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Background: Wheat landraces represent a reservoir of genetic diversity that can
support wheat improvement through breeding. A core panel of 300 Watkins
wheat landraces, as well as 16 non-Watkins landraces and elite wheat cultivars,
was grown during the 2020–2021 and 2021–2022 seasons at four Agricultural
Research Stations in Egypt, Gemmiza, Nubaria, Sakha, and Sids, to evaluate the
core panel for agromorphological and yield-related traits. The genetic population
structure within these genotypes were assessed using 35,143 single nucleotide
polymorphisms (SNPs).

Results: Cluster analyses using Discriminant Analysis of Principal Components
(DAPC) and k-means revealed three clusters with moderate genetic differentiation
and population structure, possibly due to wheat breeding systems and
geographical isolation. The best ancestry was k = 4, but k = 2 and k = 3 were
also significant. A genome-wide association study (GWAS) identified clustered
marker trait associations (MTAs) linked to thousand kernel weight on
chromosome 5A, plant height on chromosomes 3B and 1D, days to heading on
chromosomes 2A, 4B, 5B and 1D, and plant maturity on chromosomes 3A, 2B, and
6B. In the future, these MTAs can be used to accelerate the incorporation of
beneficial alleles into locally adapted germplasm through marker-assisted
selection. Gene enrichment analysis identified key genes within these loci,
including Reduced height-1 (Rht-A1) and stress-related genes.

Conclusion: These findings underscore significant genetic connections and the
involvement of crucial biological pathways.
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1 Introduction

Wheat is Egypt’s main food crop and one of the oldest cultivated cereal crops, with
evidence of its use for bread making dating back to 7300-6000 B.P (Boulos and Fahmy,
2007). Wheat accounts for 40% of the protein and 37% of the calories in the Egyptian diet
(Abdalla et al., 2023). More than 70 million Egyptians rely solely on bread, consuming five
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loaves per person each day (Abay, 2023). The wheat-growing area
covers 1.5 million hectares – 33% of the cultivated area during the
winter season–and yielded approximately 10 million tons in 2022.
Notwithstanding, to sustain national demand, Egypt imports
12.5 million tons of wheat annually, making it the world’s largest
importer of wheat (Aalto et al., 2022). Despite the government’s food
security policy, which has led to a production growth rate of 4.1%
per year, leading to an overall 4.3-fold grain yield increase since
1981, there is an urgent need to further increase wheat production
(Abdelmageed et al., 2019).

Climate change (Filho, 2015), limited water resources (Yigezu
et al., 2021), and limited agricultural growth present challenges and
threats to wheat production in Egypt. About 85% of water
consumption in Egypt is used in agriculture, while the remaining
is allocated to urban areas (Gabr et al., 2024). Climate change is widely
accepted as the most pressing environmental issue concerning the
entire planet (El Massah and Omran, 2015). Through temperature
increases, altered precipitation patterns, elevated CO2 levels, high
evaporation rates, increased pest and disease prevalence, and other
consequences (Filho, 2015), it is estimated that by 2050, cereal crop
production will decline by 18% for wheat and barley, 19% for maize
and sorghum, 28% for soybeans, and 11% for rice (Wang et al., 2018).
To address the challenges facing wheat production in Egypt and
mitigate against the impact of climate change, the national wheat
breeding program is focused on releasing new wheat varieties with
improved disease resistance, a more desirable root architecture,
heavier grains, resistance to more extreme temperatures, and lower
water requirements.

Wheat researchers and breeders make use of various
genotyping techniques, such as single-nucleotide polymorphism
(SNP) hybridization arrays, to link genotypic variants to
phenotypic traits to improve crop yields, increase agricultural
diversity, and support more sustainable farming practices. SNPs
are the most commonly used molecular markers due to their wide
availability across all genomes and low cost compared to othermarker
technologies (Broccanello et al., 2018). They can be used to create
arrays of thousands of markers spread across the whole genome, even
for very large autopolyploid or allopolyploid species (Ganal et al.,
2012; Allen et al., 2017). For wheat, the benefits of understanding and
making full use of genetic diversity are immense, primarily in terms of
increasing production. By studying the interactions between
genotypes and their surroundings, wheat can be bred for improved
pathogen resistance, climate change adaptation, and superior
production characteristics. The use of SNP markers for association
and linkage mapping studies has greatly enhanced the research
potential of wheat (Lucas et al., 2017). SNP markers, wheat
functional and comparative genomics, and marker-assisted
selection (MAS) are all tools that can be used to help overcome
the limitations of traditional breeding methods, by streamlining the
integration of genes to improve disease resistance, increase yield, and
improve quality (Rasheed et al., 2018).

