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Cancer is a disease characterized by uncontrolled cellular growth where cancer
cells take advantage of surrounding cellular populations to obtain resources and
promote invasion. Carcinomas are the most common type of cancer accounting
for almost 90% of cancer cases. One of the major subtypes of carcinomas are
adenocarcinomas, which originate from glandular cells that line certain internal
organs. Cancers such as breast, prostate, lung, pancreas, colon, esophageal,
kidney are often adenocarcinomas. Current treatment strategies include surgery,
chemotherapy, radiation, targeted therapy, and more recently immunotherapy.
However, patients with adenocarcinomas often develop resistance or recur after
the first line of treatment. Understanding how networks of tumor cells interact
with each other and the tumor microenvironment is crucial to avoid recurrence,
resistance, and high-dose therapy toxicities. In this review, we explore how
mathematical modeling tools from different disciplines can aid in the
development of effective and personalized cancer treatment strategies. Here,
we describe how concepts from the disciplines of ecology and evolution,
economics, and control engineering have been applied to mathematically
model cancer dynamics and enhance treatment strategies.
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1 Introduction

Cancer can be classified into multiple categories depending on the tissue that it
originates from, the location and the organ it affects. In 2023, one in 260 children and
adolescents were diagnosed with cancer before the age of 20, whereas one in three people
will be diagnosed with cancer in their lifetime. Adenocarcinomas originate on mucus
membranes of glandular tissues and are often classified based on the organ where they
originate such as the lung, prostate, pancreas, esophagus, colon, breast, stomach, and kidney
and predominantly affect adults. Additionally, adenocarcinomas account for 80%–95% of
cancers in their affected organ (Maurie Markman, 2022). According to the Surveillance,
Epidemiology, and End Results (SEER) Program from the National Cancer Institute,
adenocarcinomas prognosis varies across types; cancers such prostate, breast, and colorectal
have a 90% 5-year survival rate (Siegel et al., 2023), while other adenocarcinomas such as
pancreatic, lung, esophageal, and stomach have a 5-year survival rate ranging from 35% for
stomach adenocarcinomas to as low as 12% for pancreatic adenocarcinomas (Siegel et al.,
2023). While the origin of these cancers is still unknown, factors such as smoking, toxin
exposure, and radiation therapy are factors that contribute to the development of these solid
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tumors. The physical manifestations of adenocarcinoma tumors
include localized (on the organ it originates from) and systemic
symptoms. Localized disease can exert pressure in nearby organs
and manifest as shortness of breath and coughing for lung
adenocarcinomas (Blandin Knight et al., 2017), or as heartburn
and regurgitation for esophageal adenocarcinomas (Sharma, 2022).
Once the disease metastasizes, the symptoms can affect the entire
body causing weight loss, weakness, or loss of appetite. These
symptoms can indicate the need for a detailed medical
examination, which may include extensive laboratory tests,
imaging studies, and biopsies. Data from these tests, such as
tumor volume or sequencing data, can be leveraged to inform
treatment decisions (Mullangi and Lekkala, 2024). Patients
diagnosed with adenocarcinomas receive different types of
treatments depending on the stage and localization of the cancer,
but first-line therapeutics often include a combination of surgery,
chemotherapeutics, and radiation (Adenocarcinoma Cancers,
2021). Due to the heterogeneity of the disease, treatment
response is highly variable motivating researchers to develop and
use in silico tools to make informed treatment decisions.

In this review, we explore mathematical modeling frameworks
from different disciplines that have been applied to model cancer
progression and develop novel treatment strategies. Mathematical
oncology has emerged as a discipline that aims to study cancer using
mathematics often focused on developing personalized treatments
using patient data (Rockne et al., 2019). Although replicating all
tumor cellular interactions experimentally and relating to treatment
response remains challenging, mathematical models can offer
accurate simulated predictions of disease progression based on
patient-specific information. We have focused on reviewing the
mathematical modeling frameworks used in three different
disciplines: ecology and evolutions, economics, and control
engineering that have been applied to open questions in cancer
research. These frameworks have been adapted to leverage a variety
of different types of biological information that can be obtained from
adenocarcinoma solid tumors after surgery (e.g., sequencing,
histology, biomarker prevalence), through imaging tests (e.g.,
X-rays, computed tomography (CT), magnetic resonance imaging
(MRI)) or laboratory tests (e.g., biomarker levels, cell counts). The
use of mathematical models in combination with this data can
provide novel insights into treatment strategies, for example, this has
been shown effective such in dosing of abiraterone in metastatic
prostate cancer (NCT02415621, NCT03511196). While some of
these transdisciplinary applications are in their infancy, cancer
researchers have provided proof of concept that adaptation of
these frameworks can provide novel insights into cancer
progression and treatment.

Pulling from the field of ecology and evolution, the invasive and
cooperative nature of cancer cell populations have many parallels
with the behavior of interacting biological populations. In nature,
animal populations interact in ecosystems where they try to survive
through competition or cooperation. They must also adjust to the
amount of resources available and other selective pressures of their
environment. Interactions between species have been widely studied
to understand concepts such as adaptation, competitive exclusion,
and predator-prey dynamics. Ecological population-based modeling
uses mechanistic mathematical models to simulate the dynamics of
different species within an ecosystem. These ecological concepts can

be translated to cancer, where the animal populations become
specific cancer cell populations that interact in the tumor
microenvironment to compete for resources (e.g., oxygen,
nutrients) and survive the intense selective pressure of treatment.
Concepts from ecology and evolution have been widely applied to
cancer progression and treatment response. Prey-predator
interactions, also known as Lotka-Volterra, have been able to
unravel interactions between cellular populations and under the
effects of treatment in cancers such as prostate, lung, and breast
cancer (Silva et al., 2012; Chen et al., 2019; Cerasuolo et al., 2020).
Additionally, geospatial metrics from ecology have been applied to
understand the spatial-temporal distribution of cancer cells in
breast, lung, and colorectal adenocarcinomas using single-cell
sequencing and DNA methylation data (González-García et al.,
2002; Casasent et al., 2018; Dietz et al., 2019). Phylogenetic
analysis is a common technique to understand evolution of
different species. In cancer, phylogenetics has uncovered
evolutionary trajectories of tumor populations and stratify
subtypes within a tumor. This type of analysis has been applied
mostly to protein-coding sequencing data of an individual obtained
through whole exome sequencing (WES) in adenocarcinomas from
breast, lung, esophageal and colorectal tumors (Kostadinov et al.,
2013; Leung et al., 2017; Fimereli et al., 2022; Frankell et al., 2023). In
this review, we explored phylogenetic tree reconstruction through a
variety of techniques, namely, Bayesian inference models, maximum
parsimony algorithms, and Markov chain Monte Carlo methods
(MCMC). The characterization of tumor evolutionary trajectories
using these approaches has the potential to aid in tumor
classification and treatment selection. While ecology and
evolutionary concepts offer clear translatability to cancer,
leveraging tools from other mathematical modeling disciplines
can further enhance our understanding of this disease.

Historically, a tool from economics known as game theory has
been applied to evolutionary questions and more recently to open
questions in cancer research. This mathematical framework can
analyze strategic interactions between cancer populations and the
clinicians’ treatment choices. When applying a game theoretic
approach, different concepts would need to be defined including
the game, the players, the strategies, and trade-offs or costs associate
with each strategy. In cancer research, cellular interactions or
treatment strategies can be considered as games, where cancer
cells are the players. This theory has been broadly applied in two
ways: (1) where cell populations are players that interact with each
other or (2) where clinician and the tumor interact with each other
through strategies decided by the former. In the context of
treatment, chemotherapies, radiation therapy, or immunotherapy
would act as different strategies in the games and each of them has a
costs and benefits associated with it (Archetti, 2021). Whenever
game theory is applied tomodel the interactions of cells in the cancer
microenvironment or phenotypic plasticity it is also knows as
evolutionary game theory (Kaznatcheev et al., 2015). In this
approach, sensitive and resistant cell populations are often
considered as players and treatments as strategies. Game theory
has been applied to study the dynamics of cancers including non-
small cell lung cancer and ductal adenocarcinoma as well as
malignant cellular processes of cancer such as epithelial
mesenchymal transition or spatially structured tumors
(Kaznatcheev et al., 2015; Malekian et al., 2016;
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Nam et al., 2021). So far, the interactions of cells in a population have
been modeled as independent and are only based on predetermined
rules or strategies. Additional complexity is captured by the
application of Stackelberg evolutionary game (SEG) frameworks,
where the action of a player depends on a previous action or strategy.
In SEG, the clinician will make the decision first, which is often a
treatment strategy, followed by the other players in the game. The
clinician’s treatment decisions can influence the dynamics and
evolution of the cancer population they aim to treat, while the
cancer population(s) will have to follow the laws of natural selection,
including behaviors such as mutation. SEG is commonly described
as a leader-follower game where the physician is the leader that can
steer cancer evolution, while cancer cells are natural followers that
are influenced by the treatment decisions made by the leader (Wölfl
et al., 2022; Stein et al., 2023).

