
nucleus RNA-sequencing data from post-mortem human lumbar
spinal cord sections (GSE190442; n = 7 donors) (Yadav et al., 2023).
Analyses were performed using QC-processed counts provided by
Gene Expression Omnibus (file: GSE190442_aggregated_counts_
postqc.csv.gz). Counts were obtained for 55289 cells from 64 cellular
subtypes broadly classified into 11 categories (neurons, astrocytes,
microglia, oligodendrocytes (OD), oligodendrocyte precursor cells
(OPCs), Schwann cells, pericytes, endothelial cells, meninges,
lymphocytes and ependymal cells). Raw counts were normalized
to count per million mapped reads (CPM) and further analyses were
performed using Log10(CPM +1) as an expression metric (Yadav
et al., 2023).

Gene expression changes during motor neuron
differentiation were evaluated using RNA-seq data from a
time series in which in vitro monolayer human embryonic
stem cells were differentiated to motor neurons (GSE140747;
n = 45 samples) (Rayon et al., 2020). Retinoic acid and a
smoothened (SMO) protein (hedgehog pathway component)
agonist were used as differentiation-promoting agents. Raw

sequencing reads were mapped to the UCSC GRCh38/
hg38 genome using the STAR/StringTie pipeline described
above (Dobin et al., 2013; Pertea et al., 2015). There was an
average of 36.3 million quality-filtered reads among the
45 samples and the percentage of mapped reads, intragenic
reads and exonic reads was greater than 90% for all samples
(Supplementary Figures S12A–E). Cluster and principal
component analyses demonstrated a strong time series effect
without outliers (Supplementary Figures S12F, G). Changes in
gene expression over time were evaluated using least-squares
regression using voom-normalized expression data (Law et al.,
2014), with FDR correction of raw p-values performed using the
Benjamini-Hochberg approach (Benjamini and Hochberg, 1995).

3 Results

3.1 Identification of DEGs from each study
separately

The analysis incorporated samples from six datasets (Table 1).
Cluster analysis showed better separation of ALS and CTL samples
for two datasets (GSE68605 and GSE115130) compared to the other
four (Supplementary Figures S13A–F). When samples were plotted
in two-dimensional principal component (PC) space, however, there
was stronger separation between ALS and CTL samples, such that
linear discriminant functions classified disease status with accuracy
ranging from 70% (GSE76220) to 100% (GSE68605)
(Supplementary Figures S13G–L). For all datasets except
GSE115130, ALS and CTL samples differed significantly with
respect to at least one of the top 10 PC axes (p < 0.05, two-
sample two-tailed t-test; Supplementary Figures S13M–R).

Goodness-of-fit testing based on model deviance was used to
evaluate the contribution of other factors to gene expression
variation (e.g., age and sex). This analysis was not performed for
two datasets (GSE19332 and GSE115130) since disease status was
the only annotation available. For GSE56500 and GSE68605, most
gene expression variation was explained by disease status, which
represented the dominant factor for 49%–56% of protein-coding
genes (Supplementary Figures S14C–F). For GSE18920 and
GSE76220, goodness-of-fit was similarly improved by disease
status, sex, age and RNA integrity number (RIN), although
disease status remained the dominant factor for 28%–30% of
protein-coding genes (Supplementary Figures S14A,B, G–H).

Differential expression testing generated L-shaped raw p-value
distributions reflecting an overabundance of low p-values
(Supplementary Figures S15A–F). Consistent with this, t-statistic
Q-Q plots were non-linear to support significant expression
differences between ALS and CTL samples (Supplementary
Figures S15G–L). Volcano plots demonstrated balanced FC
estimates between ALS-increased and -decreased genes
(Supplementary Figures S15M–R) and MA plots did not show
FC differences between low- and high-expressed genes
(Supplementary Figures S15S–X). There were 175 and 509 DEGs
identified with respect to GSE115130 and GSE56500, respectively,
although fewer DEGs (≤29) were identified in other datasets at the
same significance thresholds (i.e., FDR <0.10, FC > 1.50 or FC <
0.67; see Table 1).
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FIGURE 1
Genome-wide SMD comparison. (A) Cluster analysis. The heatmap shows SMD estimates for 1850 protein-coding genes (those included in all
6 differential expression analyses). Heatmap rows are clustered hierarchically using average linkage (Pearson correlation) and columns are similarly
clustered (Euclidean distance). (B) Scatterplot comparisons. Below-diagonal boxes show scatterplots showing SMD estimates for all genes included in
both differential expression analyses (red line: least squares regression estimate). Diagonal boxes show the SMD distribution for each dataset.
Above-diagonal boxes show Spearman correlation estimates for each comparison (yellow ellipse: middle 90% of genes based on Mahalanobis distance).
(C) Self-organizing maps (SOMs). An SOM map was generated based upon pooled normalized data from all 6 datasets. Genes assigned to each SOM
region were color-coded based on the average SMD estimate for each SOM region. (D) SOM loess surface plots. Plots show the loess surface based on

(Continued )
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3.2 Effect size comparison among studies

The number of protein-coding genes with detectable expression
varied from 3293 to 12112 among datasets (Table 1). Among
1850 protein-coding genes with detectable expression in all six
datasets, SMD estimates were positively correlated among four
datasets (GSE68605, GSE56500, GSE76220, GSE189200), with
estimates from these four datasets weakly correlated with those
from the other two (GSE19332, GSE115130) (Figures 1A,B). SMD
correlations ranged from −0.22 to 0.54 among 15 possible dataset
comparisons (Figure 1B). Consistent with this, self-organizing maps
color-coded by SMD estimates revealed regions with shared as well
as dataset-specific patterns (Figures 1C,D). The 1850 protein-coding
genes were associated with 1343 proteins having at least one high-
confidence protein-protein interaction (PPI), with a total of
4449 interactions among the 1343 proteins (Figure 1E). The
pattern of up- and downregulation varied across the PPI network
with uniquely downregulated (GSE56500) and upregulated
(GSE115130) components (Figure 1F).

3.3 Meta-analysis identifies DEGs with a
consistent pattern across studies

DEGs with consistent SMD estimates across studies were
identified using a meta-analysis model. The analysis included
9882 protein-coding genes with detectable expression in at least
three of six studies. This identified 500 DEGs meeting criteria for
differential expression, including 222 ALS-increased genes
(FDR <0.10, SMD >0.80; Supplementary Excel file S1) and
278 ALS-decreased genes (FDR <0.10, SMD < −0.80;
Supplementary Excel file S2). A subset and analysis of 342 DEGs
identified at a more stringent FDR threshold (FDR <0.05) is
provided as Supplementary Data (147 ALS-increased DEGs,
Supplementary Excel file S3; 195 ALS-decreased DEGs,
Supplementary Excel file S4).

Genes most strongly increased in ALS included coagulation
factor III tissue factor (F3) and serpin family A member 3
(SERPINA3) (Figures 2A–G). Both genes were ALS-increased in
all five datasets for which expression was detectably measured
(Figures 2A–G) without significant effect size heterogeneity
(Figures 2C,D). The SMD for F3 varied from 0.97 (GSE19332) to
1.61 (GSE76220) with an overall meta-estimate of 1.34 (p = 4 × 10−7;
Figures 2A,C). Likewise, the SMD for SERPINA3 varied from 0.69
(GSE19332) to 2.83 (GSE68605) with an overall meta-estimate of
1.33 (p = 6.9 × 10−7; Figures 2A,F).

Genes most strongly decreased in ALS included MAP kinase
activating death domain (MADD) and ubiquitin specific peptidase
13 (USP13) (Figures 2H–N). Both genes were ALS-decreased in the
five datasets for which expression was detectably measured, with no

significant effect size heterogeneity (Figures 2I–N). SMD forMADD
ranged from −1.07 (GSE19332) to −2.13 (GSE76220) with an overall
meta-estimate of −1.54 (p = 2 × 10−8; Figures 2H,J). Likewise, SMD
for USP13 varied from −1.15 (GSE76220) to −1.72 (GSE19332) with
an overall meta-estimate of −1.36 (p = 3.1 × 10−7; Figures 2H,M).

3.4 ALS-increased genes are linked to
immune processes and blood vessel
development with localization to plasma
membrane and exosomes

The 222 ALS-increased DEGs were most strongly associated
with MeSH terms related to immunological processes, such as graft
rejection, leukocyte chemotaxis, macrophage activation, cellular
immunity and phagocytosis (Figure 3A; Supplementary Excel file
S1). There were 390 Gene Ontology (GO) biological process (BP)
terms enriched among the 222 ALS-increased DEGs (p < 0.05 with
at least 2 ALS-increased DEGs per GO term), which could be
organized into broad categories such as development, cell
motility or taxis, signal transduction and response to external
stimulus (Figure 3C). Specific GO BP terms most strongly
enriched among ALS-increased DEGs included regulation of
immune system process, blood vessel or circulatory system
development and regulation of cell activation (Figure 3E). Gene
set enrichment analysis (GSEA) confirmed that genes associated
with regulation of immune system process were enriched among
ALS-increased DEGs (p < 0.001; Figure 3G). The 222 ALS-increased
genes were further enriched with respect to GO cell component (CC)
terms, including plasma membrane, exosome, vesicle and cell
periphery (Figure 3I). Other annotations most strongly enriched
with respect to ALS-increased genes included extracellular matrix
structural constituent (e.g., LAMA2, TGFBI, FN1), TYROBP causal
network in microglia (e.g., NCKAP1L, APBB1IP, TYROBP), and
spinal cord injury (e.g., AQP1, VCAN, AIF1) (Supplementary Excel
file S1). Drug signature analysis showed that ALS-increased DEGs
were enriched with genes targeted by dexamethasone, retinoic acid
and the dopamine agonist pergolide (Supplementary Excel file S1).

3.5 ALS-decreased genes include
neurofilament light and are associated
with neurogenesis, cell projection
morphogenesis and motor neuron
axon guidance

The 278 ALS-decreased DEGs were most frequently associated
with MeSH terms related to neurogenesis, satellite DNA, viral
cytopathogenic effect, transcytosis and axonal transport
(Figure 3B). Overall, there were 125 GO BP terms enriched

FIGURE 1 (Continued)

SMD estimates in each SOM region. (E, F) Protein-protein interaction network (STRING database). Network vertices correspond to one of
1343 proteins associated with mRNAs having detectable expression in all 6 meta-analysis datasets. Network edges represent 4449 high-confidence
interactions between protein pairs (confidence score ≥0.700). Proteins were assigned to 12 groups based on hierarchical clustering and in part (E) the
network is color-coded based on the GO BP term most overrepresented in each group (see legend). In part (F), the same network is color-coded
based on SMD estimates calculated for each dataset (see legend).
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FIGURE 2
Top rankedmeta-analysis genes. (A,H)Ranked list of (A)ALS-increased and (H)ALS-decreasedgenes.Heatmapcolors reflect SMDestimates (see scale). The
meta-SMD estimate is shown in the right margin with p-value (*FDR <0.10). (B, E, I, L) Violin plots. Log2-scaled expression values from each study were z-score
normalized and combined. Gaussian kernal-based density estimates are plotted with expression values for each subject. (C, F, J, M) Forest plots. SMD point
estimates are shown with 95% confidence intervals (right margin). The meta-SMD estimate is given in the bottom row (magenta font). Cochran’s Q test
statistic for heterogeneity is shown with p-value (green font, bottom right). (D, G, K, N) Boxplots by study. Boxes outline the middle 50% of expression values for
each group (whiskers: 10th to 90th percentiles). Log2-scaled expression values from each study were z-score normalized.
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FIGURE 3
Functional enrichment analyses. (A and B) MeSH terms enriched among (A) ALS-increased and (B) ALS-decreased genes. MeSH term font size is
inversely proportional to the enrichment p-value (Fisher’s Exact Test). MeSH terms were extracted from the gene2pubmed database (phenomena and
processes category). (C and D) GO BP term network enriched among (C) ALS-increased and (D) ALS-decreased genes. Each node corresponds to a GO
BP term with connections drawn between node pairs having ≥50% gene overlap. The complete set of enriched GO BP terms was clustered to form
color-coded groups with the term having the largest number of genes listed as a representative. The number of GOBP termswithin each group is given in
parentheses. (E and F) Top-ranked GO BP terms. The most strongly enriched GO BP terms associated with (E) ALS-increased and (F) ALS-decreased
genes are shown. Terms are ranked according to enrichment -log10-transformed p-values (horizontal axis). Representative genes are listed for each GO
BP term and the total number of DEGs for each term is given in parentheses. (G and H) Gene set enrichment analysis (GSEA). Genes were ranked based
upon SMD estimate (see color scale) and a running sum score was tabulated (green line) based on the position of genes linked to the indicated GO BP

(Continued )
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among ALS-decreased DEGs (p < 0.05 with at least 2 ALS-decreased
DEGs per term), which could be organized into broad categories
such as neurogenesis, cell projection and mitotic cell cycle
(Figure 3D). Specific GO BP terms most strongly enriched
among ALS-decreased genes included cell projection
morphogenesis, neuron differentiation, response to nerve growth
factor, and motor neuron axon guidance (Figure 3F). Neurofilament
light chain (NEFL) was among ALS-decreased genes associated with
cell projection morphogenesis and enrichment of this category
among ALS-decreased genes was confirmed by GSEA (p < 0.001;
Figure 3H). GO CC terms enriched among ALS-decreased genes
included synaptic membrane intrinsic/integral component,
supramolecular fiber and microtubule (Figure 3J). Other
annotations enriched among ALS-decreased DEGs included
Hsp90 protein binding (e.g., PPP5C, STUB1, CDK5) and parkin
ubiquitin proteasomal system (e.g., STUB1, PSMC3, TUBB)
(Supplementary Excel file S2). Drug signature analysis
demonstrated overlap between ALS-decreased DEGs and multiple
cancer drugs (e.g., ixabepilone, cabazitazel, eribulin mesylate)
(Supplementary Excel file S2).