Here, we explored the genetic structure, relationship, and
potential importance of 300 core Watkins wheat landraces that
were previously selected to maximize genetic information
(Arora et al., 2023; Wingen et al., 2014). The panel was
supplemented with 16 non-Watkins landraces and elite
cultivars. Comprehensive genetic structure, k-means cluster,
and population structure analyses were conducted to

understand the genetic content in the panel. Additionally, we
performed genome-wide association studies (GWAS) with
35,143 SNP markers and identified marker trait associations
(MTAs) with date of heading, date of maturity, plant height,
and thousand kernel weight. Our study contributes to the
understanding of how wheat genetics interacts with the
environment to affect wheat cultivation in Egypt. The results
of this study can be used to inform the development of new
wheat varieties better adapted to Egyptian cultivation
conditions.

2 Materials and methods

2.1 Plant materials, field site locations, and
phenotypic data assessment

The plant materials used in the current study comprised
300 Watkins wheat landraces and 16 non-Watkins landraces
and elite cultivars obtained from the Germplasm Resource Unit
(GRU) at the John Innes Centre in Norwich, United Kingdom
(Supplementary Table S1). The 316 lines were grown in two
consecutive seasons, namely 2020–2021 and 2021–2022, in four
different agricultural research stations in Egypt with varying
environmental conditions, including 1) Sakha Agricultural
Research Station in the north Delta (30.0642°N, 30.5645°E),
2) Nubaria Agricultural Research Station in the West Nile Delta
to represent newly reclaimed lands under surface irrigation
(30.6973°N, 30.66713°E), 3) Gemmiza Agricultural Research
Station in the Middle Delta to represent heavy and fertile soil
(30.867°N, 31.028°E), and 4) Sids Agricultural Research Station
in Middle Egypt, a region characterized by high yielding
conditions in the Nile valley (29.076°N, 31.097°E) (Figure 1).
Phenotypic data were collected as the number of days to
heading, plant height, plant growth habit, and thousand
kernel weight (1,000 KW). The phenotypes were obtained by
growing each entry in 3-metre-long rows 30 cm apart.
Fertilizers were applied by adding phosphorus fertilizer at
35 kgP ha−1 one dose before sowing, and nitrogenous
fertilizer at 180 kgN ha−1 in three separate doses during
sowing, 30 days post-sowing, and at the tillering stage. The
sowing date was 15 November every season. The agronomic
characteristics were recorded as days to heading (DH), the days
to heading was recorded as heading when the spike emerged for
0.25 of its length in 50% of the plants (Zadoks DGS 53) and,
plant height in cm (PH), was measured as PH, from the soil
surface to spike top, and thousand kernel weight (1,000 KW;
g) (Figure 2).

2.2 Statistical analysis

The screening traits were consecutive years to examine the
phenotypic variation across four diverse ranges of growing
conditions under natural field condition in Egypt in
conductive 2 years. The mean was calculated as the average
of ten plants in each row. The graphical analysis of the evaluated
genotypes, including genotype-by-environment (GGE) biplots
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for days to heading (DH), plant height (PH), and thousand
kernel weight (1,000 KW) across four environments over two
consecutive seasons, was conducted using GenStat 19th Edition
(VSN International Ltd., Hemel Hempstead, United Kingdom)
following the methodology of Yan et al. (2000), Yan et al.
(2007). The sowing date was 15 November every season. The
agronomic characteristics were recorded as days to heading
(DH), the days to heading was recorded as heading when the
spike emerged for 0.25 of its length in 50% of the plants (Zadoks
DGS 53) and, plant height in cm (PH), was measured as PH,
from the soil surface to spike top, and thousand kernel weight
(1,000 KW; g). A correlation matrix was calculated to determine
the degree of correlation between the location and the
phenotypes. The two stability parameters of superiority
performance (Lin and Binns, 1988) and mean ranks (Nassar
and Huehn, 1987) were used to quantify and rank wheat
genotypes for good performance and stability where a
genotype had the lowest values of the two parameters is
considered the most stable one.

2.3 Genotyping

We downloaded the Watkins SNP genotype data from the Cereals
Data Base (https://www.cerealsdb.uk.net/cerealgenomics/cgi-bin/display_
varieties.pl?example=35K_breeders_array&submitter=Submit+Button).
This data had previously been generated using the Affymetrix 35K
Axiom® Wheat Genotyping Array and screened for genetic variations
across the A, B, and D genomes (Allen et al., 2017). TASSEL software
(version 5) (Bradbury et al., 2007) was employed to remove SNPs with a
minor allele frequency (MAF) lower than 0.05 and a call rate below 90%.