Finally, concepts from control engineering and control theory
have been applied to study cancer progression. In this scenario,
cancer cells are influenced by an external agent, in this case
treatment, with the goal of reach an optimal state or tumor size
by developing strategies to control tumor growth. Tumors under
treatment can be viewed as a control system, where the state of the
system is defined by the number of cancer cells and the control is
usually the drug effect on the cells (Lecca, 2020). Control theory has
been applied to study treatment strategies for lung adenocarcinoma
to reach an optimal state of minimal tumor population (Jonsson
et al., 2017). Additionally, these approaches have been combined

with gene regulatory networks in pancreatic cancer to identify genes
and molecules that can serve as control agents to drive the cancer to
a desired state (Plaugher and Murrugarra, 2021).

Leveraging transdisciplinary mathematical modeling
approaches from ecology and evolution, economics, and control
engineering, cancer researchers have started to gain novel insights
into cancer dynamics and create new treatment strategies. Cancer
research offers a rich data source across multiple scales (Figure 1)
that can benefit greatly from harnessing mechanistic cross-
disciplinary insights to better understand tumor progression and
treatment response. Here, we discuss how mathematical modeling
tools from these different fields have been applied to understand
adenocarcinoma progression and treatment response and discuss
the opportunities these tools present to advancing cancer research.

2 Pushing beyond computational
systems biology

Systems biology originates as a methodology to comprehend
complex biological systems, offering a means to streamline the
analysis and interpretation of multi-layer data. Systems biology
focuses on the interactome or network behavior of the species of
interest and their effects on the overall biological system as opposed
to a reductionist biology view that will focus on a single protein or
gene at a time and how it changes in response to a stimulus. An

FIGURE 1
Mathematical modeling of cancer research must bridge the multi-scale nature of the different types of data that can be collected from a patient’s
tumor. Input data types ranging from the tumor level to the cellular level. Tumor biopsies can provide information about tumor composition, histology,
stage, grade, and sequencing can be performed on these samples to get at mutation and clonal information. Primary tumor cells can also be isolated and
cultured in vitro to obtain cell counts. Patient lab values and imaging can collect information about tumor volume, cell counts and biomarker levels.
At the cellular level, different aspects of cellular (dys)function can be assayed dependent on the type of data collected (e.g., DNA, RNA, protein,
epigenetic).
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overarching goal of cancer systems biology is to develop new
treatment strategies, refine drug administration schedules, and
identify diagnostic biomarkers. Cancer progression can be
understood as a biological system that has been studied using
both experimental and computational approaches (Yalcin et al.,
2020). Experimentally, cancer systems biologists leverage multi-
omics data sources including genomics, transcriptomics,
proteomics, metabolomics, and epigenomics to provide the
comprehensive overview of the cellular differences between
different samples of interest (often pre and post treatment).
These data-rich sources require computational tools to get a clear
picture of what is happening biologically. This is where
mathematical modeling can help provide insight into disease
progression and treatment response. Mathematical oncology
originates from a need to characterize the interaction among
cellular populations present in the tumor microenvironment.
Many researchers have traditionally focused on developing
mathematical models rooted in ecology and evolution
frameworks, however there is an opportunity to apply
mechanistic mathematical modeling approaches from a broader
spectrum of disciplines to understand the dynamics of cell
populations in cancer.

Here, we review the ways in which cancer researchers have
leveraged cross-disciplinary mathematical modeling tools in ecology
and evolution, economics, and control engineering to develop novel
insights into the progression and treatment of adenocarcinomas
(Figure 2). A search of the literature was carried out through

PubMed and Embase databases. Key words used combinations of
adenocarcinoma, mathematical, computational, in silico, ecology,
evolution, evolutionary biology, economics, control theory. The
search strategy followed a multi-stage approach implemented
with the Covidence review management system where
628 unique manuscripts were identified by key word searches.
Then, both authors screened all abstracts and shortlisted
176 abstracts whose text described principles from ecology and
evolution, economics, or control engineering to answer cancer-
related questions. In phase three, the full text was reviewed for
all 176 manuscripts and 96 manuscripts were identified for inclusion
in this review. These manuscripts were then subdivided and
summarized based on field they drew insights from.

3 Ecology and evolution

Tumors are formed by multiple cell populations that interact
and maintain an environment necessary for survival. Whenever
conditions are altered, cancer cells can mutate or change phenotypes
that allow them to adapt to this changing environment. These
changes can contribute to the development of treatment
resistance, ultimately hindering clinicians’ ability to treat cancer
and resulting in poor patient prognosis. Therefore, understanding
the evolutionary changes as a result of different environments and
selective pressures that tumors experience can aid in the selection of
effective treatment strategies (Beckman et al., 2020).

FIGURE 2
Pushing beyond computational systems biology, mathematical modeling frameworks from disciplines such as ecology and evolution, economics,
and control engineering can be leveraged to better understand tumor progression and treatment response.
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Like the canonical example from ecology of fox and rabbit
population dynamics, where the fox behaves as the rabbit’s
predator, cancer populations also face threats or predation due to
immune cell populations or therapies. As the population size
increases, these threats become more apparent, meaning that
predation can be density dependent. Like with animal
populations, some species work together for mutual benefit,
cancer cells can also exhibit cooperative behaviors that promote
tumor growth. Thus, cancer can be thought of as an ecological
problem in multiple aspects: from tumor growth, metastasis and
competition, which can be interpreted as the study of population
dynamics in ecology, to spatial heterogeneity in the tumor
microenvironment, which can be seen as the study of
demographically structured populations in ecology (Reynolds
et al., 2020). In this section, we will explore different
mathematical modeling approaches from ecology and evolution
that have been applied to study cancer progression and
treatment response.

3.1 Population based modeling

A variety of tumor cell populations, such as treatment sensitive
and resistant cells or supporting stroma and immune cells, have
been modeled mathematically. In this section, we explored how
researchers have studied the interactions between different cell
populations using ecological modeling approaches such as Lotka-
Volterra competitionmodels. Themost common approach tomodel
the temporal dynamics of tumor populations is using ordinary
differential equations (ODEs) or implemented as an agent-based
model (ABM). ODEs describe changes in variables over a
continuous time. The input are often population sizes,
concentrations, or other continuous variables. On the other hand,
ABMs simulate the discrete dynamics of a population of agents with
specific rules regarding the behavior of interactions of the agents
with other agents and their environment. Based on the discrete
nature, ABMs often capture stochastic interactions in heterogenous
systems and have often been applied to studying dynamics where
spatial patterning is of interest.

One notable application of deterministic population dynamics
modeling that applies ecological constructs to cancer research is the
ODE model developed by Grassberger et al. that predicted the
growth of drug-sensitive cells, drug-tolerant or drug-persistent
cells, and drug-resistant cells to tyrosine kinase inhibitors (TKI)
in EGFR-mutant lung cancer. The ODEs for the TKI-persister and
TKI-resistant populations included a term that described the
transition between the two phenotypes as well as an interaction
term that explained the interplay between TKI-persistent and TKI-
resistant cells. By using continuous lung tumor volume data
abstracted from CT scans, they demonstrated that the growth
rate of TKI-resistant cells was correlated to tumor progression
(Grassberger et al., 2019). Cerasuolo et al. studied the evolution
of TKI resistance using a more complex system of five differential
equations describing the growth of sensitive and resistant cells, the
changes in pharmacokinetics of a prostate cancer drug called
enzalutamide, and the dynamics of the tumor microenvironment.
In this model, the authors parameterized the ODE model using
in vitro and in vivo data. Cell counts were collected in vitro from

murine prostates adenocarcinoma cell lines cultures using flow
cytometry. Tumor volume data was extracted from measuring in
vivomouse tumors. For both sets of data, their growth was assumed
to follow logistic growth. Cerasuolo et al. also introduced a diffusion
term to account for the random variation in cell number in the
tumor microenvironment, also known as Brownian motion
(Cerasuolo et al., 2020). The addition of stochasticity provided a
more accurate representation of the behavior of the
microenvironment in prostate cancer allowing the researchers to
explore a second drug used in combination with enzalutamide.
ODEs have also been used to model androgen-dependent and
androgen-independent prostate cancer cells. Draghi et al.
developed a system of equations that described the interaction
between the health status of the patient including their ability to
sustain treatment and develop resistance, the prostate-specific
antigen (PSA) level produced by the androgen-dependent cells
and androgen-independent cells, and the androgen level (Draghi
et al., 2019). PSA levels collected from patients under intermittent
therapy over time were used to parameterize this ODE model. The
researchers were able to show that mathematically modeling PSA
levels over time has the potential to predict treatment response and
optimize treatment schedules.