3.6 FUS is a top-ranked protein interaction
partner of ALS-decreased DEG mRNAs

The 222 ALS-increased DEGs were enriched with genes
targeted by certain lncRNAs (e.g., lnrCXCR4, BALR-2, SBF2-
AS1, ANCR; FDR ≤0.005) and microRNAs (e.g., hsa-miR-190a-
3p, hsa-miR-223-3p, hsa-miR-183-3p, miR-29; FDR ≤0.03)
(LncRNA2Target, miRTarBase, miRDB and TargetScan
databases; see Supplementary Excel file S1). Based on
RNAInter database annotations (Kang et al., 2022), ALS-
increased DEG mRNAs frequently interacted with RNA-
binding proteins such as CELF5, CPEB1 and PABPC5 (p <
0.001, FDR = 1.00, Fisher’s exact test; Supplementary Figure
S16A). ALS DEGs with CELF5-interacting mRNAs included
SERPINA3, APLNR and SGK1 (Supplementary Figure S16E).
The percentage of ALS-increased DEG mRNAs interacting
with TARDBP (TDP-43) (Suk and Rousseaux, 2020) (51.4%)
did not differ compared to non-DEGs (54.8%) (p = 0.83, Fisher’s
exact test; Supplementary Figure S16C).

The 278 ALS-decreased DEGs did not include an increased
proportion of genes targeted by any specific lncRNA or microRNA
(FDR ≥0.127) (Supplementary Excel file S2). Of 16177 proteins
tested, ZNF326, ELAVL1 and FUS were the top 3 most
overrepresented as ALS-decreased DEG mRNA interaction
partners (p ≤ 0.0037; FDR ≥0.915; Supplementary Figure S16B).
Overall, 62% of ALS-decreased DEGs had FUS-interacting mRNAs
(e.g., USP13, ECEL1, SPA17) as compared to 54% of non-DEGs (p =
0.004, FDR = 0.915, Fisher’s exact test; Supplementary Figures S16B,
F). The percentage of ALS-decreased DEG mRNAs interacting with

TARDBP (TDP-43) (51.8%) did not differ compared to non-DEGs
(54.8%) (p = 0.82, Fisher’s exact test; Supplementary Figure S16D).

3.7 DEGs have detectable expression in
motor neurons from normal adult spinal
cord but are not motor neuron-specific

Cell type-specific expression of genes in post-mortem spinal
cords from normal adults was recently investigated using single-
nucleus RNA sequencing (Yadav et al., 2023). Of 222 ALS-increased
DEGs, expression of 219 were quantified by this prior study and
nearly all (214 of 219) had detectable expression (i.e., CPM ≥1) in at
least some motor neurons (Supplementary Excel file S1). Most ALS-
increased DEGs, however, did not have motor neuron-specific
expression but were expressed by multiple cell types
(Supplementary Figures S17A,B). Many increased DEGs were
expressed by endothelial cells, microglia and/or astrocytes
(Supplementary Figure S17B), with more than half of ALS-
increased DEGs having highest average expression in one of
these 3 cell types (Supplementary Figure S17C). Compared to
non-DEGs, increased DEGs had lower expression on average in
neurons with similar or higher expression in other cell types
(Supplementary Figures S17E, F). Further analysis of 64 cell
subpopulations showed that ALS-increased DEGs had
quantitatively lower expression in all neuronal subpopulations
including motor neurons (Supplementary Figure S17E).

Of 278 ALS-increased DEGs, expression of 274 had been
quantified by single-nucleus RNA sequencing (Yadav et al.,
2023). Nearly all of these (271 of 274) had detectable expression
in at least some motor neurons (i.e., CPM ≥1) (Supplementary Excel
file S2). ALS-decreased DEGs had more robust expression in
neuronal cell types (SupplementaryFigures S18A, B) and a strong
majority (70.4%) were more highly expressed in neurons than any
other cell type (Supplementary Figure S18C). There was no
difference on average between neuronal expression of ALS-
decreased DEGs and non-DEGs, although average expression of
ALS-decreased DEGs was significantly lower than non-DEGs in
other cell types (SupplementaryFigures S18D–F).

3.8 mRNAs encoding extracellular matrix
proteins are disproportionately increased in
ALS motor neurons

ALS-increased DEGs were enriched with respect to genes linked
to the collagen-containing extracellular matrix (ECM) (Figure 3I)
consistent with prior work (Rabin et al., 2010). It was therefore of
interest to evaluate expression of genes related to the matrisome,
defined as the set of genes encoding core ECM components and
ECM-associated proteins (Hynes and Naba, 2012). Matrisome gene

FIGURE 3 (Continued)

term (top margin). The enrichment score (black circle) is the running sum score with maximum absolute value. The yellow box outlines the middle
95% of the enrichment score null distribution from simulations in which the ranked gene list was randomly permuted (100000 trials). (I and J) Top ranked
GOCC terms. All GOCC terms shown are significantly overrepresented among (I) ALS-increasedDEGs (p < 0.001) or (J) ALS-decreased DEGs (p ≤ 0.019).
The font size of each term is inversely proportional to its enrichment p-value.
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FIGURE 4
ALS GWAS genes. (A) Genes near ALS GWAS loci (NHGRI-EBI GWAS Catalog). Association signal p-values are plotted relative to chromosome
location. An asterisk (*) denotes protein-codingmotor-neuron expressed genes included in themeta-analysis. (B) SMD estimates for 204 ALS-associated
protein-coding motor neuron-expressed genes. The percentage of ALS-increased and ALS-decreased genes is shown (legend) and represented by the
pie chart (inner region: the 204 ALS-associated genes; outer region: all 9882 motor neuron-expressed genes). The p-value was obtained by testing
whether the inner and outer pie chart frequencies differ significantly (Fisher’s exact test). (C–E) GWAS and DEG gene overlap. Overlap is shown between
(C) all ALS DEGs and GWAS genes, (D) ALS-increased DEGs and GWAS genes and (E) ALS-decreased DEGs and GWAS genes. The significance of the
overlapping gene count was evaluated using Fisher’s exact test (bottommargin p-value). (F) DEG overlap with genes located varying distances from ALS
GWAS loci. The percent overlap (vertical axis) is shown for varying genomewindow sizes (horizontal axis) and instances of significant overlap are indicated
(top margin, Fisher’s exact test). (G–I) Average distance of DEGs to nearest ALS GWAS locus (arrow). The distribution of average distances obtained by

(Continued )

Frontiers in Genetics frontiersin.org14

Swindell 10.3389/fgene.2024.1385114

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114


categories include collagens, ECM-affiliated genes, ECM
glycoproteins, ECM regulator genes, proteoglycans and secreted
factors (Supplementary Figure S19A). Genes associated with each
category tended to have positive SMD estimates (p ≤ 0.033;
Supplementary Figures S19B–G) with 55.2%–68.8% of genes
being ALS-increased. Matrisome genes significantly elevated in
ALS samples include COL12A1 (collagen), C1QB (ECM-
affiliated), LAMA2 (ECM glycoprotein), SERPINA3 (ECM-
regulator), SRGN (proteoglycan) and CCL2 (secreted factor)
(Supplementary Figures S19H–M).

3.9 Motor neuron DEGs overlap significantly
with genes near ALS-associated SNP loci and
are mutually associated with plasma
membrane, cell adhesion and semaphorin
interaction

Genes with altered expression in ALS motor neurons may be
related to those linked to the disease by GWA studies (Zhang S. et al.,
2022). It was possible to identify 383 protein-coding genes overlying
or in linkage disequilibrum with ALS-associated SNP loci included
in the NHGRI-EBI GWAS catalog (Sollis et al., 2023). Of these
383 genes, 204 had detectable expression in LCM-isolated motor
neurons and had been included in the meta-analysis (Figure 4A). A
slight majority of these genes were ALS-decreased (53.9%) although
this trend was non-significant (p = 0.11, Figure 4B). The 204 genes
overlapped significantly with the complete set of ALS-dysregulated
DEGs (p = 0.0035, Figure 4C) as well as the subset of ALS-decreased
DEGs (p = 0.005, Figure 4E), although there was no significant
overlap with ALS-increased DEGs (p = 0.089, Figure 4D). However,
ALS-increased DEGs did overlap significantly with genes close to
ALS-associated SNP loci (<20 kb) (Figure 4F). Moreover, the
average genomic distance between ALS-increased DEGs and their
nearest ALS-associated SNP was 9.6 megabases, which was
significantly less than observed in equally sized gene sets chosen
randomly (p = 0.02, Figure 4H). However, this was not observed for
ALS-decreased DEGs or the complete set of DEGs (p ≥ 0.348,
Figures 4G,I).

Gene sets may have annotation-level correspondence even if few
genes are in common (Wang et al., 2007). Annotations enriched
among the 204 SNP-proximal genes were therefore assessed to
determine if they are also enriched among ALS-increased and
ALS-decreased DEGs (Figures 4J–M). Of 129 GO BP terms
enriched among SNP-proximal genes (p < 0.05 with ≥2 SNP-
proximal genes per GO BP term, conditional hypergeometric
test), 34 and 30 were likewise enriched among ALS-increased and
ALS-decreased DEGs, respectively, in each case exceeding the
number of enriched terms seen in random gene sets of the same
size (p ≤ 0.019, Figure 4J). For example, regulation of neuron

projection development was highly enriched among SNP-
proximal genes as well as ALS-increased DEGs, whereas cell-cell
adhesion was enriched among SNP-proximal genes and ALS-
decreased DEGs (Figure 4J). With respect to GO CC terms, there
was a significant fraction mutually enriched between SNP-proximal
genes and ALS-increased DEGs (p = 0.042), as well as between SNP-
proximal genes and ALS-decreased DEGs (p = 0.004), with plasma
membrane component commonly enriched in all three gene sets
(Figure 4K). With regard to KEGG and Reactome pathways, there
was no significant tendency for terms enriched among SNP-
proximal genes to also show enrichment among ALS-increased
or -decreased DEGs (p ≥ 0.074, Figures 4L,M), although all three
gene sets were enriched with respect to cell adhesion molecules
(Figure 4L) and semaphorin interactions (Figure 4M).

3.10 ALS-increased DEGs have increased
proximity to DNA elements recognized by
forkhead transcription factors and motor
neuron and pancreas homeobox 1 (MNX1)

Genes may be dysregulated in ALS motor neurons due to
activation or repression of transcription factors (TFs) having
sequence-specific interactions with DNA elements. This was
investigated using position weight matrix (PWM) models
characterizing binding affinities of transcription factors compiled
in the Jaspar database (Rauluseviciute et al., 2023). This allowed
identification of ALS-associated PWMs (AAPs) for which matching
DNA elements are in closer proximity to ALS-increased or
-decreased DEGs, as compared to all other motor neuron-
expressed genes included in the meta-analysis. Using a nearest
neighbor statistic, 60 AAPs were identified with respect to ALS-
increased DEGs (FDR <0.10, Welch’s two-sample two-tailed t-test),
although no PWMs meeting the same significance threshold were
identified with respect to ALS-decreased DEGs.

A PWM with consensus 5-GTAATTAT/ATAATTAC-3
recognized by motor neuron and pancreas homeobox 1 (MNX1)
(Figure 5D) matched DNA elements with increased proximity to
ALS-increased genes, with an average nearest neighbor distance of
0.80 kb between ALS-increased DEG TSSs and the predicted MNX1
binding sites, as compared to an average distance of 1.1 kb for all
other motor neuron-expressed genes (Figure 5A). Such MNX1
target sites clustered together in the genome (Figure 5G) and
were closer to ALS-increased DEGs than other motor neuron-
expressed genes, although still further than if putative binding
sites were randomized along each chromosome (Figure 5H).
ALS-increased DEGs with TSS near a putative MNX1 binding
site include trinucleotide repeat containing adaptor 6C
(TNRC6C) and nuclear factor I X (NFIX) (Supplementary Figure
S20A). Four predicted MNX1 binding sites were identified upstream

FIGURE 4 (Continued)

sampling the same number of genes at random is shown. The p-value (upper right) is calculated based on the position of the arrow relative to the null
distribution. (J–M) GO BP, GO CC, KEGG and Reactome terms enriched among protein-coding motor neuron-expressed ALS GWAS genes (p < 0.05).
The enrichment of each term was also calculated with respect to ALS-increased (horizontal axis) and ALS-decreased DEGs (vertical axis) and the number
of terms significantly enriched (p < 0.05) with respect to each gene set is shown (upper right). p-values were obtained from a null distribution
generated by randomly sampling the same number of genes and calculating the number of significantly enriched terms (p < 0.05) in each random sample.
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FIGURE 5
TF binding sites with increased proximity to ALS-increased DEGs. (A) Top 18 TF PWM models. The ratio (horizontal axis) is the average nearest neighbor
distance (NN) between TF binding sites and the TSS of ALS-increased DEGs (FG, foreground) divided by the average such distance for all other motor neuron-
expressed protein-coding genes (BG, background). p-values were obtained by comparing log10-transformed NN distances between FG and BG gene sets (two-
sample two-tailed t-test). Sequence logos for each primary and reverse complement PWM model are shown. (B and C) TF families and TF classes over-
represented among the 60 binding sites with increased proximity to ALS-increased genes (FDR <0.10, distance ratio <1.0). p-values were obtained by testing for
over-representation of a given TF family or class among the 60 TF binding sites (Fisher’s exact test). The number of binding sites (out of 60) associatedwith each TF
family or class is indicated (parentheses, left margin). Example transcription factors associated with each motif class are listed within each figure. (D)Motor neuron
and pancreas homeobox 1 (MNX1) protein structure (alphaFold database). (E) Forkhead box P1 protein (FOXP1) protein structure (alphaFold database). (F) TF-DEG
network. Connections are drawn between each TF (top margin) and ALS-increased gene (black circles) for which a putative binding site is less than 1 kb from the
ALS-increased gene TSS. Darker lines are drawn in cases where the binding site is closer to the TSS location (see legend). (G and I)Motif-motif distance cumulative
distribution functions (cdfs). Empirical cdfs are shown (red line) for the (G)MNX1and (I) FOXP1motifs. Black lines outline themiddle 95%of null distribution cdf values
obtained in simulations duringwhichmotif locationswere randomly chosen throughout thegenome. Asterisks (topmargin) denote distances atwhich theobserved
cdf (red) is outside the 95% null region obtained by simulation (black lines). Note that null distribution regionswere sufficiently narrow that black lines are not visually
separable. (H and J) Motif-TSS distance cumulative distribution functions (cdfs) for FG and BG genes. Simulations were performed wherein motif locations were
chosenat random.Grey regionsoutline themiddle95%null distribution for FGgeneswhereasdotted linesoutline themiddle95%null distribution for BGgenes. Top
margin asterisks denote distances at which the observed cdf is outside the null region for FG and BG genes, respectively.
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of each gene (<1 kb), each of which was in a conserved region
annotated as having gene regulatory activity by ORegAnno (Lesurf
et al., 2016).