2.4 Population structure analyses

The genetic structure of bread wheat was evaluated using
samples from 33 diverse nations in Europe, Asia, and Africa. The
samples included 56 landraces from India, 32 from China, 28 from
Spain, and others (Supplementary Table S1). Discriminant analysis
of principal components (DAPC) was used to identify the

FIGURE 1
Map showing the locations of the experimental field trials conducted for wheat in Egypt. The locations include the Sakha Agricultural Research
Station (green teardrop), Nubaria Agricultural Research (mauve square), Gemmiza Agricultural Research Station (grey spot), and Sids Agricultural Research
(red square).
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differences among populations and generate summarized features
for cluster analysis. It was performed without prior information on
individual populations using Adegenet v2.1.3 (Jombart, 2008). The
find.clusters function was utilized to confirm the DAPC results
and determine the optimal number of clusters (k) using three
different plots. The first plot was based on the lowest value in
the “elbow” of the Bayesian information criterion (BIC) curve, the
second on a scatter plot of the discriminant functions (DAPC), and
the third on a bar plot of each sample’s posterior probabilities of
group assignment. To determine the genetic distance between
countries, the dist function in the Stats v4.0.3 library
(Pellegrini and Dusanter-Fourt, 1997) was utilized. The hclust

(Hierarchical Clustering) function was used to determine cluster
distance and sample linkage, and the As.phylo function in the ape
v5.4.1 library (Paradis et al., 2004) reformat the dendrogram into

tree format. The annotated dendrogram was plotted using ITOL
software (Letunic and Bork, 2019).

The population structure analysis was employed as a covariate in
the GWAS analysis. It was conducted to assess genetic admixture,
which refers to the process or outcome of interbreeding between
multiple isolated populations within a species (Yuan et al., 2017).
The LEA R package version 3.2.0 was used to examine the genetic
structure of the core collection. The Snmf (sparse nonnegative
matrix factorization) function was utilized within the package,
with the number of ancestral genetic groups (K) varied from
1 to 10 in ten repeat runs for each K value. The function
provided least-squares estimates of ancestry proportions instead
of maximum likelihood estimates (François and Durand, 2010). The
cross-entropy function was utilized to determine the optimal
number of ancestral populations that best explain the genotypic

FIGURE 2
The distribution of trait values across different years and stations. Each violin represents the range and density of trait values for a specific
combination of trait, station, and year.
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data. The results were presented in a bar plot showing the Q-matrix
constructed by the Q() function.

2.5 Genome-wide association and gene
ontology analyses

In the current investigation, a GWAS was conducted using the
Python-based tool vcf2gwas (Vogt et al., 2022). This tool
implements the genome-wide efficient mixed model association
(GEMMA) protocol and performs GWAS directly from a VCF
file, while also allowing for multiple post-analysis operations
(Zhou and Stephens, 2012). The GWAS analysis was executed
using a linear mixed model (LMM) and the significant marker-
trait associations were determined using the Wald test. The
relevance of SNP-trait associations was determined based on the
significance threshold of p-value ≤ 0.001 and False Discovery Rate
(FDR) ≤ 0.1 displayed on the Manhattan plot. The results were
visualized by generating Manhattan plots using the qqman and
ggplot2 R packages. The TASSEL program (Bradbury et al., 2007)
was used to calculate linkage disequilibrium (LD).

3 Results

3.1 Collection of phenotypic traits and their
correlation between field sites and seasons

To study the phenotypic variation in the panel under Egyptian
field conditions, the panel was grown for two seasons in four
agricultural research stations in Sakha, Gemmiza, Sids, and
Nubaria. We evaluated the panel for days to heading, days to
maturity, plant height, and thousand kernel weight. We classified
the correlations between the traits and locations, considering only
values greater than 0.5 as significant due to the large sample size of
the dataset. In the first season, a highly significant and positive
correlation (r> 0.6) was consistently observed for the number of
days to heading across the four locations, indicating a similarity in
climate during the heading stage across these regions. This positive
and highly significant correlation persisted in the second season,
particularly in Nubaria when compared to the other regions
(Table 1). Regarding plant height, significant and positive
correlations were found between Gemmiza and Sakha in the first
season, and between Gemmiza and Nubaria in the second season
(Table 2). However, for the 1,000 kernel weight trait, despite its
statistical significance, the associations among this trait in the four

locations were weak (r< 0.5) (Table 3). This suggests that the trait is
influenced by environmental factors that may differ between the
four locations, such as temperature variation during the grain filling
period and the severity of diseases. In summary, a significant
correlation was generally observed between the traits as well as
across the four field trial locations, except for thousand kernel
weight (Table 3).

3.2 Stability parameters and genotype ×
environment (G × E) biplot

The two stability parameters of superiority performance [20]
and mean ranks [21] were used to quantify and rank wheat
genotypes for good performance and stability where a genotype
had the lowest values of the two parameters is considered the most
stable one (Lin and Binns, 1988; Nassar and Huehn, 1987).
Genotype stability itself is not enough as a selection parameter
for the aimed genotype unless its performance is good. Bearing in
mind that the shortest and earliest genotypes plus that had the
heaviest 1,000 kernel weight were desirable. In addition, the stability
phenomenon was diagrammatically plotted using Genotype x
Environment (G × E) biplot graph. In the case of heading date
and plant height, as mentioned earlier the elite genotype must record
the lowest values of these traits (below-grand mean that is located on
the left side of the origin point in the GGE biplot graph) while the
elite genotype regarding 1,000 kernel weight that surpassed the
grand mean and laid out on the right side of the GGE biplot graph.
Estimates of superiority performance and mean ranks of 30 selected
wheat genotypes for heading date, plant height and 1,000 kernel
weight are summarized in (Supplementary Tables S2–S4). Results
shown in Supplementary Table S1 - Supplementary Figure S7
indicated 30 wheat genotypes that recorded the earliest heading
date (less than the grand mean 132.5 days) as well as they recorded
the lowest values of the two stability parameters being superiority
performance and mean ranks. It is noted that 27 out of 30 wheat
genotypes were stable using both stability parameters plus GxE
biplot graph. Because the number of genotypes is more than 300, it is
difficult to read the results from the crowded biplot graph.