When it comes to studying the interactions of different cancer
populations that co-exist in the same microenvironment and
compete for survival, Lotka-Volterra competition models are
frequently applied. These models originate from ecology through
studying predation in different animal populations, where one
species acts as the prey whose population size is dependent on
the rate of predation by the predator. These concepts have also been
applied to model different cancers using ODEs that represent
populations of cells interacting and competing for the same
resources. The equations are usually modeled as logistic growth
where total population growth is ultimately dampened by the
availability of resources and some carrying capacity of the
environment. However, different variations of the Lotka-Volterra
models have been explored in order to fit the growth patterns of cell
populations (Michelson, 1987;Michelson et al., 1987). Evolutionary-
based therapy scheduling, also referred to as adaptive therapy, uses
Lotka-Volterra interactions between cancer cell populations of
interest to inform chemotherapeutic schedules. These schedules
aim to reduce tumor sizes without allowing dominance of a
treatment-resistant cell type by considering the dynamics
between different cell types within the tumor. Adaptive therapy
aims to move away from administrating maximum tolerated doses,
which often result in the development of treatment resistance; to
administering strategically timed chemotherapy doses. This aims to
better control tumor size at lower cumulative treatment doses and
allows for treatment ‘holidays’ for the patients, which may also
reduce side effects patients experience (Belkhir et al., 2021). Lower
cumulative drug doses determined by mathematical models allow
for enough sensitive cells to still outcompete resistant cells for
dominance in the tumor population. By delaying the
development of resistance, sensitive clones can still be treated
resulting on longer life expectancy. Lotka-Volterra based models
are usually formatted as differential equations of pairs of treatment-
resistant and treatment-sensitive populations or quiescent and
proliferating populations and a term that captures the effects of
the drug on the sensitive or proliferating population
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(Strobl et al., 2023). Adaptive therapy has shown to delay the onset
of resistance of abiraterone in a clinical trial of metastatic castration-
resistant prostate cancer (NCT02415621) where treatment decisions
were made based on a mathematical model of androgen-dependent
cells, androgen-independent cells, and testosterone producing cells
with patient PSA level serving as a biomarker for tumor burden
(Cunningham et al., 2020). This trial resulted in an increased of time
to progression of 19.2 months with a 46% decrease in total drug dose
compared to standard of care therapies (Zhang et al., 2017).
Ongoing adaptive therapy clinical trials leveraging similar
approaches have continue in prostate cancer and been applied to
ovarian cancer patients (NCT05080556) (Draghi et al., 2019;
Michelson, 1987; Gallaher et al., 2023). Outside of
adenocarcinomas, adaptive therapy clinical trials have been
developed for rhabdomyosarcoma (NCT04388839) (Reed et al.,
2020), BRAF-mutant melanoma (NCT03543969), and basal cell
carcinoma (NCT05651828) indicating that this treatment strategy
could be applied to variety of cancer types.

Several ODE models have been used to study molecular changes
within cancer cells exposed to different treatments as well as their
effect on the evolution of resistance and overall changes in tumor
size. These changes will cause the cells to adapt to new environments
that lack certain biomolecules or compete with other populations for
resources. This has been explored in both cervical and non-small cell
lung cancer, where tumor volume has been analyzed in relation to
the radiation fraction administered. Radiation can be modeled based
on the number of oxygenated cells and hypoxic areas in the tumor,
which are included in the ODEs as oxygenation rate constants (Chen
et al., 2019; Belfatto et al., 2016). ODE models have also studied
cancer progression regarding metabolic processes, in the absence of
treatment. Voutouri et al. studied how osmotic pressures and
mechanical changes in the microenvironment can affect tumor
progression. They developed a model that incorporates the fluid
and solid phase of the tumor, but also the transport of cation and
anions on glycosaminoglycan chains. In this case, a deformation
gradient tensor is used to quantify the three-dimensional changes in
the tumor, which provides information about the degree of tumor
deformation due to different elements (Voutouri and
Stylianopoulos, 2014). A different research group developed a
nutrient-depletion model, where they were able to study the
interaction of leukemia and cervical cancer cells using population
ecology concepts. Co-cultures experiments were developed to
investigate whether proliferating cervical cancer epithelial cells
can inhibit leukemia T-cells. The populations were modeled
following prey-predation like interactions assuming that each cell
type lived in a niche forming two different cell ecosystems that
interact by exchanging molecules (Sega and Chignola, 2014). Studies
in pancreatic and breast cancer have focused on tumor progression
as it pertains to different metabolic conditions in the tumor
microenvironment. These groups have developed systems of
differential equations that explain changes on the amount of
glucose, oxygen, pH, and other metabolite concentrations used in
processes such as glycolysis, tricarboxylic acid cycle, or the pentose
pathway (Roy and Finley, 2017; Damaghi et al., 2021). These studies
allowed researchers to create in silico simulations of enzyme or
element deprivation and evaluate the effects on cell proliferation.
Specifically, oxygen levels in the tumor have been widely studied
since the lack of this element in the tumor microenvironment leads

to cancer invasion and metastasis. Oxygen levels, however, are most
commonly modeled using linear models of diffusion and not
differential equations (Milotti et al., 2020). Information obtained
from using both approaches suggest different metabolic targets to
slow the progression of certain cancers. Once again, mathematical
modeling was able to predict cellular growth based on different
metabolic processes.

While traditional ODEs have often been leveraged in population
dynamics modeling of tumor ecology, some researchers hoping to
capture the range of behaviors a tumor might exhibit under different
selective pressures have turned to ABMs. This framework consists of
individual agents, which are unique and autonomous cells or
molecules that can interact with each other and their
microenvironment following a set of specified rules and these
frameworks often incorporate stochasticity and can include
spatial resolved information. For instance, Deisboeck et al.
developed an in silico ABM to simulate the possible effects of
engineered cells in the progression of the tumor. In their model,
the engineered cells were primary tumor cells from a patient
modified to express higher proliferation rates than native tumor
cells. They also carry an on-off switch that can be targeted
therapeutically to induce apoptosis. The researchers hypothesized
that the engineered cells could outgrow the native tumor cells and
the final population could be eliminated using a therapeutic. Here,
each cell (engineered or native) is an agent that can obtain
‘proliferation’ credits, which determine whether the cell will
proceed to proliferation or remain in place allowing the other
population to dominate in the environment. The simulations
capture a 3D tumor microenvironment composed of an initial
native tumor cell and an initial engineered cell, which has a
higher proliferation rate compared to native tumor cells
(Deisboeck and Wang, 2008). The simulations showed the
efficacy of engineered tumor cells at controlling and potentially
combating cancer once they reach a certain proliferation level.
However, these engineered cells would have to be developed
from primary tumor cells and subsequently implanted in close
proximities to the tumor resulting in a highly invasive procedure
for the patient. Maley et al. developed an ABM for the pre-cancerous
condition Barrett’s esophagus, which can develop into esophageal
adenocarcinoma. The researchers described cancer progression in
three stages (normal, pre-cancerous, and malignant) based on the
accumulation of neutral and selective mutations. The transition of
these agents or cells between cancer stages was determined by the
number of accumulated mutations and their ability to increase the
mutation rates, as well as the time required for cell division. This
research was able to provide insights on the number of different
mutation types necessary for the development of malignancy (Maley
and Forrest, 2000).

