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Background: Tumor tissue origin detection is of great importance in determining
the appropriate course of treatment for cancer patients. Classifiers based on gene
expression and DNAmethylation profiles have been confirmed to be feasible and
reliable to predict the tumor primary. However, few works have been performed
to compare the performance of these classifiers based on different profiles.

Methods: Using gene expression and DNA methylation profiles from The Cancer
Genome Atlas (TCGA) project, eight machine learning methods were employed
for the tumor tissue origin detection. We then evaluated the predictive
performance using DNA methylation, mRNA, microRNA (miRNA) and long
non-coding RNA (lncRNA) expression profiles in a comparative manner. A
statistical method was introduced to select the most informative CpG sites.

Results: We found that LASSO is the most predictive models based on various
profiles. Further analyses indicated that the results derived fromDNAmethylation
(overall accuracy: 97.77%) are better than those derived from mRNA expression
(overall accuracy: 88.01%), microRNA expression (overall accuracy: 91.03%) and
lncRNA expression (overall accuracy: 95.7%). It has been suggested that we can
achieve an overall accuracy >90% using only 1,000 methylated CpG sites for
prediction.

Conclusion: In this work, we comprehensively evaluated the performance of
classifiers based on different profiles for the tumor origin detection. Our findings
demonstrated the effectiveness of DNA methylation as biomarker for tracing
tumor tissue origin using LASSO and neural network.
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Introduction

Metastatic cancer of unknown primary (CUP) origin accounts for about 3%–5% of all
cancer diagnoses (Pimiento et al., 2007). Patients with CUP origin are always associated
with poor prognosis because of late diagnosis, and even worse, some patients may be
misclassified for tumor tissue origin. Despite the development of diagnostic workups, they
show relatively little benefit (Hainsworth and Greco, 1993; Oien, 2009). In this regard, it is
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necessary to find new strategies to improve diagnostic certainty, and
the ability to identify tumor tissue origin holds great promise for
improving prognosis and treatment selection.

Molecular characterization is increasingly used for cancer
therapy and offers great potential for tumor diagnosis (Tothill
et al., 2005; Wang et al., 2015). Cancer classification based on
expression profiles was introduced and has been generally
proposed as a clinical application for tumor tissue origin
detection (Ramaswamy et al., 2001; Bloom et al., 2004; Staub
et al., 2010). The rationale using ‘-omics’ data to define the
origin site of CUP is that tumors from different sites of origin
have specific expression profile (Pimiento et al., 2007; Sotiriou and
Piccart, 2007; Xu et al., 2016; Zheng et al., 2018). More importantly,
gene expression profiling enables the measurement of expression
levels of thousands of genes in a single experiment. For example,
mRNA-based classifier was used to determine the CUP origin and
the classifier achieved an accuracy of 89% (Tothill et al., 2005). A 92-
gene qRT-PCR assay has been developed to detect the site of origin
of metastatic tumors (Ma et al., 2006). MicroRNA can regulate gene
expression and showed marked tissue specificity (Lagos-Quintana
et al., 2002; Babak et al., 2004; Lu et al., 2005; Yang et al., 2017). The
expression profiles of microRNAs have been determined in paraffin-
embedded samples, and machine learning based classifiers achieved
competitive performance (Rosenfeld et al., 2008; Varadhachary
et al., 2011). DNA methylation is an epigenetic mechanism used
by cells to control gene expression, which can fix genes in the “off”
position (Ehrlich, 2002; Paz et al., 2003; Schubeler, 2015). Extensive
DNAmethylation perturbation have been widely explored in human
cancer researches (Moran et al., 2016; Hao et al., 2017; Kang et al.,
2017; Shen et al., 2017; Stieglitz et al., 2017). These works suggested
that DNA methylation might be an additional way to help tumor
tissue origin detection.

To comprehensively evaluate the potential and limitation of
utilizing different profiles, we performed tumor tissue origin
detection using eight different classification machine learning
models (random forest, support vector machine, K-nearest
neighbor, decision tree, linear discriminant analysis, LASSO,
artificial neural network, naïve Bayesian classifier) and evaluated
the predictive performance of these models in a comparative
manner. These works reinforced the potential of DNA
methylation as biomarkers for tumor tissue origin detection.