Regarding plant height, there were 26 out of 30 wheat genotypes
were stable using both numerical stability parameters and graphical
method of GxE biplot graph (Table 1; Supplementary Figure S8). For
1,000 kernel weight, 25 genotypes were characterized by stability using
the three methods of stability (Table 2; Supplementary Figure S9).
Nine genotypes were revealed stability toward all tested
agronomic characters (PH, DH and 1,000 KW) across

TABLE 1 Correlation matrix of the days to heading trait between the four
field trial locations during the growth seasons 2020–2021 and 2021–2022.

Locations Gemmiza Nubaria Sakha Sids

Gemmiza 1 0.639** 0.739** 0.687**

Nubaria 0.256** 1 0.617** 0.664**

Sakha 0.825** 0.248** 1 0.640**

Sids 0.784** 0.239** 0.763** 1

** means significant relationships.

TABLE 2 Correlation matrix among plant height between the four field trial
locations during the 2020–2021 (upper diagonal) and 2021–2022 (below
diagonal) growing seasons.

Locations Sakha Gemmiza Sids Nubaria

Sakha 1 0.522** 0.378** —

Gemmiza 0.444** 1 0.467** —

Sids 0.206** 0.295** 1 —

Nubaria 0.476** 0.508** 0.316** 1

** means significant relationships.
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location, namely, BecardKachu, CIMCOG_3, CIMCOG_32,
CIMCOG_47, CIMCOG_49, CIMCOG_53, Reedling, Super
152 and Waxwing. While six wheat genotypes BAJ,
CIMCOG_56, MISR1, Pfau, Weebill and Wyalkatchem were
revealed stability toward plant height and days to heading in all
different locations.

3.3 Characterization of genetic variation and
linkage disequilibrium

The Watkins wheat landrace collection is composed of
826 worldwide wheat genotypes collected during the 1930s before
the onset of intensive breeding (Wingen et al., 2014). In the present
study, we used a core set of 300 Watkins accessions previously
selected to maximize the genetic diversity of the collection (Arora
et al., 2023) and supplemented this with 16 additional entries
(Supplementary Table S1). To elucidate the genetic diversity,
structure, and relatedness of these 316 genotypes, we analyzed

publicly available genotype data previously obtained with the
Affymetrix 35K Axiom Wheat Breeder’s Genotyping Array. We
filtered this data to retain 9402 SNP markers with a minor allele
frequency (MAF) of less than 0.01 and a genotyping call rate of at
least 90%. The number of SNP markers within 1,000 Mbp ranged
from 36 (chromosome 4D) to 855 (chromosome 2B) (Figure 3).

The linkage disequilibrium (LD) analysis provided using SNP
demonstrated how closely SNPs are have a high LD values
(Figure 4). This pattern aligns with the expectation that nearby loci
are more likely to be in LD. The green line denotes a significance
threshold for LD, with values above this line being considered
significant, while the blue line provides the average r2 value for
comparison, which was 35 Kbp in our study. The average R2

values across different wheat chromosomes reveal significant
variation. Chromosomes 1A–7A and 1B–7B show LD values
ranging from very low (0.000) to high (up to 1.000). Notably,
chromosome 2A has a higher median LD (0.0516) compared to
chromosome 4A (0.0104), indicating generally higher LD on 2A.
Conversely, chromosomes 1B–7B have lower median LD values

TABLE 3 Correlation matrix of the 1,000 kernel weight trait between the four field trial locations during the 2021–2022 growing season.

Locations Sakha Sids Nubaria Gemmiza

Sakha 1

Sids 0.293** 1

Nubaria 0.478** 0.450** 1

Gemmiza 0.018 ns 0.014 ns −0.006 ns 1

Asterisks denote significant relationships between farmed landraces, whereas (ns) denotes a non-significant correlation among plants in the referred stations.

FIGURE 3
The distribution of 9402 SNP markers across the wheat genome. The x-axis represents the chromosomes of the wheat genome, while the vertical
bars represent the density of SNP markers per Gb according to the legend on the right.
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(0.0174–0.0243) (Figure 4). Chromosomes 1D to 7D exhibit a broader
range of LD values, with chromosome 1D having a maximum LD of
1.000. Chromosome 5D has a relatively high 3rd quartile (0.1718)
among D chromosomes. The D genome generally shows higher
median and maximum LD values compared to A and B genomes,
suggesting differing recombination rates or selection pressures. Some
chromosomes, like 7A and 4B, demonstrate notable variability, with
7A having a high 3rd quartile (0.4852) and 4B a much lower one
(0.0329) (Figure 4).