ALS-increased DEGs also demonstrated increased proximity to
DNA elements matching PWM models sharing a 5-GTAAACA/
TGTTTAC-3 consensus sequence interacting with factors from the
forkhead box (FOX) family and forkhead/winged-helix class

(Figures 5B,C). These factors include FOXP3, FOXD1, FOXl1,
FOXO1, FOXA3, FOXP1, and FOXO3 and were predicted to
target similar genes given their DNA binding affinities (Figure
5F). For example, DNA sites matching the FOXP1 binding
model (Figure 5E) had increased proximity to ALS-increased
DEGs (Figure 5A). Sites matching the FOXP1 PWM had
decreased distance to ALS-increased DEGs (Figure 5J) and

FIGURE 6
Comparison between gene expression changes in LCM-dissected ALS spinal cord motor neurons and those from the SOD1-G93A ALS mouse
model. (A)Mouse studies. The table lists the ID number for each study, GEO series identifier, mouse strain, stage of disease onset, sample sizes, number of
protein-coding genes including in the analysis, number of increased DEGs (FDR <0.10 with FC > 1.50), number of decreased DEGs (FDR <0.10 with FC <
0.67), Spearman correlation between mouse FC estimates and human SMD estimates, median FC (G93/CTL) of ALS-increased DEGs from human
studies, and median FC (G93/CTL) of ALS-decreased DEGs from human studies. In the last two columns, asterisks are used to denote a significant
difference between FC estimates of ALS DEGs and all motor neuron-expressed mouse genes having human orthologues (*p < 0.05, **p < 0.01, ***p <
0.001, Wilcoxon rank sum test). (B) Scatterplot legend. (C–M) Scatterplot comparisons for eachmouse dataset. The mouse dataset ID is indicated (upper
left) and the estimates Spearman rank correlation is shown (upper right). The green line in each figure represents the least-squares regression estimate.
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tended to occur in clusters (Figure 5I). ALS-increased DEGs with
predicted upstream FOXP1 target sites included transforming
growth factor beta induced (TGFBI) and abhydrolase domain
containing 4 N-acyl phospholipase B (ABHD4) (Supplementary
Figure S21A), both of which had predicted FOXP1 binding sites
in TSS-proximal regulatory sequences (<1 kb upstream)
(Supplementary Figures S21B, C).

3.11 ALS-associated SNPs with genotype-
dependent transcription factor binding sites

The NHGRI-EBI GWAS catalogue was used to identify 175 lead
SNPs linked to ALS by GWA studies that were in linkage with a
larger set of 2613 SNP loci (r2 ≥ 0.90). These SNPs were assessed to
determine if they were at locations matching PWM models. ALS-
associated PWMs (AAPs) matching DNA sequences proximal to
ALS-increased DEGs were more likely than other PWMs to match
ALS-associated SNP loci. APPs matched 10.65 ALS-associated SNP
loci on average, whereas non-APPs matched 4.28 such loci on
average (Supplementary Figure S22A). This difference was again
seen when only PWMs having genotype-independent matches to
SNP loci were counted (Supplementary Figure S22B).

The ALS-associated SNP rs1554165 on chromosome 2 (near
DYNC1l2) had the largest number of AAP matches, altogether
matching 17 AAP models with 10 matches being genotype-
dependent (Supplementary Figure S22C). Likewise, a PWM
model for ARID3A, with consensus element 5-ATTAAA/
TTTAAT-3, matched the largest number of DNA elements
overlying ALS-associated SNPs, including 66 such SNPs with
65 of the PWM matches being genotype-dependent
(Supplementary Figure S22D). Some ALS-associated SNPs
predicted to interact with AAPs in a genotype-dependent fashion
were within enhancers (Supplementary Figures S22E–H). For
example, a chromosome 4 SNP (rs115352980) 1.1 kb from the
HADH gene was within a putative MNX1 binding site predicted
to depend upon the SNP genotype (Supplementary Figure S22F).

3.12 ALS-increased DEGs are enriched
among genes upregulated during motor
neuron differentiation

Motifs with increased proximity to ALS-increased DEGs
interacted with TFs mediating motor neuron differentiation (e.g.,
MNX1 and FOXP1; Figure 5) (Adams et al., 2015; Garcia-Diaz et al.,
2020). Meta-analysis DEGs were thus compared to genes altered
in vitro during differentiation of monolayer human embryonic stem
cells to motor neurons (GSE140747) (Rayon et al., 2020). It was
possible to identify ALS-increased DEGs upregulated during motor
neuron differentiation (e.g., MLC1, ANGPT1, CP; see
Supplementary Figures S23A, B, D) as well as ALS-decreased
DEGs downregulated during motor neuron differentiation (e.g.,
EFNA5, LGI2, PAQR9; Supplementary Figures S23C, E). ALS-
increased DEGs were significantly enriched among genes most
strongly upregulated during motor neuron differentiation (p =
0.01; Supplementary Figure S23F). However, ALS-decreased
DEGs were not enriched among genes decreased during motor

neuron differentiation (p = 1.00; Supplementary Figure S23G).
Among ALS-increased DEGs, those with TSS nearest to a
putative MNX1 binding site (e.g., MLC1, ANGPT1, ERBB4)
tended to be more strongly upregulated during motor neuron
differentiation (rs = −0.21, p = 0.0055) (Supplementary Figure
S23H). There was a similar although non-significant trend with
regard to predicted FOXP1 binding sites (rs = −0.10, p = 0.21)
(Supplementary Figure S23I).

3.13 ALS DEGs are similarly altered in LCM-
dissected motor neurons from symptomatic
SOD1-G93A mice

The ALS meta-analysis expression signature was compared to
that observed in LCM-dissected motor neurons from SOD1-G93A
mice (Gurney et al., 1994). The analysis was performed using
differential expression results from 11 comparisons between
SOD1-G93A and CTL mice (Figures 6A, Supplementary Figure
S24) (Ferraiuolo et al., 2007; Nardo et al., 2013). The genome-wide
correlation between SMD and FC estimates (G93A/CTL) was near
zero or even negative for presymptomatic mice (rs ≤ 0.092) (Figures
6A,C,F,J) but was higher and always positive in symptomatic mice
(rs ≥ 0.117). Consistent with this, ALS-increased DEGs tended to be
increased in G93A mice whereas ALS-decreased DEGs tended to be
decreased (Figure 6). For example, for G93A mice on the 129Sv
background with an endstage phenotype, ALS-increased DEGs were
increased by 67% on average and ALS-decreased DEGs were
decreased by 28% on average (p < 0.001 in each case, Wilcoxon
rank sum test; Figures 6A, M). ALS-increased DEGs with increased
expression in endstage G93A motor neurons from both strains
included C3AR1, RGS1 and NCKAP1L (Supplementary Figure
S25A) and such genes were associated with interspecies
interaction, blood vessel development and inflammatory response
(Supplementary Figure S25C). Likewise, ALS-decreased DEGs with
decreased expression in endstage G93A motor neurons from both
strains included PRUNE2, HTR7 and USP13 (Supplementary Figure
S25B) and such genes were associated with generation of neurons,
neuron development and cell projection morphogenesis
(Supplementary Figure S25D).

3.14 Genes increased (but not decreased) in
LCM-dissected motor neurons from ALS
patients are correspondingly altered in bulk
spinal cord segments

Large-scale isolation of RNA from bulk spinal cord segments in
ALS (n = 154) and CTL (n = 49) subjects has been performed
(Humphrey et al., 2023). SMD estimates from this study were
positively correlated with FC estimates (ALS/CTL) from each
spinal cord segment (0.127 ≤ rs ≤ 0.206) (Supplementary Figures
S26A–C) as well as FC estimates averaged across segments (rs =
0.207) (Supplementary Figure S26D).

Based on differential expression statistics reported previously
(Humphrey et al., 2023), there were 62 protein-coding genes with
ALS-increased expression in each cord segment (FC > 1.50 with p <
0.05 in each segment and FDR <0.10 in at least one segment). These
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FIGURE 7
Comparison between LCM-dissected and iPSC-MN ALS signatures. The iPSC-MN-derived signature (ALS vs. CTL) was obtained from analysis of
Answer ALS project samples (males only). (A and B) Scatterplots. Motor neuron SMD estimates are compared to iPSC-MN FC estimates and each
represents an individual gene. In (A), SMD estimates are calculated from both sexes, whereas in part (B) SMD estimates are calculated using data from
males only. The proportion of genes within each quadrant is shown and Pearson’s chi-squared test was used to determine if the proportion of genes
in any quadrant exceeds 25% (top margin; red font, p < 0.05). Quadrant proportions are graphically represented by the right sidebar. The Spearman
correlation coefficient is shown with p-value (upper left). The yellow straight line is calculated by least-squares regression. A yellow ellipse is drawn
around the middle 90% of genes closest to the bivariate mean (Mahalanobis distance). (C and D) Venn diagrams. In (C), overlap is shown between ALS-
increased genes from LCM-dissected motor neurons (SMD >0.80, FDR <0.10) and ALS-increased genes from iPSC-MNs (FDR <0.10). In (D), overlap is

(Continued )
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genes overlapped significantly with ALS-increased DEGs from this
LCMmeta-analysis (Supplementary Figure S26E), with the majority
(79.0%) having correspondingly positive SMD estimates
(Supplementary Figure S26G). Based on GSEA, such genes were
also enriched in the initial part of a gene list ranked in descending
order by SMD estimate (Supplementary Figure S26I). NCF2,
CXCL16 and ABCA1 are examples of DEGs increased in LCM-
dissected motor neurons and each cord segment (FDR <0.10 in each
comparison, Supplementary Figure S26K).

Likewise, based upon results reported previously (Humphrey
et al., 2023), there were 62 protein-coding genes with ALS-decreased
expression in each cord segment (FC < 0.67 with p < 0.05 in each
segment and FDR <0.10 in at least one segment). These genes,
however, did not significantly overlap with ALS-decreased DEGs
identified by the LCM meta-analysis (Supplementary Figure S26F)
and SMD estimates were correspondingly negative for only 48.4% of
the genes (Supplementary Figure S26H). Based on GSEA, the
62 genes were not significantly enriched in the initial part of a
gene list ranked in ascending order by SMD estimate
(Supplementary Figure S26J). Examples of DEGs decreased in
LCM-dissected motor neurons and each cord segment include
ELAVL3, LDOC1 and TBCB (FDR <0.10 in each comparison,
Supplementary Figure S26L).

3.15 Genes decreased (but not increased) in
LCM-dissected motor neurons from ALS
patients have significant overlap with those
altered in iPSC-derived motor neurons

Answer ALS project data has been used to identify genes
differentially expressed between iPSC-MNs derived from ALS
and CTL subjects (males only) (Workman et al., 2023). FC
estimates (ALS/CTL) from this prior work were weakly
correlated with SMD estimates from this study (rs = 0.025, p =
0.241) (Figure 7A). The correlation improved slightly when SMD
estimates were calculated using male samples only (rs = 0.037, p =
0.003) (Figure 7B), restricting the meta-analysis to three datasets
with sex annotation available (GSE18920, GSE56500, GSE76220)
(Figure 7B). There was no significant overlap between DEGs or

ranked gene lists from the iPSC-MN analysis and the current study
(Figures 7C,D,G,H). Of 177 ALS-increased DEGs identified in iPSC-
MNs (FDR <0.10), most (51.4%) were ALS-decreased in the LCM
meta-analysis (SMD <0; Figure 7E), although GSEA did identify
enrichment of such genes in the initial part of a gene list ranked in
descending order by SMD estimate (p = 0.02, Figure 7M). Of
431 ALS-decreased DEGs identified in iPSC-MNs (FDR <0.10), a
significant majority (63.6%) were correspondingly decreased in the
LCMmeta-analysis (p = 0.0093, Figure 7F) and GSEA demonstrated
enrichment of such genes in the initial part of a gene list in ascending
order by SMD estimate (p = 0.01, Figure 7L). There was no
significant overlap between iPSC-MN and LCM DEGs based on
the Wang semantic similarity of GO BP terms (Figures 7I,J) (Wang
et al., 2007), although some gene pairs had functional similarity
based on the Wang measure (Figures 7M,N). These analyses were
repeated based upon a limited set of DEGs (9 ALS-increased, 5 ALS-
decreased) reported by an independent meta-analysis of iPSC-MN
datasets (ALS vs. CTL samples) (Ziff et al., 2023), but there was no
significant genewise or functional overlap with meta-analysis DEGs
from the current study (Supplementary Figure S27).