Materials and methods

Data collection

Cancer gene expression (mRNA, miRNA and lncRNA) and
DNA methylation profiles generated by the Cancer Genome Atlas
(TCGA) project were downloaded via the cBioPortal for Cancer
Genomics (Cerami et al., 2012). For TCGA gene expression and
DNA methylation data, only level one data was employed in our
analysis. RNA-SeqV2 was used, which takes transcript length into
account and is suggested to provide more accurate results. This work
only contains the data of solid tumors, and a data quality control
were conducted. For each cancer type, the dataset should have a
sufficient number of samples (>100). The DNAmethylation profiles
were measured by the Infinium HumanMethylation450 platform,

and we removed those CpG sites with more than 30% missing
sample values. The remaining missing values were calculated using
the K-nearest neighbor method. In this work, we adopted the same
cohort for each dataset, and a total of 6,738 tumor samples for
mRNA, miRNA, lncRNA and DNA methylation-based profile were
collected spanning 20 cancer types.

Classifiers construction

In this work, we employed eight machine learning classifiers for
tumor tissue origin detection (Rosenfeld et al., 2008; Moran et al.,
2016; Hao et al., 2017; Soh et al., 2017; Tang et al., 2017). These
methods differ in their underlying methodology, and detailed
descriptions of these models appear below. All these models were
implemented in Python packages (v3.9).

Random forest (RF) is an ensemble learning algorithm for
classification that works based on a multitude of decision trees.
Each tree in the forest is built from a sample set drawn from the
training set with replacement. Each feature used to split an
internal node in the decision trees are picked from a random
subset of the entire feature set. We used the soft voting strategy,
i.e., the probabilities assigned to each class are calculated by
averaging the output of each decision tree. The number of trees
are set to 200.

Support vector machine (SVM) classifier is used to find a hyper-
plane to separate two classes through maximizing the distance
between the hyper-plane and the support vectors, which are
defined as the samples closest to the hyper-plane. For those
which are not separable, SVM is able to classify them through
mapping the points into a higher dimensional space. In this work,
the linear kernel was used. For multi-class classification, we
implemented the ‘One-vs-Rest’ (OvR) approach.

K-nearest neighbor (KNN) is a non-metric method for
classification. KNN simply saves all the samples in training set.
Each time a test sample is given, KNN calculates the distances
between the sample and all the data points in the training set. The
test sample is classified as the class most common among its k
nearest neighbors. Here, we used Euclidean distance, and set K to 5.

Decision trees (DT) are tree-like models used for classification.
Each internal node within a decision tree represents a classification
rule and each leaf node represents a class label. We built
Classification and Regression Trees (CART), which choose
features through minimizing the Gini index at each node.

Least Absolute Shrinkage and Selector Operator (LASSO) is a
linear classification model that uses L1-regularization strategy in
parameter estimation. The probabilities of each class are calculated
via logistic function. To avoid over fitting, the one norm of the
coefficient was added in the loss function, and coefficients were
calculated through minimizing the loss function.

Neural network (NN) is based on a collection of connected
nodes called neurons. Each neuron receives the input signals of other
neurons through weighted connection, and produces output
through activation function. If the weighted sum of input signals
exceeds a cutoff, the neuron will be activated and outputs a non-zero
value. Here we use the rectified linear unit function (ReLU) as the
activation function. We used multi-layer feed-forward neural
network, where all the neurons are connected with the next layer,
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and neurons within a layer are not connected with each other. The
network was trained using error BackPropagation (BP) algorithm.

Naïve Bayesian classifier (NBC) is a classifier based on Bayes’
theorem and the assumption of independence among all features.
Assuming that all feature is independent, the joint distribution equals
the multiplication of marginal distribution. The probabilities assigned
to each class is calculated through Bayes’ theorem, and the predicted
class is the class with the largest probability value.

Linear discriminant analysis (LDA) is a linear model used in
classification. Given a dataset with two classes, LDA projects all the
sample points to a line, trying tomaximize the distance of the centers
of two classes and minimize the dispersion of points within the same
class. The covariance matrix is used tomeasure the dispersion within
a class. Here, we took ‘One-vs-Rest’ (OvR) strategy to construct
multi-classifier.