4 The genetic structure of the Watkins
landrace population reveals three
distinct clusters and four
ancestral groups

We aimed to investigate the genetic structure and diversity of the
Watkins wheat landraces from different countries. To address this,

we performed a DAPC analysis based on principal components and
discriminant analysis eigenvalues, which grouped the populations
into three clusters. Based on the results of the 20 principal
components and three discriminant analysis eigenvalues, the
DAPC analysis revealed the genetic structure of the entire dataset
by grouping populations into three clusters (Figure 5). The study
revealed that populations from Asian countries, such as Iran,
Afghanistan, India, and Iraq, primarily belonged to a single
cluster. On the other hand, populations from Europe, the Middle
East, and Africa, including Italy, Spain, France, Palestine, Syria,
Egypt, Algeria, and Ethiopia, were predominantly represented in a
second cluster. Accessions from China formed a separate cluster
distinct from the other groups (Figure 5).

Subsequently, we determined the optimal number of sub-
populations using the Bayesian Information Criterion (BIC)
method and confirmed it with scatter and bar plots. The analysis
of sub-populations using the BIC method showed that the optimal
number of sub-populations was three. This conclusion was

FIGURE 4
The genomic linkage disequilibrium association across thewheat genome based on 35K AxiomWheat Genotyping Array data. (A) LD decay plot: The
X-axis represents the physical distance in base pairs (bp) between SNPs, and the Y-axis represents the LD measured as R2. Red points indicate r2 values
between SNP pairs, while gray points represent background LD values. The green line marks the threshold for significant LD, and the blue line shows the
average R2 value across distances. (B) Box plot of the LD values across wheat chromosomes.
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supported by the lowest value of the BIC curve at three sub-
populations (Figure 6A), which was further confirmed by the
scatter plot (Figure 6B) and barplot (Figure 6C). The number of
three sub-populations agrees with a STRUCTURE analysis
conducted on the full Watkins collection (Winfield et al., 2018),
which suggests that the chosen panel covers most of the diversity of
the full Watkins collection. The barplot analysis revealed that some
countries, such as India and China, contain mixed samples from
other countries, such as Afghanistan. Therefore, we created a
hierarchical cluster dendrogram to investigate gene flow between
countries. We identified four distinct ancestral groups from this
structural analysis of the population. The clustering algorithm
created two primary clusters, supporting the results obtained
from the DAPC analysis. The tree also showed evidence of gene
flow between countries, which could be due to historical factors such
as trade and migration. However, no clear association was observed
between genetic clustering and subpopulation (Figure 7).

The core collection of ancestral populationswas determined through
a structural analysis. This analysis was performed on populations with

ancestry values ranging from one to ten (Figure 8). The analysis resulted
in four distinct groups from various lineages, as depicted in the optimal
ancestry. Group Q1, which accounts for 27% of the population, includes
two landraces from Afghanistan, five from Bulgaria, sixteen from India,
and eleven from Yugoslavia. Group Q2, the smallest and purest group,
represents only 4% of the landraces and contains most of the unknown
landraces. Group Q3, the largest group, constitutes 37% of the landraces
with representation from China (10 landraces), India (11 landraces),
Portugal (12 landraces), Turkey (9 landraces), and Spain (21 landraces).
Finally, Group Q4 accounts for 30% of the structural population and
includes landraces from Afghanistan (11 landraces), China
(17 landraces), India (28 landraces), the former USSR (9 landraces),
and five unknown locations.

4.1 Genome-wide association analysis

The GWAS results showed the presence of 202 significant SNPs
distributed across all chromosomes, with 3B having the highest

FIGURE 5
Genetic diversity of the studied wheat population based on Discriminant Analysis of Principal Components (DAPC), showing clustering of individuals
according to their sampling countries. Each color represents a different country.
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frequency (30 SNPs) and 3D and 7D having the lowest (1 SNP)
(Supplementary Table S5). Among the four growth indices, plant
height was found to be most associated with 77 SNPs, followed by
date of heading with 70 SNPs, thousand kernel weight with 44 SNPs,
and date of maturity with 10 SNPs (Figures 9–11). The SNP variants
presented themselves in several forms of nucleotide changes. The
most common change observed was T (thymine) to C (cytosine),
with a total of 44 occurrences and an even distribution across all
traits. The second most frequent change was C (cytosine) to T
(thymine), which was recorded 43 times. The association analysis of
thousand kernel weight found significant SNPs on all chromosomes
except for chromosomes 3A, 1B, 4B, 1D, 4D, and 5D. The highest
number of SNPs affecting this trait was observed on 4A (7 SNPs),
followed by 5A (5 SNPs). The trait was also associated with SNPs on
chromosomes 2A, 2B, 3B, and 5B (4 SNPs each), chromosomes 6A,
6B, and 7B (3 SNPs each), chromosomes 2A and 6D (2 SNPs each),
and chromosomes 1A, 2D, 3D, and 7D (1 SNP each) (Figure 9). All
chromosomes except chromosomes 5B, 3D, 4D, 5D, and 7D had
SNPs that associated with plant height. The highest number of SNPs
associated with this phenotype were found on chromosome 3B, with