Population based modeling has been widely applied to
adenocarcinomas given that it forms solid tumors, and temporal
data such as tumor size, or population concentrations, can be
obtained from CT scans, flow cytometry counts, and in vitro
cultures. In this section, we have explored the usage two
dynamics models: continuous models (e.g., ODE models) and
discrete models incorporating stochasticity (e.g., ABMs) to obtain
information about cancer progression. Deterministic models can
provide continuous estimates of cancer behavior over time based
distinct timepoint data. These models often use ODEs to describe
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systems that have well-defined parameters and known interactions.
ODE modeling is a good platform to test out different mechanisms
of action. In contrast, stochastic models include randomness or
probabilistic elements into the system and thus need to be simulated
many times to get the range of behaviors of the system of interest.
Thus, these models are best suited to answer questions about
behaviors such as the unpredictable nature of mutations, cell
interactions, or treatment responses at low population sizes.
Deterministic models are commonly used to predict average or
bulk trends experienced by the populations of interest making their
parameterization a computationally efficient process. Stochastic
modeling requires additional input data and since it simulates
random fluctuations it can be more computationally expensive.
However, the use of stochasticity is not always appropriate when
modeling cancer progression. Whenever populations are small,
random mutations can greatly affect the development of that
population and accuracy of the model. Mutations in large
populations are not as impactful and could be left out of the
model. Both deterministic and stochastic modeling approaches
contribute to the understanding of the complex interactions in
cancer progression, so their usage depends on the biological
question, and available computational resources and data. Some
researchers have also leveraged a hybrid approach that changes
based on population size as demonstrated in modeling of
immunotherapy treatment response in lymphoma (Kimmel
et al., 2021).

3.2 Spatial ecology modeling

While the interactions between cell populations is important for
cancer development, their spatial distribution can also play a critical
role. Similar to animal populations distributed within an ecosystem,
cellular populations in the tumor and its microenvironment are
often arranged in specific patterns, which impacts the progression of
the disease. What differentiates cancer from the populations
commonly studied in ecology is the greater degree of spatial
heterogeneity due to the presence of different cell types,
phenotypes, and mutations. Hence, it is crucial to study the
spatial distribution and clonal evolution patterns of these
populations. Spatial data can be collected using different
modalities including imaging, transcriptomic, or genomic
techniques. Often, this data is collected from different areas in
the tumor or from the primary tumor and distant mets and the
expression profiles are compared. For instance, single-cell RNA
sequencing has often been used to offer spatial context of cell
locations in addition to transcriptomic data. Histological tumor
samples have also been used to extrapolate cellular locations and
predict treatment effectiveness based on cell distributions. Spatial
ecology modeling ensures that therapies can effectively target the
entire tumor and its microenvironment, rather than just a subset of
populations (González-García et al., 2002; Yuan, 2016).

Spatial modeling approaches used in cancer not only deal with
cell-to-cell interactions, but also with changes in cell shapes and
sizes. Sapi et al. created a mathematical model to understand the
changes in colorectal tumor volume under bevacizumab therapy.
Their 2D model used a digital caliper to collect different
measurements of the subcutaneous tumor under different

bevacizumab concentrations without the need of performing an
MRI. Measurements including tumor length and width were
recorded for each mouse at least six times during the duration of
the experiment. The authors showed that daily low doses of
bevacizumab were able to cause a greater tumor volume
reduction than a singular high dose (Sápi et al., 2015).
Yamamoto et al. have also investigated effective treatment
schedules and drug concentrations for pancreatic cancer,
particularly with a combination of FOLFIRINOX and nab-
paclitaxel therapy. They used time series tumor volume data
from primary and metastatic site MRIs in a three cell-type
logistic branching growth model. The growth was modeled
starting with an initial cell that gives rise to proliferating cells
that can accumulate mutations and transform to metastatic cells
and establish metastatic sites. Yamamoto et al. introduced a
quantifiable metric called Local Advancement Index (LAI), as an
indicator of metastasis where the growth rate of the cells decreases as
the tumor size increases. They concluded that tumors with lower
LAI have a higher potential to metastasize and develop more
metastases, (Yamamoto et al., 2019).

Volume changes have also been applied to ground-glass
opacities, which are areas in the lung tissue that appear opaque.
These opacities are indicative of various conditions including non-
small cell lung cancer, especially when large volume alterations are
observed. To understand the spatial-temporal dynamics of these
opacities, Farkas et al. developed a model using diffusive logistic
partial differential equations (PDE), which incorporated random
movement of particles (Brownian motion). In this case, CT
histograms, a graphical representation of the pixel intensities in
CT region, were used as inputs for the model, which outputs a spatial
density at a specific time. This information was used to identify
doubling times of the ground glass opacities volume, serving as a
marker of lung cancer progression (Farkas et al., 2018).

While the spatial location and volume of the tumor are
important when selecting treatment strategies, the cell-to-cell
interactions within the tumor can also play a role in determining
cancer progression. Research groups such as Yang et al. have used
both bulk and single-cell transcriptomic data to explore the presence
and impact of tumor-associated macrophages on pancreatic
adenocarcinoma development. They used CellPhoneDB
(Efremova et al., 2020), a database analyzing cell-cell
communications, to construct a network describing the
interactions between macrophages and cancer cells. Additionally,
the authors identified the presence of inflammatory macrophages in
the tumor microenvironment as well as specific ligand-receptor
pairs between tumor and immune cells (Yang et al., 2023).
Information obtained from these networks provided a better
understanding of macrophage interactions with pancreatic cancer
providing an opportunity to develop targeted immunotherapies.
Shan et al. also utilized spatially resolved bulk and single-cell
transcriptomics data to detect the presence of stroma, cancer,
normal pancreatic, and duct epithelium cells and their
interactions in pancreatic cancer. The authors used SpaMOD
(spatial molecular patterns) (Andres et al., 2001), a spatial
modeling tool based on a partial least squares regression
approach, to integrate spatially resolved transcriptomic data
derived from the same pancreatic cancer tissue. By combining
the two types of data, researchers identified the location of
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certain cell types within the tissue and their function. Understanding
the spatial and functional organization of tissue has the potential to
provide information about cancer stages and progression (Shan
et al., 2022). Casesent et al. introduced a novel approach to collect
spatially resolved genomic data called topographic single-cell
sequencing, to study the invasiveness of ductal carcinoma in the
breast. This innovative technique integrates laser-capture
microdissection, laser catapulting, whole-genome amplification,
and single-cell DNA sequencing to provide spatially resolved
genomic data. After studying in situ and invasive ductal
carcinoma samples, topographic single-cell sequencing identified
a genomic transition from in situ to invasive phenotypes due to
mutations. Thus the presence of mutant clones in the duct could
indicate the potential development of metastasis (Casasent
et al., 2018).

Understanding clonal evolution within a spatial context offers
valuable insights into the selection and metastasis of distinct clones.
The strength of selection can be measured using next-generation
sequencing data (NGS), quantified as variant allele frequencies
(VAFs). These allele frequencies represent the proportion of
alleles at a particular locus that differ from the reference genome
sequence. In cancer, the distribution of VAFs represent the genetic
variants within the population. These distributions can be used to
simulate spatial tumor growth models aimed at identifying
mechanisms driving cancer progression, including the influence
of natural selection and genetic drift. This methodology has been
applied to multiple types of adenocarcinomas such as colorectal,
lung, and esophageal (Sun et al., 2017). Utilizing variant information
obtained from NGS, Sievers et al. identified that cancerous
mutations can arise in small colon polyps. Modeling the
molecular pathways involved in the growth of colorectal polyps
and considering their mutation profiles, could offer insights in the
clonal evolution of polyps that may progress into cancer (Sievers
et al., 2017). In lung adenocarcinomas, studies aimed to uncover the
clonal evolution of histomorphological patterns used global DNA
methylation data, whole exome sequencing (WES), and RNA
sequencing (Dietz et al., 2019; Karasaki et al., 2023). Dietz et al.
focused on studying DNA methylation sites and the change in gene
copy number in a phylogenetic framework to identify the origin of
metastasis in the lymph nodes. Karasaki et al. developed a
phylogenetic approach using information from changes in
genomic distances that exists within different regional growth
patterns in the tumor. By combining morphological, genomic,
and clinical data, both groups concluded that even though
different growth patterns were present within the same tumor,
the most aggressive type or high-grade tumor patterns were
associated with a high metastatic potential.