4 Discussion

Motor neuron degeneration is a common denominator among
ALS patients despite the varying genetic or environmental factors
that may underlie disease in any one individual. This study
performed a meta-analysis of LCM transcriptome datasets (Cox
et al., 2010; Rabin et al., 2010; Kirby et al., 2011; Highley et al., 2014;
Cooper-Knock et al., 2015; Krach et al., 2018; Nizzardo et al., 2020)
to identify 500 motor neuron-expressed protein-coding genes
differentially expressed between ALS and CTL samples
(FDR <0.10 with SMD >0.80 or SMD < −0.80). This is a larger
number of DEGs than was identified from most datasets analyzed
individually (Table 1). A comprehensive analysis of annotations
linked to these genes highlights 10 core disease-relevant functional
categories (Figure 8). The analysis also connects ALS
transcriptomics to genetics, first by demonstrating overlap
between DEGs and genes near ALS-associated SNP loci, and
second by identifying putative DNA regulatory elements

FIGURE 7 (Continued)

shown between ALS-decreased genes from LCM-dissected motor neurons (SMD <0.80, FDR <0.10) and ALS-decreased genes from iPSC-MNs
(FDR <0.10). The significance of overlap is evaluated using Fisher’s exact test (bottom margin p-values). (E and F) SMD estimates for genes with altered
expression in iPSC-MNs. Rank-ordered symbols represent SMD estimates for each gene (red: increased in ALS LCM samples; blue: decreased in ALS LCM
samples). The percentage of ALS-increased and ALS-decreased genes is shown (legend) and represented by the pie chart (inner region: the 177 or
431 genes with altered expression in iPSC-MNs; outer region: all 9882 motor neuron-expressed genes). The p-value was obtained by testing whether
inner and outer pie chart frequencies differ significantly (Fisher’s exact test). (G and H) Ranked gene list overlap. In (G), overlap of ALS-increased (iPSC-
MN) and ALS-decreased (iPSC-MN) genes is shown (vertical axis) relative to genes most strongly increased in LCM-dissected ALS samples. In (H), overlap
of ALS-increased (iPSC-MN) and ALS-decreased (iPSC-MN) genes is shown (vertical axis) relative to genesmost strongly decreased in LCM-dissected ALS
samples. In both (G) and (H), the dark grey region outlines the middle 95% of the null distribution (no significant overlap, p < 0.05). The observed overlap
among the top 1000 (G) ALS-increased (iPSC-MN) and (H) ALS-decreased (iPSC-MN) genes is indicated (upper left) with associated p-value (Fisher’s
exact test). (I and J) Pairwise GO semantic similarity (Wang metric). The pairwise similarity (arrow) was calculated between gene sets listed in the bottom
margin. p-values were calculated based upon the null distribution (shown) from 1000 simulation trials. In each trial, motor neuron-expressed gene sets of
the same size were generated by random sampling and the Wang similarity was calculated between the randomly generated sets. (K, L) Gene set
enrichment analyses (GSEA). Genes were ranked based upon the SMD estimate (see color scale) and a running sum score was tabulated (green line) based
on the position of (K) ALS-increased genes (iPSC-MN) or (L) ALS-decreased genes (iPSC-MN) within the ranked gene list. The enrichment score (black
circle) is identified as the running sum score with maximum absolute value. The yellow box outlines the middle 95% of the enrichment score null
distribution from simulations in which the ranked gene list was randomly permuted (100000 trials). (M, N) Top genes and their semantic similarity. The top
30 (M) ALS-increased and (N) ALS-decreased genes are shown. Lines between genes represent Wang semantic similarity scores between gene
combinations.
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disrupted or engendered by ALS-associated SNP variants. These
DNA regulatory elements interact with motor neuron-expressed
transcription factors, such as MNX1 and FOXP1, which play an
important role in motor neuron fate specification (Thaler et al.,
1999; Adams et al., 2015). Interestingly, many DEGs identified in
this study were similarly altered in LCM-dissected motor neurons
from the SOD1-G93A mouse model of ALS (Gurney et al., 1994).
However, most DEGs were not replicated in iPSC-MNs derived
from ALS and CTL patients, suggesting that ALS motor neurons
have a unique in situ transcriptome signature that has not been
replicated by iPSC-MN studies.

Neuroinflammation is an important feature of ALS and markers of
systemic inflammation have been associated with faster disease
progression (Lunetta et al., 2017; Blum and Gitler, 2022). This study
highlights components of innate immunity contributing to this pro-
inflammatory state (e.g., neutrophils, microglia, complement)
(Figure 8). The term “neutrophil degranulation” was the Reactome
pathway most strongly overrepresented among ALS-increased DEGs
(Supplemental Excel File S1), whereas 16.9% of ALS-increased DEGs
were expressedmore highly bymicroglia than any other spinal cord cell
type (Supplementary Figure S17C). Additionally, genes linked to the
alternative complement pathway were increased in ALSmotor neurons,
including complement C3 (C3) (SMD= 1.15, p= 0.00113, FDR= 0.036)
and complement C3a receptor 1 (C3AR1) (SMD = 1.66, p = 5.9e-07,
FDR = 0.00114). Furthermore, complement C1q B chain (C1QB), a
component of the classical complement pathway, was also increased in

ALS motor neurons (SMD = 1.22, p = 0.0039, FDR = 0.0698). An
elevated neutrophil-to-monocyte ratio has been associated with disease
progression in ALS patients (Murdock et al., 2016), and increased
abundance of neutrophils within the spinal cord has been documented
(Murdock et al., 2021). Neutrophils near motor neurons may alter the
cytokine milieu in a way that favors polarization of microglia from an
anti-inflammatory neuroprotective M2 (alternatively-activated) to a
pro-inflammatory neurotoxic M1 (classically-activated) phenotype
that can be damaging to motor neurons (Sargsyan et al., 2005;
Henkel et al., 2009; Liao et al., 2012; Kim et al., 2020). This is
further associated increased abundance of C3 and the receptor for
its C3a cleavage product (C3AR1) near ALS motor neurons (Woodruff
et al., 2008; Heurich et al., 2011; Bahia El Idrissi et al., 2016), which can
indirectly enhance neutrophil recruitment via their effect on other
immune cells (Daffern et al., 1995; Warwick et al., 2021). These results
underscore a nexus of innate immune cells and immunomodulatory
proteins in ALS, bolstering the rationale for development of drug
candidates targeting innate immune pathways (Miller R. G. et al.,
2022; Zhang R. et al., 2022; McGrath et al., 2023).

Spinal cord injury and neurodegeneration is associated with
reactive scar formation having an inhibitory effect on axon
regeneration (Fawcett et al., 2012; Burnside and Bradbury, 2014;
D’Ambrosi and Apolloni, 2020). This cell non-autonomous process
involves glia in combination with endothelial and pro-inflammatory
immune cells, ultimately generating an organized scaffold of ECM
proteins to support scar formation. Consistent with this, prior gene

FIGURE 8
Functional categories linked to genes differentially expressed in ALSmotor neurons. DEGswere identified from six gene expression studies that used
LCM to isolate motor neurons from ALS and CTL post-mortem spinal cords. A meta-analysis model was applied to identify 222 ALS-increased (red) and
278 ALS-decreased DEGs (blue). Gene set analysis identified 5 core functional categories linked to ALS-increased DEGs: 1) PI3-AKT signaling, 2) innate
immunity, 3) inflammation, 4) ECM proteins and 5) motor neuron differentiation. Likewise, 5 core functional categories were linked to ALS-
decreased DEGs: 1) ubiquitin-proteosome system, 2) microtubule and cytoskeleton, 3) axon growth and guidance, 4) RNA-binding proteins and 5)
synaptic membrane. Example DEGs associated with each category are listed.
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expression analyses of LCM-dissected motor neurons from ALS
spinal cords have identified upregulation of genes encoding ECM
proteins (Rabin et al., 2010), which may in some ways reflect a more
widespread fibrosing process in ALS patients that extends to extra-
CNS tissues (e.g., skeletal muscle, heart, skin, liver) (Apolloni and
D’Ambrosi, 2022). Genes encoding ECM components play an
important role in this process and can be collectively referred to
as the “matrisome” with multiple protein sub-categories defined by
shared signature domains (Naba et al., 2012a; Naba et al., 2012b).
This study showed that genes belonging to each matrisome sub-
category tend to be upregulated in ALS motor neurons, with the
patten of upregulation most prominent among proteoglycans and
ECM glycoproteins (Supplementary Figure S19).

Proteoglycans are heavily glycosylated protein molecules, such
as chondroitin sulfate proteoglycans (CSPGs) and their receptors,
which were shown to have increased abundance near reactive
astrocytes in ALS rodent model spinal cords (Mizuno et al.,
2008; Shijo et al., 2018). Versican (VCAN), for example, is a
CSPG increased in ALS spinal cords (SMD = 1.05, p = 9.03e-05,
FDR = 0.011) that contributes to ECM structure but also has pro-
inflammatory activities (Wight et al., 2020). ECM glycoproteins are
defined by the presence of oligosaccharide chains and several ALS-
increased genes from this study encode proteins in this class (e.g.,
LAMA2, FN1, SMOC1; Supplementary Figure S19J). An interesting
example is laminin subunit alpha 2 (LAMA2) (SMD = 1.37, p =
1.25e-05, FDR = 0.0043). Mutations in this gene have been
associated with LAMA2-related muscular dystrophy (LAMA2-
RD), which is a neuromuscular disease characterized by muscle
weakness, spinal rigidity and respiratory impairment (Bouman et al.,
2023), as well as by delayed nerve conduction (Shorer et al., 1995)
and deceased axon myelination (Brett et al., 1998; Previtali and
Zambon, 2020). These findings underscore the importance of
proteoglycan and glycoproteins in scar formation during motor
neuron degeneration and provide focus points for further studies to
evaluate their impact on axon survival (Fawcett et al., 2012; Burnside
and Bradbury, 2014; D’Ambrosi and Apolloni, 2020) and/or
biomarker development (Edri-Brami et al., 2012; Xu et al., 2021).

Transcription factors coordinate gene expression to maintain
homeostasis but their activation or repression can contribute to
neurodegeneration (Jin et al., 2019). ALS-increased genes from this
study have increased proximity to DNAmotifs recognized by factors
important for motor neuron fate specification, including motor
neuron and pancreas homeobox 1 (MNX1/HB9) and forkhead
box P1 (FOXP1). MNX1 was originally isolated from human
tonsil B lymphocytes (Harrison et al., 1994) but is widely utilized
as a motor neuron-specific marker (Garcia-Diaz et al., 2020). Its
expression is seen in progenitor and postmitotic motor neurons but
is absent from interneurons (Thaler et al., 1999). This pattern is
explained by its activity as a transcriptional repressor (William et al.,
2003; Lee et al., 2008), which includes active repression of genes
mediating interneuron specification (Shirasaki and Pfaff, 2002).
Mice lacking Mnx1 expression have defective motor neuron
specification with axon pathfinding defects (Thaler et al., 1999)
and die from respiratory failure after birth due to defective
diaphragm innervation (Arber et al., 1999; Thaler et al., 2002). In
this study, MNX1 mRNA was mildly decreased in ALS motor
neurons (SMD = −0.82, p = 0.103, FDR = 0.377), but the nearest
neighbor distance between MNX1 motifs and ALS-increased genes

was decreased by 25% relative to other genes (Figure 5A). Since
MNX1 acts as a transcriptional repressor (William et al., 2003; Lee
et al., 2008), loss of MNX1 activity in ALS motor neurons could have
a transcriptional derepression effect, a common feature of genetic
disease (Gabellini et al., 2003), which may account for increased
expression of some DEGs in this study. In this context, it is notable
that ISL1 expression was decreased in ALS motor neurons
(SMD = −0.767, p = 0.004, FDR = 0.069). ISL1 is a LIM
homeodomain transcription factor required for motor neuron
generation (Pfaff et al., 1996) that represses interneuron gene
expression, similar to MNX1, although may control motor
neuron differentiation through MNX1-independent pathways
(Broihier and Skeath, 2002). Mice lacking ISL1 expression also
die shortly after birth due to respiratory failure and lack of
diaphragm innervation (Liang et al., 2011). Future work should
address how dysregulation of MNX1/ISL1 expression/activity in
motor neurons can impact maintenance of terminal motor
neuron differentiation with potential downstream effects on cell
survival and axon viability (Catela et al., 2022).

The forkhead box (FOX) transcription factor family includes
diverse regulatory proteins mediating transcription of genes
contributing to homeostatic and degenerative processes (Santo and
Paik, 2018). ALS-increased genes from this study had increased
proximity to a 5-GTAAACA/TGTTTAC-3 motif recognized by
multiple factors from this protein family (e.g., FOXP3, FOXO1,
FOXP1; Figure 5A). Several such factors had detectable expression
in motor neurons although none met criteria for differential expression
between ALS and CTL samples. FOXO1 is a downstream effector
within the PI3K-AKT signaling pathway (Brunet et al., 1999; Kops et al.,
1999; Nakae et al., 1999) and genes within this pathway were enriched
among ALS-increased DEGs and ALS-associated genes from GWA
studies (Figure 4L). FOXO1 activity is positively regulated by
cytoplasmic TDP-43 accumulation (Zhang et al., 2014), which is a
hallmark feature of ALS pathology (Suk and Rousseaux, 2020). Some
ALS-increased genes near FOXO motifs (e.g.,MXI1, BBOX1, ABHD4)
may therefore be upregulated secondary to FOXO activation
downstream of TDP-43 mislocalization. On the other hand, these
same FOXO motifs interact with FOXP1, which, similar to MNX1,
is essential for motor neuron specification and target-muscle
connectivity (Dasen et al., 2008; Rousso et al., 2008). FOXP1 activity
is particularly critical for differentiation of lateral motor column (LMC)
motor neurons at spinal cord levels corresponding to limbs (Adams
et al., 2015). Findings from this analysis thus highlight forkhead family
transcription factors associated with dysregulated gene expression in
ALS motor neurons and it will be valuable in future work to evaluate
their abundance or localization in post-mortem tissues.

Mouse models of ALS have been generated by overexpressing
disease-related proteins, such as SOD1 or TDP-43, providing
flexible in vivo systems to test mechanistic hypotheses or screen
drug candidates (Philips and Rothstein, 2015). In 1993, SOD1 was
discovered as the first gene linked to familial ALS, motivating
development of the SOD1-G93A transgenic mouse (Gurney
et al., 1994), which remains the most commonly studied disease
model with many ALS-like features (Gois et al., 2020). This study
showed that LCM-dissected motor neurons from SOD1-G93A mice
share many transcriptomic features of post-mortem motor neurons
from ALS patients. In general, the mouse-human correspondence
was improved in SOD1-G93A mice having a more advanced
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phenotype (symptomatic or endstage) (Figure 6), with increased
expression of ALS-increased DEGs associated with inflammation
(F3, C3AR1, CYBB) and decreased expression of ALS-decreased
DEGs associated with neuron generation (CAMK1D, HECW1,
SLITRK4) (Supplementary Figure S26). On the one hand, these
results are surprising, since use of the SOD1-G93A model has been
critiqued as mechanistically representing only a minority of ALS
patients, most of whom develop sporadic disease, with only 12% of
familial cases having a causal SOD1 mutation (Renton et al., 2014).
These limitations of the SOD1-G93Amodel may have accounted for
the failure of at least some therapies with positive preclinical findings
to translate successfully in clinical trials (Benatar, 2007). Since the
majority of ALS patients from this meta-analysis had sporadic
disease without SOD1 mutations, correspondence with the
SOD1-G93A model may stem from common pathways activated
or repressed during motor neuron failure. Such pathways may be
linked to cellular distress signals that arise as downstream processes
in diverse ALS patients, despite differences in the genetic or
environmental factors that triggered disease onset (Li et al., 2013;
Monahan et al., 2016; Szewczyk et al., 2023). In future work, such
comparisons can be extended to other ALS mouse models, besides
SOD1-G93A, which can provide an additional benchmark for model
validation based on objective and quantitative criteria.