20 SNPs, followed by 12 SNPs on chromosome 2B, 8 SNPs on
chromosomes 5A and 1B, 6 SNPs on chromosome 1D, 4 SNPs on
chromosomes 6A and 7A, 3 SNPs on chromosomes 1A and 6B,
2 SNPs on chromosomes 3A and 7B, and 1 SNP on chromosomes
2A, 4A, 4B, 5B and 2D (Figure 10). All chromosomes except
chromosomes 2D, 3D, 4D, 6D, and 7D were found to influence
days to heading. Chromosomes 4A and 1D had the highest
frequency of SNPs (11 and 10, respectively), while chromosomes
6B and 3D had the lowest (1 SNP each). The remaining SNPs
associated with this trait were evenly distributed across the genome
(Figure 3). These genotypic variations resulted in phenotypic
changes that also influenced plant maturity. One SNP marker
associated with this trait was found on chromosomes 3A, 6B, 1D,
and 5D, while chromosomes 5A and 2B contained 3 SNPs
(Figure 11). We observed only DH, have SNPs shared across
different years and stations. Specifically, SNP AX-94406783 was
present in the Gemmiza station in 2020 and again in Nubaria in
2021, while SNPs AX-95070278 and AX-94922585 were identified in
both Gemmiza in 2020 and Sakha in 2020, highlighting their
stability across diverse growing conditions. Additionally, SNP

FIGURE 6
The clustering analysis of the studied wheat landraces. Panel (A) shows the expected number of populations for different Bayesian Information
Criteria (BIC) values, where the optimal number of populations was predicted to be 3. Panel (B) displays the predicted number of genetic clusters based on
the DAPC analysis. Panel (C) presents a bar plot illustrating the assignment of individual landraces to different groups.
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AX-94779755 was detected at Gemmiza in 2021 and Sakha in 2021,
further emphasizing its potential relevance to the DH trait across
different environments.

4.2 Discussion

The evaluated Watkins landraces demonstrated remarkable
stability for all tested agronomic traits, including PH, DH, and
1000KW, across diverse growing conditions. Nine specific
accessions: BecardKachu, CIMCOG_3, CIMCOG_32, CIMCOG_
47, CIMCOG_49, CIMCOG_53, Reedling, Super 152, and
Waxwing—consistently performed well across multiple locations.
Additionally, six wheat genotypes—BAJ, CIMCOG_56, MISR1,
Pfau, Weebill, and Wyalkatchem—showed stability in plant
height and days to heading across all trial sites. Several crosses
were initiated between Egyptian wheat cultivars and stable
accessions. CIMCOG_32 and CIMCOG_47 were selected for the
2023–2024 crossing block. CIMCOG_32 was used as a parent in
multiple crosses, including with the Egyptian cultivar Sakha 95 and
advanced exotic wheat lines. These efforts underscore the potential
of CIMCOG_32 and Watkins landraces in breeding programs to
enhance wheat stability and performance across different
environments.

Population structure is a statistical technique used to clarify the
genetic composition of individuals within a population as well as the
ancestry ratio, demonstrating genetic variance among populations
(Patterson et al., 2006). It is mainly used for identifying
Subpopulations clusters within a larger population, understanding
genetic relationships, and depends on PCA analysis to reduce the
dimensionality of genetic data and visualizes genetic variation
among samples (Patterson et al., 2006). We assessed genetic
structure in a collection of 316 global bread wheat genotypes
(Triticum aestivum) representing mostly landraces. The panel
was genotyped with the 35K Axiom(B) Wheat Breeder’s
Genotyping Array (Affymetrix product ID 550524). The array
contains 35,143 SNPs selected to be informative across a diverse
global collection of elite and landrace varieties of hexaploid and
tetraploid wheats (Winfield et al., 2018). We filtered the markers
based onminor allele frequency andmissing data and found that our
shortlist of 9,402 SNP markers had a genome distribution consistent
with earlier research including a two to five times lower marker
density in the D genome (Alipour et al., 2017; Allen et al., 2013). The
number of anchored markers is largest in the B genome, followed by
the A genome, and lowest in the D genome.