Performance evaluation

We compared the predictive performance of these models by
tracing their overall accuracy. Overall accuracy measures how often
a machine learning model correctly predicts the outcome. We
calculated the overall accuracy by dividing the number of correct
predictions by the total number of predictions. To further evaluate
our models, 5-fold cross-validation was performed. Briefly, we
randomly divided the data into five sets with approximately
equal size, and used four of the five sets as the training set and
the remaining set as the testing set to identify the positives and
negatives. We considered precision and recall for specific cancer
type i:

Precisioni � Number of samples correctly classified as cancer type i

Number of samples classified as cancer type i

Recalli � Number of samples correctly classified as cancer type i

Number of samples of cancer type i

Dimensionality reduction

Due to the high dimensionality of DNA methylation profiles, the
dimensionality reduction step is necessary before the classifier
construction. Principle component analysis (PCA) is a statistical
procedure to reduce the dimensionality of a dataset with a large
number of interrelated variables by creating a new set of variables
called principal components. The greatest variance by some projection
of the data comes to lie on the first coordinate (w1), the second greatest
variance on the second coordinate (w2), and so on. The principal
components were selected based on cumulative percentage of total
variations. We selected the number of principle of components taken
together explaining more than 95% of the variance.

Feature selection using DNA methylation

At first, we identified tissue-specific DNA methylated sites to
reduce the considerable redundancy of the original data. We

calculated differential methylation values (β value) of CpGs for
the corresponding cancer type compared with other cancers
using Student’s t-test with a threshold of F.D.R. < 0.01. Next,
a recent proposed feature selection method was employed, named
Maximum-F-statistic-Maximum-Distance (MFMD), to further
detect the tissue-specific CpG sites. Briefly, we calculated
the analysis of variance (ANOVA) to compare the DNA
methylation levels among cancer types. In ANOVA, F-statistic
is the ratio of the variance among the means to the variance
within the samples. F-statistic is used to measure the difference
among cancers. Euclidean distance (ED) was used to measure
the data redundancy. The criterion of MFMD is redefined
as follow:

MFMD � max ws × Fstatistic + wd × ED( )
the variable ws (0 < ws ≤1) and wd (0 < wd ≤1) are the weights of
F-statistic and distance, respectively. We ranked the CpG sites
according to the MFMD values. The final feature set will have
lowest ED values and highest F-statistic values. Then, top-
ranked CpG sites were selected as features to construct
classifiers and evaluate the classification accuracy. The top-
ranked CpG sites with highest accuracy were selected as the
final features.

TABLE 1 Cancer types and their respective sample size.

Cancer type Abbreviation Sample size

Bladder urothelial carcinoma BLCA 380

Breast invasive carcinoma BRCA 652

Cervical squamous cell carcinoma CESC 259

Colorectal adenocarcinoma COAD 358

Esophageal carcinoma ESCA 170

Head and neck squamous cell carcinoma HNSC 464

Kidney renal clear cell carcinoma KIRC 279

Kidney renal papillary cell carcinoma KIRP 237

Brain lower grade glioma LGG 410

Liver hepatocellular carcinoma LIHC 352

Lung adenocarcinoma LUAD 415

Lung squamous cell carcinoma LUSC 310

Pancreatic adenocarcinoma PAAD 163

Pheochromocytoma and paraganglioma PCPG 157

Prostate adenocarcinoma PRAD 454

Sarcoma SARC 229

Stomach adenocarcinoma STAD 356

Testicular germ cell tumors TGCT 137

Thyroid carcinoma THCA 434

Uterine corpus endometrial carcinoma UCEC 395

Total 6,738
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Results

Comparison of the classifiers using mRNA, miRNA, lncRNA
and DNA methylation profiles for the tumor tissue origin
prediction.

Gene expression profiles (mRNA, miRNA and lncRNA) and
DNA methylation profiles were obtained from TCGA cohort. After
a strict review of these four different types of datasets, tumor samples
spanning 20 cancer types were collected (Table 1). It was randomly
divided into two equal parts (a training cohort and a testing cohort).
For the gene expression profiles, the expression values (FPKM value)
of all genes were used, and a total of 12,692 mRNA, 1,240 miRNA
and 5,642 lncRNAs were enrolled. For the DNA methylation
profiles, we adopted a feature selection step to select tissue-
specific CpG methylation because of the high dimensionality. A
total of 120,106 differentially methylated CpG sites were detected,
which were distributed across the entire human genome. Then, the
optimal number of principle components were determined using
PCA (cumulative percentage of total variation >95%). As an
outcome of dimensionality reduction process, machine learning
models have been developed using 2,974 components.