ALS-increased DEGs from this study had partial, although
significant, overlap with those recently identified from a large-scale
analysis of bulk spinal cords from ALS and CTL patients
(Supplementary Figures S26E, G, I) (Humphrey et al., 2023).
There was no significant overlap, however, with respect to ALS-
decreased genes (Supplementary Figures S26F, H, J). In the bulk tissue
analysis, it was proposed that increased expression of some genes was
driven by a relative increase in the abundance of certain cell types,
such as astrocytes, microglia, endothelial cells and/or pericytes
(Humphrey et al., 2023). Since the current study included LCM
studies targeting motor neuron-enriched samples, shifts in cell type
abundance should contribute less to differential expression, such that
most DEGs correspond to mRNAs having increased or decreased
abundance in motor neurons. Nonetheless, LCM is an imperfect
technique (Blum and Gitler, 2022). Isolation of motor neurons by
LCM disproportionately captures the soma, excluding axonal or
synaptic regions, and it is not technically feasible to fully exclude
non-target cell types during tissue dissection (Kim et al., 2015). ALS-
increased DEGs from this study had detectable expression in motor
neurons isolated by single nucleus RNA-sequencing of the normal
adult spinal cord; however, such genes were not motor neuron-
specific and were also expressed by endothelial cells, microglia and
astrocytes (Supplementary Figure S17). Despite advantages of LCM as
a targeted approach, therefore, some changes in mRNA abundance
from this studymay not stem frommotor neurons alone, butmay also
be related to shifts in cell type abundance and/or spinal cord
infiltration by peripheral immune cells (Kawamata et al., 1992;
Henkel et al., 2004; Zondler et al., 2016; Garofalo et al., 2020).
Ultimately, immunohistochemical studies combined with high-
throughput approaches such as single cell RNA-seq (Yadav et al.,
2023) can be used to localize such alterations in mRNA abundance.

Few DEGs from this LCM meta-analysis were differentially
expressed in prior studies of iPSC-MNs derived from ALS and
CTL subjects (Workman et al., 2023; Ziff et al., 2023). There was
no significant overlap between DEG sets (Figures 7C,D) and less

than two-thirds of DEGs identified by LCM were altered in the
same direction in iPSC-MNs (Figures 7C,D); however, significant
LCM/iPSC correspondence could be demonstrated using GSEA
(Figures 7K,L). We highlight three factors contributing to the
limited LCM/iPSC correspondence. First, DEGs from this study
were compared to those identified from an analysis of male iPSC-
MN lineages, since in prior work no DEGs had been identified in
female or combined sex iPSC-MN groups (Workman et al.,
2023). Consistent with this, the transcriptome-wide effect size
correlation did improve when LCM meta-estimates were
calculated from male samples only, although the improvement
was modest (rs = 0.025 vs. rs = 0.037; Figures 7A,B). Second, in
situ transcriptome differences separating ALS from CTL samples
may be diluted or altogether lost during the reprogramming steps
required to generate iPSC-MNs, resulting in decreased signal-to-
noise ratios and diminution of differential expression. Third,
iPSC-MNs may be better suited as a model for embryonic-stage
motor neurons, with limited ability to replicate many of the
disease-related expression shifts seen in postmitotic motor
neurons targeted by LCM analysis of post-mortem tissues (Ho
et al., 2016). For these reasons, baseline differences between ALS
and CTL iPSC-MNs may not parallel those of mature in situ
motor neurons, although iPSC-MNs may still provide a flexible
and valuable in vitro system for certain research objectives (Du
et al., 2023).

5 Conclusion

This study used meta-analysis to analyze six LCM
transcriptome datasets that together included 52 ALS and
37 CTL subjects, representing the largest such analysis
performed to date. The analysis identified high-confidence sets
of 222 ALS-increased DEGs and 278 ALS-decreased DEGs, where
each DEG corresponds to a protein-coding gene having
detectable expression in motor neurons. Such DEGs reflect a
complex set of transcription perturbations underlying the ALS
motor neuron phenotype. However, through comprehensive
analysis of overrepresented gene annotations, it was possible
to highlight a core set of 10 disease-relevant functional
categories (Figure 8). Moreover, transcription factor regulators
with a potential coordinating role were identified, including
factors important for motor neuron differentiation (e.g.,
MNX1 and FOXP1). These factors are predicted to have
sequence-specific interactions with DNA regulatory elements
disrupted or engendered by ALS-associated SNP variants.
Genes dysregulated in LCM-dissected motor neurons from
ALS patients were often similarly altered in the SOD1-
G93A mouse model but there was poor correspondence with
iPSC-MNs from ALS patients. Results from this study can be
further refined and updated in future work, based upon the
accumulation of new data from post-mortem tissues of ALS
patients. This will facilitate progress along several avenues, by
helping to define a functional role for non-coding DNA segments
already linked to disease status (Rich et al., 2020), by highlighting
novel CSF or blood biomarker proteins (Witzel et al., 2022), or by
suggesting targets that should be prioritized for antisense
oligonucleotide development (Boros et al., 2022).

Frontiers in Genetics frontiersin.org23

Swindell 10.3389/fgene.2024.1385114

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114


Data availability statement

All data analyzed in this work are available from the Gene Expression
Omnibus database (GSE10953, GSE18920, GSE19332, GSE46298,
GSE56500, GSE68605, GSE76220, GSE115130, GSE140747, GSE190442).

Author contributions

WS: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This was an
unfunded study.

Acknowledgments

The author thanks all subjects for their decision to donate post-
mortem tissue that made this study possible.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1385114/
full#supplementary-material

References

Adams, K. L., Rousso, D. L., Umbach, J. A., and Novitch, B. G. (2015). Foxp1-
mediated programming of limb-innervating motor neurons from mouse and human
embryonic stem cells. Nat. Commun. 6, 6778. doi:10.1038/ncomms7778

Agarwal, V., Bell, G. W., Nam, J. W., and Bartel, D. P. (2015). Predicting effective
microRNA target sites in mammalian mRNAs. Elife 4, e05005. doi:10.7554/eLife.05005

Agrawal, A., Balcı, H., Hanspers, K., Coort, S. L., Martens, M., Slenter, D. N., et al.
(2024). WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 52
(D1), D679–d689. doi:10.1093/nar/gkad960

Akçimen, F., Lopez, E. R., Landers, J. E., Nath, A., Chiò, A., Chia, R., et al. (2023).
Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat. Rev.
Genet. 24 (9), 642–658. doi:10.1038/s41576-023-00592-y

Andrade, C. (2020). Mean difference, standardized mean difference (SMD), and their
use in meta-analysis: as simple as it gets. J. Clin. Psychiatry 81 (5), 20f13681. doi:10.
4088/JCP.20f13681

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Babraham Bioinforma. Babraham Bioinforma. Available at: http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/(Accessed March 24, 2024).

Apolloni, S., and D’Ambrosi, N. (2022). Fibrosis as a common trait in
amyotrophic lateral sclerosis tissues. Neural Regen. Res. 17 (1), 97–98. doi:10.
4103/1673-5374.314302

Arber, S., Han, B., Mendelsohn, M., Smith, M., Jessell, T. M., and Sockanathan, S.
(1999). Requirement for the homeobox gene Hb9 in the consolidation of motor neuron
identity. Neuron 23 (4), 659–674. doi:10.1016/s0896-6273(01)80026-x

Bahia El Idrissi, N., Bosch, S., Ramaglia, V., Aronica, E., Baas, F., and Troost, D.
(2016). Complement activation at the motor end-plates in amyotrophic lateral sclerosis.
J. Neuroinflammation 13 (1), 72. doi:10.1186/s12974-016-0538-2

Benatar, M. (2007). Lost in translation: treatment trials in the SOD1 mouse and in
human ALS. Neurobiol. Dis. 26 (1), 1–13. doi:10.1016/j.nbd.2006.12.015

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300.
doi:10.1111/j.2517-6161.1995.tb02031.x

Bensimon, G., Lacomblez, L., and Meininger, V. (1994). A controlled trial of riluzole
in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330 (9),
585–591. doi:10.1056/nejm199403033300901

Blake, J. A., Baldarelli, R., Kadin, J. A., Richardson, J. E., Smith, C. L., Bult, C. J., et al.
(2021). Mouse genome database (MGD): knowledgebase for mouse-human
comparative biology.Nucleic Acids Res. 49 (D1), D981–d987. doi:10.1093/nar/gkaa1083

Blum, J. A., and Gitler, A. D. (2022). Singling out motor neurons in the age of single-
cell transcriptomics. Trends Genet. 38 (9), 904–919. doi:10.1016/j.tig.2022.03.016

Boros, B. D., Schoch, K. M., Kreple, C. J., and Miller, T. M. (2022). Antisense
oligonucleotides for the study and treatment of ALS. Neurotherapeutics 19 (4),
1145–1158. doi:10.1007/s13311-022-01247-2

Bouman, K., Groothuis, J. T., Doorduin, J., van Alfen, N., Udink Ten Cate, F. E. A.,
van den Heuvel, F. M. A., et al. (2023). LAMA2-Related muscular dystrophy across the
life span: a cross-sectional study. Neurol. Genet. 9 (5), e200089. doi:10.1212/nxg.
0000000000200089

Bourke, S. C., Tomlinson, M., Williams, T. L., Bullock, R. E., Shaw, P. J., and Gibson,
G. J. (2006). Effects of non-invasive ventilation on survival and quality of life in patients
with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 5 (2),
140–147. doi:10.1016/s1474-4422(05)70326-4

Brett, F. M., Costigan, D., Farrell, M. A., Heaphy, P., Thornton, J., and King, M. D.
(1998). Merosin-deficient congenital muscular dystrophy and cortical dysplasia. Eur.
J. Paediatr. Neurol. 2 (2), 77–82. doi:10.1016/s1090-3798(98)80045-7

Broihier, H. T., and Skeath, J. B. (2002). Drosophila homeodomain protein
dHb9 directs neuronal fate via crossrepressive and cell-nonautonomous
mechanisms. Neuron 35 (1), 39–50. doi:10.1016/s0896-6273(02)00743-2

Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt
promotes cell survival by phosphorylating and inhibiting a Forkhead transcription
factor. Cell 96 (6), 857–868. doi:10.1016/s0092-8674(00)80595-4

Burguillo, F. J., Martin, J., Barrera, I., and Bardsley, W. G. (2010). Meta-analysis
of microarray data: the case of imatinib resistance in chronic myelogenous
leukemia. Comput. Biol. Chem. 34 (3), 184–192. doi:10.1016/j.compbiolchem.
2010.06.003

Burnside, E. R., and Bradbury, E. J. (2014). Manipulating the extracellular matrix and
its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 40
(1), 26–59. doi:10.1111/nan.12114

Bushnell, B. J. (2018). BBTools: a suite of fast, multithreaded bioinformatics tools
designed for analysis of DNA and RNA sequence data. Berkeley, CA: Joint Genome
Institute.

Catela, C., Chen, Y., Weng, Y., Wen, K., and Kratsios, P. (2022). Control of spinal
motor neuron terminal differentiation through sustained Hoxc8 gene activity. Elife 11,
e70766. doi:10.7554/eLife.70766

Chen, C. H., Zheng, R., Tokheim, C., Dong, X., Fan, J., Wan, C., et al. (2020).
Determinants of transcription factor regulatory range. Nat. Commun. 11 (1), 2472.
doi:10.1038/s41467-020-16106-x

Frontiers in Genetics frontiersin.org24

Swindell 10.3389/fgene.2024.1385114

https://www.frontiersin.org/articles/10.3389/fgene.2024.1385114/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1385114/full#supplementary-material
https://doi.org/10.1038/ncomms7778
https://doi.org/10.7554/eLife.05005
https://doi.org/10.1093/nar/gkad960
https://doi.org/10.1038/s41576-023-00592-y
https://doi.org/10.4088/JCP.20f13681
https://doi.org/10.4088/JCP.20f13681
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.4103/1673-5374.314302
https://doi.org/10.4103/1673-5374.314302
https://doi.org/10.1016/s0896-6273(01)80026-x
https://doi.org/10.1186/s12974-016-0538-2
https://doi.org/10.1016/j.nbd.2006.12.015
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1056/nejm199403033300901
https://doi.org/10.1093/nar/gkaa1083
https://doi.org/10.1016/j.tig.2022.03.016
https://doi.org/10.1007/s13311-022-01247-2
https://doi.org/10.1212/nxg.0000000000200089
https://doi.org/10.1212/nxg.0000000000200089
https://doi.org/10.1016/s1474-4422(05)70326-4
https://doi.org/10.1016/s1090-3798(98)80045-7
https://doi.org/10.1016/s0896-6273(02)00743-2
https://doi.org/10.1016/s0092-8674(00)80595-4
https://doi.org/10.1016/j.compbiolchem.2010.06.003
https://doi.org/10.1016/j.compbiolchem.2010.06.003
https://doi.org/10.1111/nan.12114
https://doi.org/10.7554/eLife.70766
https://doi.org/10.1038/s41467-020-16106-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114


Chen, Y., and Wang, X. (2020). miRDB: an online database for prediction of
functional microRNA targets. Nucleic Acids Res. 48 (D1), D127–d131. doi:10.1093/
nar/gkz757

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2019).
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in
human and mouse. Nucleic Acids Res. 47 (D1), D140–d144. doi:10.1093/nar/gky1051

Chou, C. H., Shrestha, S., Yang, C. D., Chang, N. W., Lin, Y. L., Liao, K. W., et al.
(2018). miRTarBase update 2018: a resource for experimentally validated microRNA-
target interactions. Nucleic Acids Res. 46 (D1), D296–d302. doi:10.1093/nar/gkx1067

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. New York, NY:
Routledge.

Consortium, T. E. P. (2012). An integrated encyclopedia of DNA elements in the
human genome. Nature 489 (7414), 57–74. doi:10.1038/nature11247

Cooper-Knock, J., Bury, J. J., Heath, P. R., Wyles, M., Higginbottom, A., Gelsthorpe,
C., et al. (2015). C9ORF72 GGGGCC expanded repeats produce splicing dysregulation
which correlates with disease severity in amyotrophic lateral sclerosis. PLoS One 10 (5),
e0127376. doi:10.1371/journal.pone.0127376

Cox, L. E., Ferraiuolo, L., Goodall, E. F., Heath, P. R., Higginbottom, A., Mortiboys, H., et al.
(2010). Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral
sclerosis (ALS). PLoS One 5 (3), e9872. doi:10.1371/journal.pone.0009872

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network
research. InterJournal, Complex Syst. 1695, 1–9.