There is significant variation in average R2 values across
different wheat chromosomes. Chromosomes 1A–7A and 1B–7B
show LD values ranging from very low to high, with 1B–7B generally

FIGURE 7
Hierarchical cluster dendrogram of the studied wheat landraces based on SNP genotyping data. The different colors represent the geographical
origin of the landraces.
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FIGURE 8
The population structure of studied wheat landraces based on 35K Axiom Wheat Genotyping Array data. The optimal number of ancestral
populations was determined using the results of 10 K runs, with K = 4 being the most significant structure for the population. The figure shows the
clustering of 316 wheat accessions into four groups (Q1, Q2, Q3, Q4) with different lineages, each representing a specific proportion of the total
population.
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having lower median LD values. Chromosomes 1D to 7D exhibit a
broader range of LD values, with higher values observed in the D
genome compared to the A and B genomes, indicating differing
recombination rates or selection pressures. Notable variability is
seen in chromosomes like 7A and 4B. This observed trend is
consistent with previous wheat studies. For instance, Mourad
et al. (2020) reported that the D genome had the highest
significant LD, with an average R2 of 0.887, followed by the A
and B genomes. Roncallo et al. (2021), found that 13.4% of marker
pairs exhibited significant LD, with a high LD (r2 > 0.7) in only
0.94% of comparisons, and an LD decay of 11.8 Mb. Additionally,
Aleksandrov et al. (2021), noted that in an old germplasm collection,
significant LD ranged from 6% to 27% across different
chromosomes, while in a modern collection, it ranged from 10%
to 45%. These findings align with our results, which indicate
considerable variation in LD across different wheat chromosomes
and higher LD values in the D genome compared to the A and
B genomes.

A cluster is a group of objects that are closer and more similar to
each other than those outside of the group (Grabowski et al., 2018).
The DAPC analysis revealed three distinct clusters within the
populations, with a total diversity score of 11.6 across both axes.
This suggests that while the DAPC could identify relatively low
diversity ratios between samples, there is substantial genetic
diversity among them. This value helps us understand the extent
of variation captured by the analysis. This ratio is relatively low

compared to the 60.1% of total variance reported by Fiore et al.
(2019) for their study involving twenty-seven durum wheat varieties
and one bread wheat Sicilian landrace. This suggests that our
observed diversity, as indicated by the sum of 11.6, is lower
relative to their findings, potentially indicating less pronounced
clustering or different levels of genetic variation in our sample. This
value is relatively high compared to the second and third principal
components reported by Alemu et al. (2020) in their study of
Ethiopian durum wheat (Triticum turgidum ssp. durum). Their
study highlighted different patterns of variance, suggesting that our
results reflect a higher level of diversity or variability in the principal
components analyzed. Afghanistan, Iran, India, China, Iraq, and
Burma comprise the first cluster (the majority of the Asian cluster).
The second cluster includes most European countries, including
Italy, Spain, Portugal, Turkey, and Greece. The third cluster includes
African countries such as Egypt, Algeria, and Ethiopia, which are not
in the same cluster but are close. The Bayesian information criterion
(BIC) is a well-known and commonly used method in statistical
model selection. It was applied to approximate a transformation of
the Bayesian posterior probability of a candidate model (Neath and
Cavanaugh, 2012). To identify the optimum cluster (K)(knee), we
displayed BIC in three forms, depending on the DAPC; the first plot
was a boxplot, which showed that three and four were significant
values for K. The second was a scatter plot that classified the samples
into three categories. The third was a bar plot that performed with
K = 2 and K = 3 and identified those three as the best group. The

FIGURE 9
Manhattan plots show the Genome-Wide Association Study (GWAS) results of the days to heading (DH) trait across four environments from 2020 to
2021 and their statistical significance (FDR). Each dot represents a Single Nucleotide Polymorphism (SNP), and its position on the plot represents its
chromosomal location. The red dots represent SNPs that are significantly associated with days to heading (DH) trait (FDR ≤ 0.1), while blue dots represent
significant SNPs with p-value ≤ 0.001).
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clustering findings are consistent with the population structure, which
revealed that while K = 4 is the best, K = 2 and K = 3 are also significant.
It should be highlighted that the current results of population structure
analysis are consistent with our previous findings of the entire set
(804 accessions) of hexaploid wheat (Winfield et al., 2018). This
consistency reaffirms the reliability of our present findings,
indicating a robust and persistent population structure across diverse
datasets. Our findings on the clustering of the Watkins landrace
populations could provide complementary insights to Pont et al.
(2019) identification of selection footprints and evolutionary history
in modern wheat. Both studies emphasize the complex genetic
landscape of wheat and contribute to a broader understanding of its
genetic evolution and diversity.

We conducted a comprehensive GWAS to explore the influence
of single nucleotide polymorphism (SNP) markers located on genes
controlling four important traits in wheat: days to heading, days of
maturity, plant height, and 1,000 kernel weight. The identified SNPs
have potential as marker-trait associations (MTAs) to guide
breeding programs in the agricultural sector. The analysis of
203 SNP markers yielded 31 genomic regions associated with the
studied traits. Notably, three SNPs on chromosome 5A were found
to be linked to 1,000 kernel weight, with a physical distance of less
than 10 Mb. Additionally, four clusters evenly distributed on
chromosomes 3B and 1D were identified as influencing plant
height. Thirteen SNPs in clusters on chromosomes 2A, 5B, 6B,
and 1D were associated with days to heading. For the trait of

maturity date, three SNPs were located on chromosomes 2A, 2B,
and 6B. Interestingly, six SNPs were found to be linked to both
1,000 kernel weight and days to heading. These results provide
valuable insights for breeders seeking to improve these important
traits in wheat and lay the foundation for further functional studies
on the identified markers.