Spatial tumor information allows clinicians to identify the
location of malignant clones and researchers often study how the
genetic content compares between primary tumor and metastatic
sites. Transcriptomic data (e.g., single-cell RNA sequencing data),
epigenetic data (e.g., DNA methylation sites), imaging data (e.g.,
MRI), and genomic data (e.g., WES) have been used to retrieve the
location and function of different cell types within a tumor. This
data is often collected from different sections in the tumor or
metastatic sites that can be compared at the transcriptomic,
epigenetic, or genomic level. Again, the biological question
becomes important when choosing a data type. Transcriptomic

data provides a snapshot of the RNA information expressed by
the cells, while genomics data can provide long-term view of gene
regulation. However, when identifying and comparing mutations
present in different areas of the tumor, genomic data would be
necessary. Collecting all these data types is clinically expensive and
the results can be complex to interpret. Nevertheless, clinicians
could leverage spatial models to identify aggressive sites with
metastatic potential and aim to target those initially.

3.3 Stochastic and probabilistic modeling

The deterministic modeling approaches presented thus far,
neglect the stochasticity of random events including the well-
known mutation accumulation that happens in many cancers.
Therefore, some groups have focused on incorporating these
stochastic elements when modeling cancer systems. While there
are some known mechanistic progression pathways for certain
cancer types, adenocarcinomas such as esophageal or prostate
cancer can arise based on a random sequence of events. Aimed
at improving screening techniques, researchers have modeled
esophageal cancer as a Markov process. This random process
delineates the order of different events in tumor progression,
where the probability of each event happening only depends on
the previous event. This model is suitable for studying esophageal
cancer progression because it mirrors the typical patient experience:
starting with gastroesophageal reflux disease, advancing to Barrett’s
esophagus, followed by undetected cancer, detected cancer, and
ultimately leading to death. The multistage Markov model that
researchers have developed for esophageal cancer has been effective
at determining the appropriate time for screening and starting
treatment (Hur et al., 2010; Curtius et al., 2020; Curtius et al.,
2021). Prostate cancer has also been modeled as a Markov process
across different stages during disease progression. Peirolo et al.
studied the transition between well, moderately, and poorly
differentiated prostate cancer cells. These cell states were related
to a lower and greater stage prostate cancer, respectively. This model
estimated cancer progression and identified the grade of the disease
using clinical data including survival probability, frequency of
detection given a grade and a volume, and probability of
metastasis (Peirolo and Scalerandi, 2004). Gastric cancer can also
transition through increasingly malignant states from normal gastric
mucosa, to chronic nonatrophic gastritis, gastric atrophy, intestinal
neoplasia, dysplasia, and finally to gastric cancer. Most of these
transitions are determined by a bacterium called H. pylori. Yeh et al.
developed a Markov transition model, where an empirical
calibration approach was used to estimate good-fitting
parameters in line with epidemiologic data obtained from the
literature. This model aimed to explore the relationship between
H. pylori and gastric cancer to develop strategies for cancer
prevention (Yeh et al., 2008).

While many studies have focused on the different stages of
cancer as their basis for their Markov model, Veestraeten et al.
developed a continuous-time stochastic process for prostate cancer
progression based on the variations of the prostate-specific antigen
(PSA). This stochastic variable reached a lower boundary after
therapy, where progression of the disease stopped. However,
during relapse, the PSA level increased. The differential equation
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model created by the researchers considers a Wiener process, also
known as Brownian motion, able to describe the stochastic nature of
cancer progression. The parameters included in the model explained
how PSA levels were affected by the growth of the tumor cells, and
cell death due to various treatment intensities. This approach can
help create personalized treatment schedules and track the effects of
therapy in the progression of the disease (Veestraeten, 2006).

Another open question in cancer research focuses on the
stochastic differentiation trajectories that cells may have travelled
along to develop into cancer. Lopez et al. investigated the effect of
harmful mutations on cancer evolution by examining whole genome
doubling. The authors analyzed sequencing data from lung and
triple-negative breast cancers to identify the timing of mutations
relative to whole genome doubling. The model used a Gillespie
algorithm, a stochastic method leveraged here to created simulations
of cancer progression based onmutation rates, the sizes of driver and
passenger mutations as well as their effect on fitness (López et al.,
2020). Lopez et al. aimed to investigate stochastic mutational events
in cancer genes that could be suppressed. Similarly, Lakatos et al.
developed a stochastic branching process of tumor evolution to
evaluate the production of neoantigens, specific proteins produced
by the tumor. A kinetic Monte Carlo algorithm was used to simulate
the evolution of colon, stomach, and endometrial cancers and their
associated antigen production. In this case, identifying these
mutated proteins could be targets for immunotherapies.
However, there are still challenges when it comes to identifying
the appropriate therapy based only on tumor size and neoantigen
presence (Lakatos et al., 2020).

The presence of certain proteins or biomarkers in a tumor
microenvironment can inform effective treatment strategies.
Several groups have focused on developing molecular functional
networks to identify possible interactions between different
molecules that exist in the microenvironment. For instance, Chen
et al. investigated the presence of biological molecules in lung
adenocarcinomas by analyzing a network of genes, microRNA
(miRNA), and long non-coding RNA (lncRNA) data linked to
various stages of lung cancer. They utilized random walk and
Monte Carlo algorithms to group these biological molecules,
selecting certain clusters as modules due to their significant
association with biological functions. These selected modules,
along with their primary biological functions, were integrated to
form a core evolution network. This network depicted the
progression of lung cancer based on the biological molecules and
their functions across the four disease stages (Chen et al., 2022).
Jiang et al. also studied lung adenocarcinomas and the point of
transition from epithelial to mesenchymal phenotypes in those
tumors. Using gene expression data from lung adenocarcinoma
cells where the protein TGF-beta has been known to induce
epithelial to mesenchymal transition (EMT), researchers
developed a Dynamic Network Biomarker (DNB) model. This
model identified the timing and components of the EMT
transition by examining high variation in the expression of DNB
genes (measured as a coefficient of variation), strong correlation
between DNB members (measured as the Pearson correlation
coefficient), and weak correlation between DNB members and
non-members (also measured as the Pearson correlation
coefficient). These metrics were combined to calculate a
composite index indicating the stage of DNB that led to the

transition tipping point. SMAD7 and SERPINE1 were found to
be promoters of EMT in lung adenocarcinomas (Jiang et al., 2020).
While these dynamic networks can be used to provide insights into
cancer staging, they can also inform patient survival. Fang et al.
developed a survival network called ‘dnet,’ which uses gene
mutations and survival data from breast, colon, lung, and ovarian
adenocarcinomas to identify which gene mutations were related to
patient survival. Briefly, dnet used TCGAmutation and survival data
from cancer patients. This data included mutation frequencies
across patients for different genes, along with three clinical
variables: age, gender and tumor type. Dnet conducts survival
analysis based on the Cox proportional hazards model to
evaluate the influence of mutations on patient survival. The Cox
proportional hazard ratio (HR) and the associated p-values for each
gene were calculated using a likelihood ratio test between the full
Cox regression and the baseline regression, identifying potential
predictors for various cancer types. Lastly, a patient-survival gene
network was constructed from the highest-scoring subgraph
determined by the Cox proportional HR p-values previously
calculated. This network was used to identify different genes
related to patient survival, which could be potential therapeutic
targets in almost any type of cancer (Fang and Gough, 2014).

3.4 Phylogenetic analysis

Phylogenetic analysis and the development of phylogenetic
trees have been widely applied to understand cancer progression
and evolution. Starting from genomic or transcriptomic data,
phylogenetic trees can be reconstructed using various criteria,
revealing different aspects of tumor evolution. Many of the
papers reviewed used next-generation sequencing (e.g., WES,
whole-genome sequencing (WGS), DNA sequencing, RNA
sequencing, cytogenetic data) data to unravel copy number
variations (CNV) or single nucleotide variants (SNVs) driving
disease development, which inform the emergence of new
branches in phylogenetic tree models (Turajlic et al., 2015).
Both CNVs and SNVs are common types of genetic alterations
that appear in cancer. CNVs are changes in the number of copies
of a specific segment of DNA, which leads to the amplification or
deletion of genetic material. On the other hand, SNVs represent
changes in single nucleotides in the DNA such as substitutions,
insertions, or deletions. Both variations affect gene expression,
and protein function, leading to the development and
progression of cancer. The detection of these genetic
alterations in patients contributes to the construction of
phylogenetic trees that can inform cancer pathogenesis and
the identify potential therapeutic targets. To study these
alterations and reconstruct tumor phylogenesis, researchers
have used the following algorithms: Bayesian or stochastic
approaches, tumor clonality, maximum parsimony algorithms,
clustering methods, or a hybrid method. While established tree
construction algorithms such as BEAST or CLONET have
originated from using these approaches, other algorithms are
still in development. The process of creating new phylogenetic
algorithms is closely tied to availability of data for the cancer and
treatment of interest. Here, we aim to explore how traditional and
new phylogenetic methods have been used to study cancer
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evolution and identify gene targets that might slow cancer
progression and prevent emergence of resistance.