Daffern, P. J., Pfeifer, P. H., Ember, J. A., and Hugli, T. E. (1995). C3a is a chemotaxin
for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is
secondary to eosinophil activation. J. Exp. Med. 181 (6), 2119–2127. doi:10.1084/jem.
181.6.2119

D’Ambrosi, N., and Apolloni, S. (2020). Fibrotic scar in neurodegenerative diseases.
Front. Immunol. 11, 1394. doi:10.3389/fimmu.2020.01394

Dasen, J. S., De Camilli, A., Wang, B., Tucker, P. W., and Jessell, T. M. (2008). Hox
repertoires for motor neuron diversity and connectivity gated by a single accessory
factor, FoxP1. Cell 134 (2), 304–316. doi:10.1016/j.cell.2008.06.019

Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung,
W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can
be differentiated into motor neurons. Science 321 (5893), 1218–1221. doi:10.1126/
science.1158799

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).
STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15–21. doi:10.1093/
bioinformatics/bts635

Dolgalev, I. (2022). Msigdbr: MSigDB gene sets for multiple organisms in a tidy data
format.

Du, H., Huo, Z., Chen, Y., Zhao, Z., Meng, F., Wang, X., et al. (2023). Induced
pluripotent stem cells and their applications in amyotrophic lateral sclerosis. Cells 12
(6), 971. doi:10.3390/cells12060971

Edaravone MCI-186 ALS 19 Study Group (2017). Safety and efficacy of edaravone in
well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind,
placebo-controlled trial. Lancet Neurol. 16 (7), 505–512. doi:10.1016/s1474-4422(17)
30115-1

Edri-Brami, M., Rosental, B., Hayoun, D., Welt, M., Rosen, H., Wirguin, I., et al.
(2012). Glycans in sera of amyotrophic lateral sclerosis patients and their role in killing
neuronal cells. PLoS One 7 (5), e35772. doi:10.1371/journal.pone.0035772

EmmertBuck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z. P.,
Goldstein, S. R., et al. (1996). Laser capture microdissection. Science 274 (5289),
998–1001. doi:10.1126/science.274.5289.998

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., et al.
(2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46 (D1), D649–d655.
doi:10.1093/nar/gkx1132

Falcon, S., and Gentleman, R. (2007). Using GOstats to test gene lists for GO term
association. Bioinformatics 23 (2), 257–258. doi:10.1093/bioinformatics/btl567

Fawcett, J. W., Schwab, M. E., Montani, L., Brazda, N., and Müller, H. W. (2012).
Defeating inhibition of regeneration by scar and myelin components. Handb. Clin.
Neurol. 109, 503–522. doi:10.1016/b978-0-444-52137-8.00031-0

Feldman, E. L., Goutman, S. A., Petri, S., Mazzini, L., Savelieff, M. G., Shaw, P. J., et al.
(2022). Amyotrophic lateral sclerosis. Lancet 400 (10360), 1363–1380. doi:10.1016/
s0140-6736(22)01272-7

Ferraiuolo, L., Heath, P. R., Holden, H., Kasher, P., Kirby, J., and Shaw, P. J. (2007).
Microarray analysis of the cellular pathways involved in the adaptation to and
progression of motor neuron injury in the SOD1 G93A mouse model of familial
ALS. J. Neurosci. 27 (34), 9201–9219. doi:10.1523/jneurosci.1470-07.2007

Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T., et al.
(2017). GeneHancer: genome-wide integration of enhancers and target genes in
GeneCards. Database (Oxford) 2017, bax028. doi:10.1093/database/bax028

Gabellini, D., Tupler, R., and Green, M. R. (2003). Transcriptional derepression as a
cause of genetic diseases. Curr. Opin. Genet. Dev. 13 (3), 239–245. doi:10.1016/s0959-
437x(03)00050-9

Garcia-Diaz, A., Efe, G., Kabra, K., Patel, A., Lowry, E. R., Shneider, N. A., et al. (2020).
Standardized reporter systems for purification and imaging of human pluripotent stem
cell-derived motor neurons and other cholinergic cells. Neuroscience 450, 48–56. doi:10.
1016/j.neuroscience.2020.06.028

Garofalo, S., Cocozza, G., Porzia, A., Inghilleri, M., Raspa, M., Scavizzi, F., et al.
(2020). Natural killer cells modulate motor neuron-immune cell cross talk in models of
Amyotrophic Lateral Sclerosis. Nat. Commun. 11 (1), 1773. doi:10.1038/s41467-020-
15644-8

Gois, A. M., Mendonça, D. M. F., Freire, M. A. M., and Santos, J. R. (2020). In vitro
and in vivo models of amyotrophic lateral sclerosis: an updated overview. Brain Res.
Bull. 159, 32–43. doi:10.1016/j.brainresbull.2020.03.012

Gurney,M. E., Pu, H., Chiu, A. Y., Dal Canto,M. C., Polchow, C. Y., Alexander, D. D., et al.
(1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide
dismutase mutation. Science 264 (5166), 1772–1775. doi:10.1126/science.8209258

Harrison, K. A., Druey, K. M., Deguchi, Y., Tuscano, J. M., and Kehrl, J. H. (1994). A
novel human homeobox gene distantly related to proboscipedia is expressed in
lymphoid and pancreatic tissues. J. Biol. Chem. 269 (31), 19968–19975. doi:10.1016/
s0021-9258(17)32115-4

Hart, T., Komori, H. K., LaMere, S., Podshivalova, K., and Salomon, D. R. (2013).
Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14,
778. doi:10.1186/1471-2164-14-778

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and
related estimators. J. Educ. Statistics 6 (2), 107–128. doi:10.3102/10769986006002107

Hedges, L. V., and Olkin, I. (2014). Statistical methods for meta-analysis. Academic
Press.

Henkel, J. S., Beers, D. R., Zhao, W., and Appel, S. H. (2009). Microglia in ALS: the
good, the bad, and the resting. J. Neuroimmune Pharmacol. 4 (4), 389–398. doi:10.1007/
s11481-009-9171-5

Henkel, J. S., Engelhardt, J. I., Siklós, L., Simpson, E. P., Kim, S. H., Pan, T., et al.
(2004). Presence of dendritic cells, MCP-1, and activated microglia/macrophages in
amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55 (2), 221–235. doi:10.
1002/ana.10805

Heurich, B., El Idrissi, N. B., Donev, R. M., Petri, S., Claus, P., Neal, J., et al. (2011).
Complement upregulation and activation on motor neurons and neuromuscular
junction in the SOD1 G93A mouse model of familial amyotrophic lateral sclerosis.
J. Neuroimmunol. 235 (1-2), 104–109. doi:10.1016/j.jneuroim.2011.03.011

Highley, J. R., Kirby, J., Jansweijer, J. A., Webb, P. S., Hewamadduma, C. A., Heath, P.
R., et al. (2014). Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes
altered expression of splicing machinery and widespread dysregulation of RNA splicing
in motor neurones. Neuropathol. Appl. Neurobiol. 40 (6), 670–685. doi:10.1111/nan.
12148

Ho, R., Sances, S., Gowing, G., Amoroso, M. W., O’Rourke, J. G., Sahabian, A., et al.
(2016). ALS disrupts spinal motor neuron maturation and aging pathways within gene
co-expression networks. Nat. Neurosci. 19 (9), 1256–1267. doi:10.1038/nn.4345

Huan, T., Joehanes, R., Schurmann, C., Schramm, K., Pilling, L. C., Peters, M. J., et al.
(2016). A whole-blood transcriptome meta-analysis identifies gene expression
signatures of cigarette smoking. Hum. Mol. Genet. 25 (21), 4611–4623. doi:10.1093/
hmg/ddw288

Humphrey, J., Venkatesh, S., Hasan, R., Herb, J. T., de Paiva Lopes, K., Küçükali, F.,
et al. (2023). Integrative transcriptomic analysis of the amyotrophic lateral sclerosis
spinal cord implicates glial activation and suggests new risk genes. Nat. Neurosci. 26 (1),
150–162. doi:10.1038/s41593-022-01205-3

Hynes, R. O., and Naba, A. (2012). Overview of the matrisome--an inventory of
extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4 (1),
a004903. doi:10.1101/cshperspect.a004903

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U.,
et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics 4 (2), 249–264. doi:10.1093/biostatistics/4.2.249

Jiang, Y. M., Yamamoto, M., Kobayashi, Y., Yoshihara, T., Liang, Y., Terao, S., et al.
(2005). Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral
sclerosis. Ann. Neurol. 57 (2), 236–251. doi:10.1002/ana.20379

Jin, W., Qazi, T. J., Quan, Z., Li, N., and Qing, H. (2019). Dysregulation of
transcription factors: a key culprit behind neurodegenerative disorders.
Neuroscientist 25 (6), 548–565. doi:10.1177/1073858418811787

Kamada, T., and Kawai, S. (1989). An algorithm for drawing general undirected
graphs. Inf. Process. Lett. 31 (1), 7–15. doi:10.1016/0020-0190(89)90102-6

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG
as a reference resource for gene and protein annotation. Nucleic Acids Res. 44 (D1),
D457–D462. doi:10.1093/nar/gkv1070

Kang, J., Tang, Q., He, J., Li, L., Yang, N., Yu, S., et al. (2022). RNAInter v4.0: RNA
interactome repository with redefined confidence scoring system and improved
accessibility. Nucleic Acids Res. 50 (D1), D326–d332. doi:10.1093/nar/gkab997

Kawamata, T., Akiyama, H., Yamada, T., and McGeer, P. L. (1992). Immunologic
reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Pathol. 140
(3), 691–707.

Frontiers in Genetics frontiersin.org25

Swindell 10.3389/fgene.2024.1385114

https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gkx1067
https://doi.org/10.1038/nature11247
https://doi.org/10.1371/journal.pone.0127376
https://doi.org/10.1371/journal.pone.0009872
https://doi.org/10.1084/jem.181.6.2119
https://doi.org/10.1084/jem.181.6.2119
https://doi.org/10.3389/fimmu.2020.01394
https://doi.org/10.1016/j.cell.2008.06.019
https://doi.org/10.1126/science.1158799
https://doi.org/10.1126/science.1158799
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.3390/cells12060971
https://doi.org/10.1016/s1474-4422(17)30115-1
https://doi.org/10.1016/s1474-4422(17)30115-1
https://doi.org/10.1371/journal.pone.0035772
https://doi.org/10.1126/science.274.5289.998
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/bioinformatics/btl567
https://doi.org/10.1016/b978-0-444-52137-8.00031-0
https://doi.org/10.1016/s0140-6736(22)01272-7
https://doi.org/10.1016/s0140-6736(22)01272-7
https://doi.org/10.1523/jneurosci.1470-07.2007
https://doi.org/10.1093/database/bax028
https://doi.org/10.1016/s0959-437x(03)00050-9
https://doi.org/10.1016/s0959-437x(03)00050-9
https://doi.org/10.1016/j.neuroscience.2020.06.028
https://doi.org/10.1016/j.neuroscience.2020.06.028
https://doi.org/10.1038/s41467-020-15644-8
https://doi.org/10.1038/s41467-020-15644-8
https://doi.org/10.1016/j.brainresbull.2020.03.012
https://doi.org/10.1126/science.8209258
https://doi.org/10.1016/s0021-9258(17)32115-4
https://doi.org/10.1016/s0021-9258(17)32115-4
https://doi.org/10.1186/1471-2164-14-778
https://doi.org/10.3102/10769986006002107
https://doi.org/10.1007/s11481-009-9171-5
https://doi.org/10.1007/s11481-009-9171-5
https://doi.org/10.1002/ana.10805
https://doi.org/10.1002/ana.10805
https://doi.org/10.1016/j.jneuroim.2011.03.011
https://doi.org/10.1111/nan.12148
https://doi.org/10.1111/nan.12148
https://doi.org/10.1038/nn.4345
https://doi.org/10.1093/hmg/ddw288
https://doi.org/10.1093/hmg/ddw288
https://doi.org/10.1038/s41593-022-01205-3
https://doi.org/10.1101/cshperspect.a004903
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1002/ana.20379
https://doi.org/10.1177/1073858418811787
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkab997
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114


Kibbe, W. A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., et al. (2015). Disease
Ontology 2015 update: an expanded and updated database of human diseases for
linking biomedical knowledge through disease data. Nucleic Acids Res. 43 (Database
issue), D1071–D1078. doi:10.1093/nar/gku1011

Kim, T., Lim, C. S., and Kaang, B. K. (2015). Cell type-specific gene expression
profiling in brain tissue: comparison between TRAP, LCM and RNA-seq. BMB Rep. 48
(7), 388–394. doi:10.5483/bmbrep.2015.48.7.218

Kim, Y. R., Kim, Y. M., Lee, J., Park, J., Lee, J. E., and Hyun, Y. M. (2020). Neutrophils
return to bloodstream through the brain blood vessel after crosstalk with microglia
during LPS-induced neuroinflammation. Front. Cell Dev. Biol. 8, 613733. doi:10.3389/
fcell.2020.613733

Kirby, J., Ning, K., Ferraiuolo, L., Heath, P. R., Ismail, A., Kuo, S. W., et al. (2011).
Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron
survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain
134 (Pt 2), 506–517. doi:10.1093/brain/awq345

Kops, G. J., de Ruiter, N. D., De Vries-Smits, A. M., Powell, D. R., Bos, J. L., and
Burgering, B. M. (1999). Direct control of the Forkhead transcription factor AFX by
protein kinase B. Nature 398 (6728), 630–634. doi:10.1038/19328

Krach, F., Batra, R., Wheeler, E. C., Vu, A. Q., Wang, R., Hutt, K., et al. (2018).
Transcriptome-pathology correlation identifies interplay between TDP-43 and the
expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. 136 (3), 405–423.
doi:10.1007/s00401-018-1870-7

Krueger, F. (2015). Trim Galore!: a wrapper around Cutadapt and FastQC to
consistently apply adapter and quality trimming to FastQ files, with extra
functionality for RRBS data.