To map the detected probes onto the wheat genome and identify
candidate genes and encoding protein domains influencing the
traits, the GrainGenes database (https://graingenes.org/GG3/) was
utilized. Notable associations were observed between specific SNPs
and genes controlling the traits. For example, SNP AX-94462177
with a p-value of 0.0002 and 0.4 FDR, associated with 1,000 kernel
weight, was detected within the Kinesin-like protein domains
(NPK1/TraesCS5A02G317000), known for its role in seed
development in rice; these domains play crucial roles in almost
all biological processes in plants (Li et al., 2011). SNPs AX-94643695
and AX-94814458 with p-values of 0.00004 and 0.00008, and FDRs
of and 0.3, associated with wheat date of heading, were in the ATP-
sulfurylase PUA-like gene (TraesCS2D02G031800), indirectly
influencing plant development (Xiao et al., 2022; Khan et al.,
2007). SNPs AX-94446101 and AX-95231601 with p-values of 0.
0004 and 0.0005, and FDRs of 0.904116745, also associated with date
of heading, mapped to the Serine/threonine-protein kinase D6PK-
like gene (TraesCS5B02G252500) which serves as a lipid domain-
dependent regulator of root epidermal planar polarity in Arabidopsis
(Stanislas et al., 2015). A cluster of loci (AX-94510523, AX-94425015,

FIGURE 10
Manhattan plots showing the genome-wide association study (GWAS) results of plant height (PH) and days to maturity (DM) traits across four
environments from 2020–2021 to 2021–2022. The x-axis represents the physical position of SNPs on each chromosome, and the y-axis shows the
negative logarithm of the adjusted p-values [−log10 (p-value)]. The red dots represent SNPs that are significantly associated with the studied traits (FDR ≤
0.1), while blue dots represent significant SNPs with p-value ≤ 0.001).
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FIGURE 11
Manhattan plots displaying the genome-wide association study (GWAS) results for the 1,000 kernel weight (1000 KW) trait in wheat across four
environments from 2020–2021 to 2021–2022. The horizontal axis shows the physical position of each single nucleotide polymorphism (SNP) across the
wheat genome, while the vertical axis represents the –log10 p-value of association for each SNP. The red dots represent SNPs that are significantly
associated with the 1,000 KW trait (FDR ≤ 0.1), while blue dots represent significant SNPs with p-value ≤ 0.001).
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and AX-94632604), with p-values of (0.0003, 0.00008, and 0.
00057), and FDRs of (0.7,0.3, and 0.6) associated with date of
heading was located in the wheat C2H2 ZINC finger transcription
factor gene TraesCS4B02G003500 encoding a C2H2-type zinc
finger protein, reported as the best candidate gene in the QTL
Qhd.2AS controlling wheat growth and development (Li et al.,
2023). SNP AX-94983266 with a p-value of 0.0006 and FDR of 0.5,
associated with date of maturity, located to the HAUS1 (HAUS
Augmin Like Complex Subunit 1/TraesCS3A02G380800) gene. In
Arabidopsis, the AUGMIN complex impacts spindle and
phragmoplast microtubule arrays during sexual reproduction
(Oh et al., 2016). Lastly, SNP AX-94409249 (p-value of 0.0007,
and FDR of 0.6), associated with wheat yield and days to maturity,
mapped to the RING finger domain gene TraesCS3B02G139600
on chromosome 3B (Supplementary Table S6). In Arabidopsis
and tobacco, RING zinc finger genes are involved in seed
development and stress resistance (Xu and Li, 2003; Zeba et al.,
2009; Han et al., 2022).

5 Conclusion

This study revealed a high level of genetic and phenotypic diversity
among the evaluated wheat populations. The field trial results
demonstrated a high degree of adaptability among the evaluated
genotypes, with some accessions displaying particularly favorable
phenotypic traits. This highlights the importance of genetic diversity
in wheat breeding, especially considering the challenges posed by
changing climates and new end-use demands. Through GWAS we
identified marker-trait associations for important agronomic traits in
wheat, including days to heading, days to maturity, plant height, and
1,000 kernel weight. These associations, along with the suggested genes,
provide molecular means to support targeted breeding efforts. Notably,
our evaluation of a highly diverse panel of international genotypes
under Egyptian climate and agronomic conditions, underscores the
potential for utilizing this diversity in developing locally adapted wheat
varieties. By capitalizing on these findings, breeders can drive progress
towards resilient and high-yielding wheat varieties, ensuring sustainable
agriculture and addressing food security challenges in Egypt
and beyond.
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