3.4.1 Bayesian or stochastic approaches
Bayesian and stochastic approaches are powerful tools for

constructing phylogenetic trees that incorporate probabilistic
models and consider uncertainty. Due to the random events in
cancer development and progression, these methods provide a more
realistic representation of tumor evolution. These approaches also
account for complex evolutionary processes including tumor
heterogeneity and clonal dynamics. Bayesian phylogenetics uses
Markov chain Monte Carlo (MCMC) models to reconstruct
evolutionary processes by considering probability distributions.
These models combine prior likelihood and prior probability of a
tree to create posterior probability trees (Nascimento et al., 2017).
Kostadinov et al. used a traditional algorithm called BEAST
(Bayesian Evolutionary Analysis Sampling Trees) on somatic
genomic abnormalities (SGA), including CNVs and SNVs that
occur across somatic cells, from esophageal carcinoma. They
investigated whether non-steroidal inflammatory drugs would
reduce the rate of SGA and improve patient outcomes. BEAST
was run for ten million iterations of the Bayesian MCMC algorithm
to optimize model parameters fit to whole-genome SGA data and
generate posterior phylogenetic distributions. The researchers
modified the algorithm to connect the last universal common
ancestor, which did not have any altered genomic states, with the
most recent common ancestor. BEAST generated trees revealed that
non-steroidal inflammatory drugs can reduce the frequency of SGAs
in specific branches of the phylogeny (Kostadinov et al., 2013).

BEAST was used to infer the time of divergence of evolutionary
events using prior tree distribution and parameters obtained with
MCMCmodel. Similarly, another Bayesian MCMC algorithm called
BAMSE (Bayesian Model Selection for Tumor Evolution) used prior
information to perform tree reconstruction. While the
methodologies of BAMSE and BEAST are similar, they differ on
the likelihood functions used to incorporate prior information, and
BAMSE offers flexibility to accommodate various types of datasets.
BAMSE takes somatic mutation read counts as inputs and clusters
them into scored subclones. For these subclones, different potential
trees able to explain their evolutive patterns were created. The most
plausible tree was then selected based on a Bayesian model that
considers prior information from the subclones to calculate a
posterior probability. This approach was particularly useful when
reconstructing phylogenies for heterogeneous tumor samples or
multiple samples from the same patient (Toosi et al., 2019).

Another Bayesianmodel called Treeomics has been developed to
study the phylogenetic evolution of metastatic subclones and their
seeding locations (Reiter et al., 2017). Treeomics has been used to
investigate cancer metastasis in pancreatic, ovarian, and prostate
cancers as well as precursor lesions. In pancreatic cancer, for
instance, pancreatic intraepithelial neoplasia is a well-known
precursor lesion, whose evolutionary pattern was able to be
reconstructed with Treeomics (Makohon-Moore et al., 2018).
Narrowing the focus, a research group developed SCITE another
Bayesian probability algorithm using the beta-binomial distribution
that can only be applied to single-cell DNA sequencing data. Leung
et al. use this approach to reveal clonal lineages of liver metastases in
colorectal cancer (Leung et al., 2017). All of these Bayesian inference

models (BEAST, BAMSE, Treeomics, and SCITE) are able to
construct tree phylogenies for genetic and transcriptomic data.
SCITE is the only algorithm that retrieved phylogenies using
information at a single-cell resolution while the other algorithms
were applied to different types of genomic data. The main challenge
with using phylogenetic reconstruction to inform cancer evolution
and treatment is data availability. It is challenging to obtain allele
frequencies from clinical data, such as formalin-fixed or paraffin-
embedded tissue samples, so new sequencing techniques are being
developed to leverage these approaches in the clinic. Additionally,
most of these algorithms require user input of certain parameters
that are difficult to estimate which could lead to erroneous
phylogeny formations.

3.4.2 Maximum parsimony algorithms
Most phylogenetic trees are generated based on maximum

parsimony algorithms, which aim to create the least complex tree
to explain the given data. Maximum parsimony phylogenetics is a
non-probabilistic method that aims to uncover the molecular
heterogeneity of diseases by minimizing the number of
evolutionary changes. These algorithms have been applied to
different types of data such as WES, CNVs, or cytogenetic data,
however they are adjusted based on the data inputs. Li et al. used the
maximum parsimony algorithm on WES data to understand the
mutational landscape of subsolid nodules in lung adenocarcinoma
(Li et al., 2020). Similarly, Nalbantoglu et al. analyzed WES data to
identify pancreatic ductal adenocarcinoma genetic signatures and
pathways that were associated with survival. While parsimony
phylogenetics aim to unravel driver and passenger mutations
associated with the disease, they could not identify a specific
clone related with cancer survival (Nalbantoglu et al., 2016). An
improved version of the parsimony approach was developed by
Murugaesu et al. called the parsimony ratchet, which introduces
randomness to the initial maximum parsimony tree created to
improve the final tree formation. The researchers found how
changes in the genomic landscape affected the evolution of
esophageal carcinoma before and after neoadjuvant
chemotherapy (Nixon, 1999; Murugaesu et al., 2015).

Maximum parsimony algorithms will always try to find the tree
topology that requires the fewest evolutionary changes to explain the
input data. A more generalized approach called maximum
likelihood algorithms aim to find the tree topology that
maximizes the probability of observing the given sequence under
a specific evolutionary model independent of its simplicity.
Heydebreck et al. used maximum likelihood estimation to create
phylogenetic trees using cytogenetic data from clear cell renal cell
carcinoma samples. In this model, genetic alterations were
represented as branches, with a normal cell serving as the root of
the tree. The tumor evolution was then traced starting at the root
and assigning probabilities to genetic changes occurring at each
node on the tree. The final tree revealed different genetic changes
during tumor evolution (von Heydebreck et al., 2003). Petersson
et al. studied chromosomal alterations and mutational variants
related to poor prognosis in pancreatic cancer. They used a
similar maximum likelihood algorithm where the root was a
normal cell. In this case, CNVs, SNVs, and insertions and
deletions were grouped based on their mutated clone fraction to
identify mutations that only affected one subclone. This information

Frontiers in Genetics frontiersin.org10

Del Pino Herrera and Ferrall-Fairbanks 10.3389/fgene.2024.1383676

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1383676


was input into an event matrix, which the maximum likelihood
algorithm model used to create the phylogenetic trees (Petersson
et al., 2022).

When it comes to analyzing molecular data, GARLI (Genetic
Algorithm for Rapid Likelihood Inference) is a maximum likelihood
algorithm that was able to simulate genetic evolution and select the
most likely tree topology through a process similar to natural
selection. Zhao et al. utilize this algorithm on genomic DNA data
from lung and pancreatic cancers to understand tumor progression
of primary and metastatic lineages at the time of diagnosis (Zhao
et al., 2016).

Dollo parsimony is a different type of parsimony that is
characterized by the inability to regain traits once they have been
lost in the phylogeny. McPherson et al. used this probabilistic model
approach where SNVs could transition between two states, starting
from an ancestral state to the next state but not switch back. This
technique was applied to WGS and single-nucleus sequencing data
in ovarian cancer, identifying different evolutionary features such as
gain or loss mutations characteristic of disease evolution (V
Alekseyenko et al., 2008; McPherson et al., 2016). Wu et al. also
used Dollo parsimony, in a tool called Dolpenny, where somatic
mutations and loss of heterozygosity data from serous tubal
intraepithelial carcinoma (the precursor lesion of high-grade
ovarian cancer) were converted to binary inputs to determine the
most parsimony tree. They showed that the clonal origin of these
lesion was diverse between patients and also within the same patient
with multiple lesions (Wu et al., 2019).