We used eight machine learning algorithms to train classifiers
(see Materials and Methods). Figure 1 summarized the overall
accuracy of each classifier. A comparison of the results clearly
showed that most of the classifiers achieved good performance
(>80%), among which LASSO is the most predictive model with
the highest overall accuracy (Table 2). Consistent with previous
works (Lu et al., 2005; Ma et al., 2006; Li et al., 2007; Elias et al.,
2017), it has been indicated that the expression-based classifiers
achieved competitive performance with the overall accuracy of
88.01% (mRNA-based), 91.03% (miRNA-based), respectively. We
demonstrated that lncRNA-based profiles also achieved competitive
performance for the first time (overall accuracy 95.7%). Our work
indicated that DNA methylation-based classifiers (overall accuracy

97.77%) performs better than other gene expression-based
classifiers.

Since the overall accuracy cannot tell us how well each cancer
type is classified, a 5-fold cross-validation was performed in the
testing dataset. The results indicated that the classifiers do not
classify all cancer types equally well (Table 2). The precision and
recall values are generally high for all the cancer types. With the
exception of esophageal carcinoma (precision: 85.19%, recall:
77.06%) and Stomach adenocarcinoma (precision: 86.27%, recall:
83.54%), all other cancer types have precision and recall values larger
than 90% in the testing set. Notably, the precision and recall values
reach to 100% for pancreatic adenocarcinoma, Pheochromocytoma
and paraganglioma, thyroid carcinoma and prostate
adenocarcinoma.

Performance of classifiers using small
number of CpG markers

We next attempted to determine whether tumor tissue origin
can be predictive using small number CpG markers. Selecting true
tumor tissue specific features is important to construct classifiers
that performs well at predicting tumor origin sites. To this end, we
proposed a method called Maximum-F-statistic-Maximum-
Distance (MFMD) to measure the tumor tissue specificity and
redundancy of CpG sites. The feature candidates were ranked
based on MFMD score, and the top-ranked features were used to
construct classifiers to evaluate the classification accuracy. Figure 2
summarized the performance of the classifiers as a function of the
number of CpG markers. The result showed a sharp increase in the
overall accuracy of the classifiers at the initial stage when the number
of CpG sites is small. There are diminishing increases of overall
accuracy with the involvement of additional CpG sites. When the
number of CpG sites used reaches 1,000 (Supplementary Table S1),

FIGURE 1
Comparison of the performance of different classifiers. Performance is estimated based on overall accuracy derived from multi-class
classification tasks.
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it is enough to achieve an overall accuracy >90% and the overall
accuracy of the classifier starts to level off. This result indicated that
a competitive performance of the classifiers can be achieved
using a small number of CpG markers. We further measured the
locations across the chromosome of these CpG sites, and found that
most of the CpG sites are located at introns (45.7%) and
promoters (21.4%).

Discussion

Gene expression and DNA methylation profiles have become
the basis for diagnosis and prognosis prediction, and are important
for the detection of tumor tissue origin (Moran et al., 2016; Hao
et al., 2017; Rani et al., 2017). With the emerging of high-
throughput technologies, large amount of data has been
generated, which provided us great importance to improve the

prediction of tumor tissue origin. The goal of this work is to
explore the potential and limitation of utilizing different profiles as
a cancer diagnostic way.

Gene expression signature of mRNA and microRNA expression
levels have been used for tumor tissue origin detection (Tothill et al.,
2005; Sotiriou and Piccart, 2007; Rosenfeld et al., 2008; Elias et al., 2017).
DNA methylation, microRNA and lncRNA are important class of
regulatory mechanism, and are central to numerous biological
processes. The comparison of eight benchmark machine learning
based classifiers demonstrated that LASSO model is the best choice,
and reached overall accuracy of >90% in 20 cancer types. Using large
number of features may bring dome degree of over-fitting of the
classifier, we divided the TCGA data into a training set and testing
set. The 5-fold cross-validation further indicated that our prediction has
high precision and recall values in each cancer type prediction.
Comparison of the performance of classifiers based on different
profiles is necessary. The classifiers for DNA methylation-, mRNA-,

TABLE 2 Precision and recall of each of the 20 cancer types using the LASSO model.