Ladd, A. C., Brohawn, D. G., and Bennett, J. P. (2017). Laser-captured spinal cord
motorneurons from ALS subjects show increased gene expression in vacuolar ATPase
networks. J. Syst. Integr. Neurosci. 3 (6). doi:10.15761/jsin.1000182

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24 (5), 719–720. doi:10.
1093/bioinformatics/btm563

Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014). voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15 (2), R29.
doi:10.1186/gb-2014-15-2-r29

Lee, S., Lee, B., Joshi, K., Pfaff, S. L., Lee, J. W., and Lee, S. K. (2008). A regulatory
network to segregate the identity of neuronal subtypes.Dev. Cell 14 (6), 877–889. doi:10.
1016/j.devcel.2008.03.021

Lesurf, R., Cotto, K. C., Wang, G., Griffith, M., Kasaian, K., Jones, S. J., et al. (2016).
ORegAnno 3.0: a community-driven resource for curated regulatory annotation.
Nucleic Acids Res. 44 (D1), D126–D132. doi:10.1093/nar/gkv1203

Li, H., Zhu, D., and Cook, M. (2008). A statistical framework for consolidating
"sibling" probe sets for Affymetrix GeneChip data. BMC Genomics 9, 188. doi:10.1186/
1471-2164-9-188

Li, Y. R., King, O. D., Shorter, J., and Gitler, A. D. (2013). Stress granules as crucibles
of ALS pathogenesis. J. Cell Biol. 201 (3), 361–372. doi:10.1083/jcb.201302044

Liang, X., Song, M. R., Xu, Z., Lanuza, G. M., Liu, Y., Zhuang, T., et al. (2011). Isl1 is
required for multiple aspects of motor neuron development. Mol. Cell Neurosci. 47 (3),
215–222. doi:10.1016/j.mcn.2011.04.007

Liao, B., Zhao, W., Beers, D. R., Henkel, J. S., and Appel, S. H. (2012).
Transformation from a neuroprotective to a neurotoxic microglial phenotype
in a mouse model of ALS. Exp. Neurol. 237 (1), 147–152. doi:10.1016/j.expneurol.
2012.06.011

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., and Tamayo,
P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Lin, J., Huang, P., Chen, W., Ye, C., Su, H., and Yao, X. (2020). Key molecules and
pathways underlying sporadic amyotrophic lateral sclerosis: integrated analysis on gene
expression profiles of motor neurons. Front. Genet. 11, 578143. doi:10.3389/fgene.2020.
578143

Liu, W. M., Mei, R., Di, X., Ryder, T. B., Hubbell, E., Dee, S., et al. (2002). Analysis of
high density expression microarrays with signed-rank call algorithms. Bioinformatics 18
(12), 1593–1599. doi:10.1093/bioinformatics/18.12.1593

Luna, A., Babur, O., Aksoy, B. A., Demir, E., and Sander, C. (2016). PaxtoolsR:
pathway analysis in R using Pathway Commons. Bioinformatics 32 (8), 1262–1264.
doi:10.1093/bioinformatics/btv733

Lunetta, C., Lizio, A., Maestri, E., Sansone, V. A., Mora, G., Miller, R. G., et al. (2017).
Serum C-reactive protein as a prognostic biomarker in amyotrophic lateral sclerosis.
JAMA Neurol. 74 (6), 660–667. doi:10.1001/jamaneurol.2016.6179

Maleki, F., Ovens, K., Hogan, D. J., and Kusalik, A. J. (2020). Gene set analysis:
challenges, opportunities, and future research. Front. Genet. 11, 654. doi:10.3389/fgene.
2020.00654

McCall, M. N., Murakami, P. N., Lukk, M., Huber, W., and Irizarry, R. A. (2011).
Assessing affymetrix GeneChip microarray quality. BMC Bioinforma. 12, 137. doi:10.
1186/1471-2105-12-137

McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., et al.
(2019). The biochemical basis of microRNA targeting efficacy. Science 366 (6472),
eaav1741. doi:10.1126/science.aav1741

McGrath, M. S., Zhang, R., Bracci, P. M., Azhir, A., and Forrest, B. D. (2023).
Regulation of the innate immune system as a therapeutic approach to supporting
respiratory function in ALS. Cells 12 (7), 1031. doi:10.3390/cells12071031

Mead, R. J., Shan, N., Reiser, H. J., Marshall, F., and Shaw, P. J. (2023).
Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for
successful therapeutic translation. Nat. Rev. Drug Discov. 22 (3), 185–212.
doi:10.1038/s41573-022-00612-2

Medina, A. M., Hagenauer, M. H., Krolewski, D. M., Hughes, E., Forrester, L. C. T.,
Walsh, D. M., et al. (2023). Neurotransmission-related gene expression in the frontal
pole is altered in subjects with bipolar disorder and schizophrenia. Transl. Psychiatry 13
(1), 118. doi:10.1038/s41398-023-02418-1

Miller, R. G., Zhang, R., Bracci, P. M., Azhir, A., Barohn, R., Bedlack, R., et al. (2022a).
Phase 2B randomized controlled trial of NP001 in amyotrophic lateral sclerosis: pre-
specified and post hoc analyses. Muscle Nerve 66 (1), 39–49. doi:10.1002/mus.27511

Miller, T. M., Cudkowicz, M. E., Genge, A., Shaw, P. J., Sobue, G., Bucelli, R. C., et al.
(2022b). Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387
(12), 1099–1110. doi:10.1056/NEJMoa2204705

Mizuno, H., Warita, H., Aoki, M., and Itoyama, Y. (2008). Accumulation of
chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons
in amyotrophic lateral sclerosis transgenic rats. J. Neurosci. Res. 86 (11), 2512–2523.
doi:10.1002/jnr.21702

Monahan, Z., Shewmaker, F., and Pandey, U. B. (2016). Stress granules at the
intersection of autophagy and ALS. Brain Res. 1649 (Pt B), 189–200. doi:10.1016/j.
brainres.2016.05.022

Morello, G., Salomone, S., D’Agata, V., Conforti, F. L., and Cavallaro, S. (2020). From
multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front.
Neurosci. 14, 577755. doi:10.3389/fnins.2020.577755

Murdock, B. J., Bender, D. E., Kashlan, S. R., Figueroa-Romero, C., Backus, C.,
Callaghan, B. C., et al. (2016). Increased ratio of circulating neutrophils to monocytes in
amyotrophic lateral sclerosis.Neurol. Neuroimmunol. Neuroinflamm 3 (4), e242. doi:10.
1212/nxi.0000000000000242

Murdock, B. J., Goutman, S. A., Boss, J., Kim, S., and Feldman, E. L. (2021). Amyotrophic
lateral sclerosis survival associates with neutrophils in a sex-specific manner. Neurol.
Neuroimmunol. Neuroinflamm 8 (2), e953. doi:10.1212/nxi.0000000000000953

Myers, T. A., Chanock, S. J., and Machiela, M. J. (2020). LDlinkR: an R package for
rapidly calculating linkage disequilibrium statistics in diverse populations. Front. Genet.
11, 157. doi:10.3389/fgene.2020.00157

Naba, A., Clauser, K. R., Hoersch, S., Liu, H., Carr, S. A., and Hynes, R. O. (2012a).
The matrisome: in silico definition and in vivo characterization by proteomics of normal
and tumor extracellular matrices. Mol. Cell Proteomics 11 (4), M111.014647. doi:10.
1074/mcp.M111.014647

Naba, A., Hoersch, S., and Hynes, R. O. (2012b). Towards definition of an ECM parts
list: an advance on GO categories.Matrix Biol. 31 (7-8), 371–372. doi:10.1016/j.matbio.
2012.11.008

Nakae, J., Park, B. C., and Accili, D. (1999). Insulin stimulates phosphorylation of the
forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive
pathway. J. Biol. Chem. 274 (23), 15982–15985. doi:10.1074/jbc.274.23.15982

Nardo, G., Iennaco, R., Fusi, N., Heath, P. R., Marino, M., Trolese, M. C., et al. (2013).
Transcriptomic indices of fast and slow disease progression in two mouse models of
amyotrophic lateral sclerosis. Brain 136 (Pt 11), 3305–3332. doi:10.1093/brain/awt250

Nichterwitz, S., Chen, G., Aguila Benitez, J., Yilmaz, M., Storvall, H., Cao, M., et al.
(2016). Laser capture microscopy coupled with Smart-seq2 for precise spatial
transcriptomic profiling. Nat. Commun. 7, 12139. doi:10.1038/ncomms12139

Nishida, K., Frith, M. C., and Nakai, K. (2009). Pseudocounts for transcription factor
binding sites. Nucleic Acids Res. 37 (3), 939–944. doi:10.1093/nar/gkn1019

Nizzardo, M., Taiana, M., Rizzo, F., Aguila Benitez, J., Nijssen, J., Allodi, I., et al.
(2020). Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta
Neuropathol. 139 (5), 837–853. doi:10.1007/s00401-020-02133-x

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., et al.
(2022). The complete sequence of a human genome. Science 376 (6588), 44–53. doi:10.
1126/science.abj6987

Paganoni, S., Macklin, E. A., Hendrix, S., Berry, J. D., Elliott, M. A., Maiser, S., et al.
(2020). Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis.
N. Engl. J. Med. 383 (10), 919–930. doi:10.1056/NEJMoa1916945

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., and Salzberg,
S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-
seq reads. Nat. Biotechnol. 33 (3), 290–295. doi:10.1038/nbt.3122

Pfaff, S. L., Mendelsohn, M., Stewart, C. L., Edlund, T., and Jessell, T. M. (1996).
Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor
neuron-dependent step in interneuron differentiation. Cell 84 (2), 309–320. doi:10.
1016/s0092-8674(00)80985-x

Frontiers in Genetics frontiersin.org26

Swindell 10.3389/fgene.2024.1385114

https://doi.org/10.1093/nar/gku1011
https://doi.org/10.5483/bmbrep.2015.48.7.218
https://doi.org/10.3389/fcell.2020.613733
https://doi.org/10.3389/fcell.2020.613733
https://doi.org/10.1093/brain/awq345
https://doi.org/10.1038/19328
https://doi.org/10.1007/s00401-018-1870-7
https://doi.org/10.15761/jsin.1000182
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1016/j.devcel.2008.03.021
https://doi.org/10.1016/j.devcel.2008.03.021
https://doi.org/10.1093/nar/gkv1203
https://doi.org/10.1186/1471-2164-9-188
https://doi.org/10.1186/1471-2164-9-188
https://doi.org/10.1083/jcb.201302044
https://doi.org/10.1016/j.mcn.2011.04.007
https://doi.org/10.1016/j.expneurol.2012.06.011
https://doi.org/10.1016/j.expneurol.2012.06.011
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.3389/fgene.2020.578143
https://doi.org/10.3389/fgene.2020.578143
https://doi.org/10.1093/bioinformatics/18.12.1593
https://doi.org/10.1093/bioinformatics/btv733
https://doi.org/10.1001/jamaneurol.2016.6179
https://doi.org/10.3389/fgene.2020.00654
https://doi.org/10.3389/fgene.2020.00654
https://doi.org/10.1186/1471-2105-12-137
https://doi.org/10.1186/1471-2105-12-137
https://doi.org/10.1126/science.aav1741
https://doi.org/10.3390/cells12071031
https://doi.org/10.1038/s41573-022-00612-2
https://doi.org/10.1038/s41398-023-02418-1
https://doi.org/10.1002/mus.27511
https://doi.org/10.1056/NEJMoa2204705
https://doi.org/10.1002/jnr.21702
https://doi.org/10.1016/j.brainres.2016.05.022
https://doi.org/10.1016/j.brainres.2016.05.022
https://doi.org/10.3389/fnins.2020.577755
https://doi.org/10.1212/nxi.0000000000000242
https://doi.org/10.1212/nxi.0000000000000242
https://doi.org/10.1212/nxi.0000000000000953
https://doi.org/10.3389/fgene.2020.00157
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.1016/j.matbio.2012.11.008
https://doi.org/10.1016/j.matbio.2012.11.008
https://doi.org/10.1074/jbc.274.23.15982
https://doi.org/10.1093/brain/awt250
https://doi.org/10.1038/ncomms12139
https://doi.org/10.1093/nar/gkn1019
https://doi.org/10.1007/s00401-020-02133-x
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1056/NEJMoa1916945
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1016/s0092-8674(00)80985-x
https://doi.org/10.1016/s0092-8674(00)80985-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114


Philips, T., and Rothstein, J. D. (2015). Rodent models of amyotrophic lateral
sclerosis. Curr. Protoc. Pharmacol. 69 (5.67), 61–65. doi:10.1002/0471141755.
ph0567s69

Previtali, S. C., and Zambon, A. A. (2020). LAMA2 neuropathies: human findings and
pathomechanisms frommouse models. Front. Mol. Neurosci. 13, 60. doi:10.3389/fnmol.
2020.00060

Rabin, S. J., Kim, J. M., Baughn, M., Libby, R. T., Kim, Y. J., Fan, Y., et al. (2010).
Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-
matrix adhesion biology. Hum. Mol. Genet. 19 (2), 313–328. doi:10.1093/hmg/
ddp498

Ramsköld, D., Wang, E. T., Burge, C. B., and Sandberg, R. (2009). An abundance of
ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS
Comput. Biol. 5 (12), e1000598. doi:10.1371/journal.pcbi.1000598

Rauluseviciute, I., Riudavets-Puig, R., Blanc-Mathieu, R., Castro-Mondragon, J. A.,
Ferenc, K., Kumar, V., et al. (2023). JASPAR 2024: 20th anniversary of the open-access
database of transcription factor binding profiles. Nucleic Acids Res. 52, D174–D182.
doi:10.1093/nar/gkad1059

Rayon, T., Stamataki, D., Perez-Carrasco, R., Garcia-Perez, L., Barrington, C.,
Melchionda, M., et al. (2020). Species-specific pace of development is associated
with differences in protein stability. Science 369 (6510), eaba7667. doi:10.1126/
science.aba7667

Renton, A. E., Chiò, A., and Traynor, B. J. (2014). State of play in amyotrophic lateral
sclerosis genetics. Nat. Neurosci. 17 (1), 17–23. doi:10.1038/nn.3584

Rich, K. A., Roggenbuck, J., and Kolb, S. J. (2020). Searching far and genome-wide: the
relevance of association studies in amyotrophic lateral sclerosis. Front. Neurosci. 14,
603023. doi:10.3389/fnins.2020.603023

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11 (3), R25. doi:10.
1186/gb-2010-11-3-r25

Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., et al. (2020).
Pathway Commons 2019 Update: integration, analysis and exploration of pathway data.
Nucleic Acids Res. 48 (D1), D489–d497. doi:10.1093/nar/gkz946

Rousso, D. L., Gaber, Z. B., Wellik, D., Morrisey, E. E., and Novitch, B. G. (2008).
Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar
organization of spinal motor neurons. Neuron 59 (2), 226–240. doi:10.1016/j.neuron.
2008.06.025

Santo, E. E., and Paik, J. (2018). FOXO in neural cells and diseases of the nervous
system. Curr. Top. Dev. Biol. 127, 105–118. doi:10.1016/bs.ctdb.2017.10.002

Sargsyan, S. A., Monk, P. N., and Shaw, P. J. (2005). Microglia as potential
contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51 (4),
241–253. doi:10.1002/glia.20210

Schwarzer, G. (2007). meta: an R package for meta-analysis. R news 7 (3), 40–45.