Here, we have explored three different algorithms, maximum
parsimony, maximum likelihood, and Dollo parsimony, used to
reconstruct evolutionary topologies in cancer. Maximum likelihood
algorithms use the given data and a specific model of evolution to
construct a tree topology probability. The final tree would be the one
that maximizes this probability while maximum parsimony
algorithms minimize the number of evolutionary events on the
final tree. Dollo parsimony introduces an additional simplification
where traits cannot be regained once they are lost. As expected,
maximum likelihood algorithms can be more accurate at retrieving
phylogenetic progression, but they are more computationally
expensive. Additionally, if the tree topology that best explains the
data is very complicated, maximum likelihood algorithms might not
be able to retrieve it. Contrarily, maximum and Dollo parsimony
algorithms will be able to retrieve a phylogenetic tree in a shorter
time, but they might lack of essential evolutionary information
in the tree.

3.4.3 Tumor clonality
The evolution of different clones in the tumor, their frequencies,

and hierarchical organization is crucial for understanding cancer
progression under different treatment conditions. Multiple research
groups have developed algorithms such as CITUP, CLONET, and
SCHISM that aim to identify the clonal evolution trajectories in
cancer using multiple samples from the same patient. CITUP
(Clonality Inference in Tumors using Phylogeny) was developed
to study subclones that give rise to intra-tumor heterogeneity. This
algorithm uses deep sequencing data processed by Quadratic
Inference Programming (QIP) to determine phylogenetic trees
and clonal frequencies. QIP handled large number of mutations
in a fast manner to provide information on cancer heterogeneity

(Malikic et al., 2015). Abbosh et al. used this approach on multi-
region WES data from circulation tumor DNA to understand the
evolutionary dynamics of early-stage disease in lung cancer (Abbosh
et al., 2017). Similar to CITUP, CLONET (CLONality Estimate in
Tumors) also aims to study the clonal structure of tumors based on
somatic aberrations obtained from WGS, which includes
information from both coding and non-coding regions of the
genome. This algorithm uses a local optimization approach to
ensure tumor purity in noisy samples to estimate the high
confidence values for driver genes that are related to the nodes of
the tree (Prandi et al., 2014). Van der Mijn et al. used CLONET to
understand the genomic landscape of clear cell renal cell carcinoma
using WES and CNVs associated with worse prognosis (van der
Mijn et al., 2022). SCHISM (Subclonal Hierarchy Inference from
Somatic Mutations) employed somatic mutation counts obtained
from NGS as inputs. Initially, these mutations were clustered and
then a generalized ratio test was used to infer the temporal ordering
of these mutations. This information was later used to construct
phylogenetic trees (Niknafs et al., 2015). Researchers have used
SCHISM to identity the type of evolution in pancreatic cancer
mouse models. The evolutionary patterns identified in the mouse
models were found to be very similar to human pancreatic cancer
models (Niknafs et al., 2019). Clonality algorithms offer several
advantages compared to maximum parsimony and Bayesian
approaches. Algorithms such as CLONET, CITUP and SCHISM,
can process large-scale data obtained from high-throughput
sequencing technologies resulting in improved tree topology
accuracy. They can also integrate biological knowledge and
clinical data to provide additional information about the final
tree such as clonal frequencies or accurate branching patterns.
However, data availability to use these algorithms is scarce and it
is expensive to collect.

3.4.4 Clustering methods
Most the algorithms previously described consider genomic

abnormalities including mutations, aberrations, or variants.
However, regional or evolutionary distance data can also be used
to create tree topologies through different clusteringmethods. Saitou
et al., for instance, developed a neighbor-joining method where a
neighbor was defined as a pair of operational taxonomic units
(OTU) that were connected through one interior node. Their
algorithm initially created a star-like tree with the different OTUs
and then paired them into neighbours with the smallest sum of
branch lengths (Saitou and Nei, 1987). This algorithmwas applied to
circulating tumor DNA data in colorectal cancer to understand the
evolution of metastases under HER2 blockade treatment. In this
case, primary tumor data formed the root of the tree and the
branches showed the different spatial subclones that could
potentially develop resistance to the treatment (Siravegna et al.,
2018). Matsui et al. developed another algorithm called phyC to
create evolutionary trees based on multi-regional sequencing. This
algorithm clusters a set of trees based on the VAFs and the
evolutionary trees obtained were divided by subgroups based on
different topologies and edge characteristics. These trees informed
the different evolutionary patterns that can exist during disease
development (Matsui et al., 2017). To address sample heterogeneity
in the reconstruction and clustering of lineages, Popic et al.
developed LICHeE (Lineage Inference for Cancer Heterogeneity
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and Evolution). This algorithm identified somatic single nucleotide
variants (SSNVs) groups from germline SNVs and VAFs obtained
from different cancerous cells locations (primary tumor, metastases,
lymph nodes). The groups were aggregated by their VAFs, forming
clusters. These clusters were then used to create an evolutionary
constraint network, starting from the germline cluster, and
connecting each cluster based on their VAFs quantity, ensuring
that the parent node had a higher VAF than the child node. The
evolutionary trees were inferred from this constraint network.
LICHeE has been applied in ovarian and breast cancer data,
successfully replicating and improving tree topologies previously
obtained by other researchers, revealing the heterogeneity among
multiple somatic samples based on SNV and VAF data (Popic et al.,
2015). Clustering algorithms can often be more computationally
efficient and can capture complex evolutionary patterns more
effectively due to their clustering-based approach. Like other
phylogenetic approaches, data availability becomes a challenge,
preventing the use of this approach to inform routine
treatment decisions.

3.4.5 Hybrid approaches
Researchers have also combined multiple of these approaches to

reconstruct more complex phylogenies. El-Kebir et al. developed an
algorithm called CNT-ILP (Copy-Number Tree-Integer Linear
Program) to solve a specific problem of copy-number triplet and
the copy-number tree when using copy-number profile data. The
copy-number triplet problem arises when the algorithm is incapable
of find a parental tree that minimizes the distances to its children due
to the continuous range of copy number states in CNVs. The copy-
number tree problem arises when the algorithm is incapable of
creating the simplest tree under maximum parsimony. These two
problems were addressed using a pseudo-polynomial time algorithm
and an integer linear program (ILP). These methods treated the
problems as optimization tasks, enabling the consideration of copy-
number states in the reconstruction of phylogenies (El-Kebir et al.,
2017). Fimereli et al. utilized this optimized algorithm to analyze
primary and metastatic copy number profiles from breast cancer.
This approach decreased the computational time, enabling the
researchers to gain insights into the metastatic behaviour of the
cancer. (Fimereli et al., 2022).

Phylogenetic trees can also be constructed based on cells’ ploidy,
which can vary from diploid, typical of most human cells, to lead to
aneuploidy or polyploid populations resulting from cancer
mutations. Gertz et al. leveraged fluorescence in situ
hybridization (FISH) to detect changes in the ploidy of tumors
using a probe and mixed integer linear programming (MILP) to
create FISHtrees 3.0. This algorithm was validated using data from
breast ductal carcinoma in situ and invasive ductal carcinoma (Gertz
et al., 2016). A different group improved phylogenetic tree
reconstruction by creating CONIPHER (Correcting Noise In
Phylogenetic Evolution and Reconstruction). This algorithm is
able to handle a high number of primary tumor and metastatic
regions per patient, corrects for different evolutionary events such as
mutation losses and removes clusters that were unlikely to happen
biologically. Initially, CONIPHER identified clusters based on the
somatic mutations that occurred in different subclones during
evolution using the algorithm PyClone (Roth et al., 2014). The
next step involved the creation of a phylogenetic tree using the

identified mutation clusters and eliminating false clusters originated
from artefactual mutations or somatic copy number aberrations.
The last step consisted of enumerating plausible phylogenetic trees.
CONIPHER has studied the timing of somatic events in lung cancer
tumors from WES (Frankell et al., 2023).

Phylogenetic algorithms have been useful in cancer research to
explore complex evolutionary patterns during tumor evolution. While
some approaches might be able to utilize more information than others,
they highlight potential therapeutic biomarkers. Regardless of the
mathematical concepts involved in each approach, the construction
of phylogenetic topologies is limited by data availability. These
algorithms require genomic data, including CNVs and SNVs, to able
to estimate the appropriate branching structure of the phylogenetic tree.
This data is not collected for every patient, but if it is, it only represents a
snapshot of the tumor at the specific point in time. Thus, phylogenetic
information is useful for researchers investigating biomarker targets at
certain disease stages but may not be as helpful in a rapidly
evolving tumor.