Cancer type DNA methylation mRNA lncRNA miRNA

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Bladder urothelial carcinoma 99.47 97.63 94.33 92.70 94.73 91.24 88.59 86.16

Breast invasive carcinoma 98.83 99.59 98.64 99.09 98.46 98.72 97.72 97.89

Cervical squamous cell
carcinoma

97.62 95.74 92.00 90.79 93.19 89.15 85.73 85.02

Colorectal adenocarcinoma 98.29 92.57 81.62 92.33 80.06 90.62 79.79 86.92

Esophageal carcinoma 85.19 77.06 88.87 80.15 86.55 77.63 73.79 58.69

Head and neck squamous cell
carcinoma

97.70 98.92 93.09 93.60 91.12 92.20 89.20 91.58

Kidney renal clear cell
carcinoma

98.26 97.48 96.57 94.19 95.09 94.00 97.46 95.77

Kidney renal papillary cell
carcinoma

98.34 97.48 94.46 93.75 93.70 93.41 92.91 93.83

Brain lower grade glioma 98.08 98.78 99.23 99.22 98.26 98.63 100.00 99.81

Liver hepatocellular carcinoma 99.43 98.86 97.60 95.96 97.30 96.49 98.63 97.05

Lung adenocarcinoma 96.27 98.80 94.25 93.52 91.41 93.13 91.73 93.40

Lung squamous cell carcinoma 97.01 93.87 89.14 90.82 85.70 87.42 86.29 85.36

Pancreatic adenocarcinoma 100.00 100.00 93.11 95.44 89.63 96.03 87.92 93.78

Pheochromocytoma and
paraganglioma

100.00 100.00 100.00 97.76 100.00 98.32 99.46 98.30

Prostate adenocarcinoma 100.00 100.00 100.00 99.80 99.80 99.40 97.47 100.00

Sarcoma 99.13 96.95 91.32 91.89 92.23 91.52 93.84 94.21

Stomach adenocarcinoma 86.27 83.54 81.60 84.14 90.38 91.73 84.81 87.84

Testicular germ cell tumors 99.33 100.00 98.71 100.00 99.35 99.33 99.35 98.67

Thyroid carcinoma 100.00 100.00 99.80 99.60 99.61 100.00 100.00 99.60

Uterine corpus endometrial
carcinoma

95.10 98.23 95.56 98.35 94.31 96.90 93.81 94.64

Average accuracy (%) 97.77 88.01 95.70 91.03
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microRNA- and lncRNA-based are all demonstrated promising results
on predicting tumor tissue origin. Here, we tried to quantify the
performance using mRNA-based, miRNA-based, lncRNA-based and
DNA methylation-based profiles to identify cancer type. A more
competitive performance of DNA methylation-based classifiers was
obtained than mRNA-, microRNA- and lncRNA-based classifiers.
Here, we demonstrated that the expression profiles of lncRNAs can
accurately identify tumor tissue origin for the first time. Because
archival formalin-fixed paraffin-embedded (FFPE) samples are
important source for tumor material, the application is limited by
its instability of lncRNA in FFPE samples. DNA methylations have
several features that make them attractive diagnostic biomarkers. First,
DNA methylation shows better stability and can largely maintain its
methylated status in archival FFPE samples. Second, DNAmethylation
shows marked tissue specificity, and plays a key role in embryonic
development. In this regards, differentially methylated CpG sites would
be enriched for tissue-specific markers, and would provide a starting
point for the development of tumor tissue origin classifier.

Conclusion

Taken together, we have showed that LASSO classifier can
efficiently predict tumor tissue origin based on DNA
methylation profiles. Moreover, the performance of DNA
methylation-based classifiers is better than that of gene
expression-based classifiers. Our results demonstrated the

effectiveness of DNA methylation profiles as biomarkers for
the prediction of tumor tissue origin.
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FIGURE 2
Performance of top-ranked CpG markers. The overall accuracies were calculated as a function of the number of CpG markers using LASSO and
neural network classifiers.
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