Shijo, T., Warita, H., Suzuki, N., Kitajima, Y., Ikeda, K., Akiyama, T., et al. (2018). Aberrant
astrocytic expression of chondroitin sulfate proteoglycan receptors in a rat model of
amyotrophic lateral sclerosis. J. Neurosci. Res. 96 (2), 222–233. doi:10.1002/jnr.24127

Shirasaki, R., and Pfaff, S. L. (2002). Transcriptional codes and the control of neuronal
identity. Annu. Rev. Neurosci. 25, 251–281. doi:10.1146/annurev.neuro.25.112701.142916

Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from
properties to genome-wide predictions. Nat. Rev. Genet. 15 (4), 272–286. doi:10.1038/
nrg3682

Shorer, Z., Philpot, J., Muntoni, F., Sewry, C., and Dubowitz, V. (1995).
Demyelinating peripheral neuropathy in merosin-deficient congenital muscular
dystrophy. J. Child. Neurol. 10 (6), 472–475. doi:10.1177/088307389501000610

Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3,
Article3. doi:10.2202/1544-6115.1027

Sollis, E., Mosaku, A., Abid, A., Buniello, A., Cerezo, M., Gil, L., et al. (2023). The
NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids
Res. 51 (D1), D977–d985. doi:10.1093/nar/gkac1010

Song, L., and Florea, L. (2015). Rcorrector: efficient and accurate error correction for
Illumina RNA-seq reads. Gigascience 4, 48. doi:10.1186/s13742-015-0089-y

Suk, T. R., and Rousseaux, M. W. C. (2020). The role of TDP-43 mislocalization in
amyotrophic lateral sclerosis. Mol. Neurodegener. 15 (1), 45. doi:10.1186/s13024-020-
00397-1

Swindell, W. R., Sarkar, M. K., Stuart, P. E., Voorhees, J. J., Elder, J. T., Johnston, A.,
et al. (2015). Psoriasis drug development and GWAS interpretation through in silico
analysis of transcription factor binding sites. Clin. Transl. Med. 4, 13. doi:10.1186/
s40169-015-0054-5

Szewczyk, B., Günther, R., Japtok, J., Frech, M. J., Naumann, M., Lee, H. O., et al.
(2023). FUS ALS neurons activate major stress pathways and reduce translation as an
early protective mechanism against neurodegeneration. Cell Rep. 42 (2), 112025. doi:10.
1016/j.celrep.2023.112025

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al.
(2023). The STRING database in 2023: protein-protein association networks and

functional enrichment analyses for any sequenced genome of interest. Nucleic Acids
Res. 51 (D1), D638–d646. doi:10.1093/nar/gkac1000

Thaler, J., Harrison, K., Sharma, K., Lettieri, K., Kehrl, J., and Pfaff, S. L. (1999). Active
suppression of interneuron programs within developing motor neurons revealed by
analysis of homeodomain factor HB9. Neuron 23 (4), 675–687. doi:10.1016/s0896-
6273(01)80027-1

Thaler, J. P., Lee, S. K., Jurata, L. W., Gill, G. N., and Pfaff, S. L. (2002). LIM factor
Lhx3 contributes to the specification of motor neuron and interneuron identity through
cell-type-specific protein-protein interactions. Cell 110 (2), 237–249. doi:10.1016/
s0092-8674(02)00823-1

Vora, B., Wang, A., Kosti, I., Huang, H., Paranjpe, I., Woodruff, T. J., et al. (2018). Meta-
analysis of maternal and fetal transcriptomic data elucidates the role of adaptive and innate
immunity in preterm birth. Front. Immunol. 9, 993. doi:10.3389/fimmu.2018.00993

Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., and Chen, C. F. (2007). A newmethod to
measure the semantic similarity of GO terms. Bioinformatics 23 (10), 1274–1281. doi:10.
1093/bioinformatics/btm087

Warwick, C. A., Keyes, A. L., Woodruff, T. M., and Usachev, Y. M. (2021). The
complement cascade in the regulation of neuroinflammation, nociceptive sensitization,
and pain. J. Biol. Chem. 297 (3), 101085. doi:10.1016/j.jbc.2021.101085

Wasserman, W. W., and Sandelin, A. (2004). Applied bioinformatics for the
identification of regulatory elements. Nat. Rev. Genet. 5 (4), 276–287. doi:10.1038/
nrg1315

Wight, T. N., Kang, I., Evanko, S. P., Harten, I. A., Chang, M. Y., Pearce, O. M. T., et al.
(2020). Versican-A critical extracellular matrix regulator of immunity and
inflammation. Front. Immunol. 11, 512. doi:10.3389/fimmu.2020.00512

William, C. M., Tanabe, Y., and Jessell, T. M. (2003). Regulation of motor neuron
subtype identity by repressor activity ofMnx class homeodomain proteins.Development
130 (8), 1523–1536. doi:10.1242/dev.00358

Wilson, D. M., Cookson, M. R., Van Den Bosch, L., Zetterberg, H., Holtzman, D. M.,
and Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. Cell 186 (4),
693–714. doi:10.1016/j.cell.2022.12.032

Witzel, S., Mayer, K., and Oeckl, P. (2022). Biomarkers for amyotrophic lateral
sclerosis. Curr. Opin. Neurol. 35 (5), 699–704. doi:10.1097/wco.0000000000001094

Woodruff, T.M., Costantini, K. J., Crane, J.W., Atkin, J. D.,Monk, P. N., Taylor, S.M., et al.
(2008). The complement factor C5a contributes to pathology in a rat model of amyotrophic
lateral sclerosis. J. Immunol. 181 (12), 8727–8734. doi:10.4049/jimmunol.181.12.8727

Workman, M. J., Lim, R. G., Wu, J., Frank, A., Ornelas, L., Panther, L., et al. (2023).
Large-scale differentiation of iPSC-derived motor neurons from ALS and control
subjects. Neuron 111 (8), 1191–1204.e5. doi:10.1016/j.neuron.2023.01.010

Xu, M. M., Zhou, M. T., Li, S. W., Zhen, X. C., and Yang, S. (2021). Glycoproteins as
diagnostic and prognostic biomarkers for neurodegenerative diseases: a glycoproteomic
approach. J. Neurosci. Res. 99 (5), 1308–1324. doi:10.1002/jnr.24805

Yadav, A., Matson, K. J. E., Li, L., Hua, I., Petrescu, J., Kang, K., et al. (2023). A cellular
taxonomy of the adult human spinal cord. Neuron 111 (3), 328–344.e7. doi:10.1016/j.
neuron.2023.01.007

Yoo, M., Shin, J., Kim, J., Ryall, K. A., Lee, K., Lee, S., et al. (2015). DSigDB: drug
signatures database for gene set analysis. Bioinformatics 31 (18), 3069–3071. doi:10.
1093/bioinformatics/btv313

Yu, G. (2018). Using meshes for MeSH term enrichment and semantic analyses.
Bioinformatics 34 (21), 3766–3767. doi:10.1093/bioinformatics/bty410

Yu, G., and He, Q. Y. (2016). ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol. Biosyst. 12 (2), 477–479. doi:10.1039/c5mb00663e

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics 16 (5), 284–287. doi:10.1089/
omi.2011.0118

Yu, G., Wang, L. G., Yan, G. R., and He, Q. Y. (2015). DOSE: an R/Bioconductor
package for disease ontology semantic and enrichment analysis. Bioinformatics 31 (4),
608–609. doi:10.1093/bioinformatics/btu684

Zhang, R., Bracci, P. M., Azhir, A., Forrest, B. D., and McGrath, M. S. (2022a).
Macrophage-targeted sodium chlorite (NP001) slows progression of amyotrophic
lateral sclerosis (ALS) through regulation of microbial translocation. Biomedicines
10 (11), 2907. doi:10.3390/biomedicines10112907

Zhang, S., Cooper-Knock, J., Weimer, A. K., Shi, M., Moll, T., Marshall, J. N. G., et al.
(2022b). Genome-wide identification of the genetic basis of amyotrophic lateral
sclerosis. Neuron 110 (6), 992–1008.e11. doi:10.1016/j.neuron.2021.12.019

Zhang, T., Baldie, G., Periz, G., andWang, J. (2014). RNA-processing protein TDP-43
regulates FOXO-dependent protein quality control in stress response. PLoS Genet. 10
(10), e1004693. doi:10.1371/journal.pgen.1004693

Ziff, O. J., Neeves, J., Mitchell, J., Tyzack, G., Martinez-Ruiz, C., Luisier, R., et al.
(2023). Integrated transcriptome landscape of ALS identifies genome instability linked
to TDP-43 pathology. Nat. Commun. 14 (1), 2176. doi:10.1038/s41467-023-37630-6

Zondler, L., Müller, K., Khalaji, S., Bliederhäuser, C., Ruf, W. P., Grozdanov, V., et al.
(2016). Peripheral monocytes are functionally altered and invade the CNS in ALS
patients. Acta Neuropathol. 132 (3), 391–411. doi:10.1007/s00401-016-1548-y

Frontiers in Genetics frontiersin.org27

Swindell 10.3389/fgene.2024.1385114

https://doi.org/10.1002/0471141755.ph0567s69
https://doi.org/10.1002/0471141755.ph0567s69
https://doi.org/10.3389/fnmol.2020.00060
https://doi.org/10.3389/fnmol.2020.00060
https://doi.org/10.1093/hmg/ddp498
https://doi.org/10.1093/hmg/ddp498
https://doi.org/10.1371/journal.pcbi.1000598
https://doi.org/10.1093/nar/gkad1059
https://doi.org/10.1126/science.aba7667
https://doi.org/10.1126/science.aba7667
https://doi.org/10.1038/nn.3584
https://doi.org/10.3389/fnins.2020.603023
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1093/nar/gkz946
https://doi.org/10.1016/j.neuron.2008.06.025
https://doi.org/10.1016/j.neuron.2008.06.025
https://doi.org/10.1016/bs.ctdb.2017.10.002
https://doi.org/10.1002/glia.20210
https://doi.org/10.1002/jnr.24127
https://doi.org/10.1146/annurev.neuro.25.112701.142916
https://doi.org/10.1038/nrg3682
https://doi.org/10.1038/nrg3682
https://doi.org/10.1177/088307389501000610
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.1093/nar/gkac1010
https://doi.org/10.1186/s13742-015-0089-y
https://doi.org/10.1186/s13024-020-00397-1
https://doi.org/10.1186/s13024-020-00397-1
https://doi.org/10.1186/s40169-015-0054-5
https://doi.org/10.1186/s40169-015-0054-5
https://doi.org/10.1016/j.celrep.2023.112025
https://doi.org/10.1016/j.celrep.2023.112025
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1016/s0896-6273(01)80027-1
https://doi.org/10.1016/s0896-6273(01)80027-1
https://doi.org/10.1016/s0092-8674(02)00823-1
https://doi.org/10.1016/s0092-8674(02)00823-1
https://doi.org/10.3389/fimmu.2018.00993
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1016/j.jbc.2021.101085
https://doi.org/10.1038/nrg1315
https://doi.org/10.1038/nrg1315
https://doi.org/10.3389/fimmu.2020.00512
https://doi.org/10.1242/dev.00358
https://doi.org/10.1016/j.cell.2022.12.032
https://doi.org/10.1097/wco.0000000000001094
https://doi.org/10.4049/jimmunol.181.12.8727
https://doi.org/10.1016/j.neuron.2023.01.010
https://doi.org/10.1002/jnr.24805
https://doi.org/10.1016/j.neuron.2023.01.007
https://doi.org/10.1016/j.neuron.2023.01.007
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/bty410
https://doi.org/10.1039/c5mb00663e
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bioinformatics/btu684
https://doi.org/10.3390/biomedicines10112907
https://doi.org/10.1016/j.neuron.2021.12.019
https://doi.org/10.1371/journal.pgen.1004693
https://doi.org/10.1038/s41467-023-37630-6
https://doi.org/10.1007/s00401-016-1548-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1385114

	Meta-analysis of differential gene expression in lower motor neurons isolated by laser capture microdissection from post-mo ...
	1 Introduction
	2 Materials and methods
	2.1 GSE18920
	2.2 GSE19332
	2.3 GSE56500
	2.4 GSE68605
	2.5 GSE76220
	2.6 GSE115130
	2.7 Meta-analysis
	2.8 Analysis of over-represented gene annotations
	2.9 Protein-protein interaction network
	2.10 Motif analyses
	2.11 ALS-associated genes and SNP loci
	2.12 Comparison to SOD1-G93A mouse model of ALS
	2.13 Additional datasets

	3 Results
	3.1 Identification of DEGs from each study separately
	3.2 Effect size comparison among studies
	3.3 Meta-analysis identifies DEGs with a consistent pattern across studies
	3.4 ALS-increased genes are linked to immune processes and blood vessel development with localization to plasma membrane an ...
	3.5 ALS-decreased genes include neurofilament light and are associated with neurogenesis, cell projection morphogenesis and ...
	3.6 FUS is a top-ranked protein interaction partner of ALS-decreased DEG mRNAs
	3.7 DEGs have detectable expression in motor neurons from normal adult spinal cord but are not motor neuron-specific
	3.8 mRNAs encoding extracellular matrix proteins are disproportionately increased in ALS motor neurons
	3.9 Motor neuron DEGs overlap significantly with genes near ALS-associated SNP loci and are mutually associated with plasma ...
	3.10 ALS-increased DEGs have increased proximity to DNA elements recognized by forkhead transcription factors and motor neu ...
	3.11 ALS-associated SNPs with genotype-dependent transcription factor binding sites
	3.12 ALS-increased DEGs are enriched among genes upregulated during motor neuron differentiation
	3.13 ALS DEGs are similarly altered in LCM-dissected motor neurons from symptomatic SOD1-G93A mice
	3.14 Genes increased (but not decreased) in LCM-dissected motor neurons from ALS patients are correspondingly altered in bu ...
	3.15 Genes decreased (but not increased) in LCM-dissected motor neurons from ALS patients have significant overlap with tho ...

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