3.5 Diversity measures

Researchers have also leveraged different diversity indexes from
ecology to quantify cellular and phenotypic heterogeneity in tumor
samples. These can help assess the richness, evenness, and
dominance of different cell types within a tumor sample.
Richness refers to the amount or count of cell types present in a
sample, while evenness represents the abundance of a certain type
compared to the total. Dominance describes the type with the largest
influence and control of the overall population. The Shannon index
(Shannon, 1948) is the most commonly used metric to quantify
diversity within a dataset, considering the uncertainty associated
with the presence of specific cell types. A more general approach is
leveraging the generalized diversity index (GDI) (Jost, 2006), which
can identify diversity across a number of scales of diversity within a
dataset (Roswell et al., 2021; Crupi et al., 2019). These indexes have
been applied to various cancer types. For instance, in clear-cell renal
cell carcinoma, GDI was used to evaluate immune cell infiltration
from patient bulk RNA sequencing data. Additionally, in patients
with chronic myelomonocytic leukemia (CMML), researchers use
the Shannon index to quantify cytokine receptor diversity in
different stem and myeloid progenitor populations from patient
samples. Higher Shannon indices were associated with an increase in
the cytokine receptor diversity in hematopoietic stem cells in
patients with CMML compared to healthy patients (Ferrall-
Fairbanks et al., 2022a). While the Shannon index has been
informative, the GDI emerges as a more robust metric. GDI is
constructed as a continuous and non-increasing function within a
range of values that are determined by the scale parameter q, which
is the order of diversity (Crupi et al., 2019). Lower order metrics
favor clonal richness, whereas higher order metrics give greater
importance to the most abundant population. Ferrall-Fairbanks
et al. first applied GDI to quantify levels of heterogeneity in
cancer from single-cell RNA-sequencing data, extracting insights
into cancer evolution (Ferrall-Fairbanks et al., 2019). GDI was also
used to study parasexual recombination in breast cancer, a process
involving the exchange of genetic material between cells without
meiosis, where 2 cell lines fused to produce hybrids.
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Miroshnychenko et al. showed that at early passages, hybrids have a
higher GDI across all orders (values of q) compared to the parental
cell lines. At later passages, the GDI decreased at low orders,
meaning that the species richness decreased, while at high orders
was still high, which suggests that the species evenness in the hybrid
cells was higher than the parental cells (Miroshnychenko et al.,
2021). GDI was also applied to quantify immune cell infiltration
using CDR3 sequences recovered from bulk RNA-sequencing of
clear cell renal cell carcinoma samples. The authors showed that
larger and more advanced disease stage cancers have increased
richness in tumor recovered CDR3 sequences, while the evenness
of these distributions segregated patients based on survival (Ferrall-
Fairbanks et al., 2022b). As seen in this section, the diversity indices
can be useful to assess the heterogeneity in a patient population
based on clinicopathologic features, which could predict disease
progression and treatment response.

4 Economics

Studying the economic burdens in cancer patients has been of
interests for researchers worldwide. However, here we have shifted
the focus towards presenting mathematical principles originated
from the field of economics that have been then applied to study
cancer progression and treatment response. One of these concepts is
game theory, or evolutionary game theory (EGT) when applied to
biological problems, which describes interacting populations in
terms of strategies and pay-offs. In this sense, EGT relates the
dependence of cells to each other, where the fitness of 1 cell
depends on their surrounding populations and/or environment.
While cancer is typically studied in the context of natural
selection, also known as the Darwinian process, incorporating
elements of Darwinian evolution into game theory model can
provide important new insights. Therefore, evolutionary elements
such as mutations or chromosomal rearrangements, competition for
resources, and the effects of different traits on survival are key
elements when modeling these types of problems. In this
evolutionary game, the cancer cells would be the players, the
inherited traits are the strategies, and the payoffs usually
correspond to the fitness and survival of the cells. However, each
research group can model their evolutionary game differently
depending on their specific questions (Wölfl et al., 2022; Laruelle
et al., 2023; Stanková et al., 2019). EGT has been used to model
cancer resistance, interactions between different cell types in the
tumor microenvironment, or the emergence of different cell states.
Researchers have used both spatial and non-spatial datasets to apply
this framework, while maintaining the overall goal of unravelling
cancer evolution based on cellular interactions (Coggan and Page,
2022). Furthermore, an economic concept known as the Gini index
was developed to identify wealth inequality and can be used as a
metric to quantify population inequalities in cancer populations.

4.1 Game theory

EGT has been used to study cancer progression by identifying
different players and the payoffs in a cancer system, often the tumor
microenvironment. Archetti et al. studied a group of engineered cell

populations as a public goods game. In their framework, they
engineered cancer cells by knocking-out genes that produce
growth factors needed to live and proliferate. By combining non-
engineered and engineered cancer cells in-vitro, the overall
population growth decreased compared to non-engineered cancer
cells alone. This occurred because the engineered cancer cells
disrupted the cooperative nature of the population by consuming
growth factors (public goods) produced at a cost by the non-
engineered population. This cost led to complete or almost
complete eradication of the main growth factor-producing clone,
resulting in a reduction in population growth. This model was
applied to different types of cancer cells such as non-small cell
lung cancer and pancreatic neuroendocrine cancer (Archetti, 2021).

EGT has often been paired with some of the methodologies
already described. Malekian et al., for instance, created a model that
combines EGT concepts with an ABM to study the effects of gap
junctions in ductal carcinoma in situ progression. The agent-based
portion of the model considers each cell to exist in one of the
following states: quiescent, proliferative, apoptotic, and necrotic.
These cells can transition between states based on oxygen
concentration and the phase of the cell cycle. The EGT portion
of the model was designed to address the interactions between cells.
Here each agent, or cell, represents a player that can interact with
any of the 8 cells that surrounds it using one strategy at the time
(quiescence, proliferation, apoptosis, and necrosis). In their model,
the interaction between 2 cells through gap junctions created a pay-
off that sends the cell a survival or death signal based on different
factors in the microenvironment such as oxygen levels or growth
factors concentrations (Malekian et al., 2016).

Zhang et al. combined EGT concepts with a Lotka-Volterra model.
The authors aimed to explain the competition of different cells in
metastatic castrate-resistant prostate cancer under adaptive therapy.
Their players were the cancer cells, the strategies the different
phenotypes that a cell can take, in this case androgen-dependent,
testosterone-producing, or androgen-independent cells, and lastly the
payoffs were proliferation and survival of the cells. The Lotka-Volterra
model addressed the competition of the three different cell phenotypes
while undergoing therapy (Zhang et al., 2017).

Spatial data can also be modeled using game theory. Kaznatcheer
et al. defined cancer cells as players that can take one of two different
strategies: those exhibiting autonomous growth that are capable of rapid
proliferation (AG cells) and those with acquired motility and
invasiveness conferred by mutations (INV cells). These phenotypes
were tied to different payoffs: the cost of motility on INV cells, and the
benefit of fitness of a cell that has every resource available. For example,
if two INV cells meet, then one gets the benefit of using the surrounding
resources and the other one migrates at a cost. However, if a INV cell
encounters anAG cell, then the INV cell pays the cost of having tomove
to find resources, while the AG benefits from that interaction. Using
data fromprostate cancer, researchers were able to justify that the spatial
location of the cells can affect tumor invasion and evolution based on
these cellular interactions (Kaznatcheev et al., 2015).

4.2 Gini index

The Gini index was originally developed as a measure of
economic inequality. In the context of cancer, it can be used to
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quantify cellular heterogeneity within the tumor to predict disease
progression and treatment response. Hinohara et al. used the Gini
index to quantify heterogenic expression of specific markers in
breast cancer. Specifically, this index was used to identify
variations in the expression levels of a group of enzymes
(KDM5) implicated in cell proliferation and cancer progression
in breast cancer cell lines, both pre- and post-treatment with an
inhibitor targeting that protein family. They concluded that
inhibiting KDM5 enzymes decreased transcriptomic
heterogeneity, which could increase treatment effectiveness
(Hinohara et al., 2019). Also in breast cancer, Filho et al. used
the Gini index to quantify heterogeneity of ERBB2 gene expression
in HER2 positive patients. In this type of cancer, an intratumor
heterogeneity expression in the ERBB2 gene is associated with
cancer resistance. However, the researchers observed a relatively
low Gini index, suggesting that the samples have an evenly
distributed expression level of the ERBB2 gene. In this case, the
Gini index was not a good predictor of drug response (Filho et al.,
2021). This index can also be used to quantify expression of markers
that suggest response or resistance to treatment. Gil Del Alcazar
et al. used the Gini index to quantify changes in immune populations
between stable and growing tumors in a breast cancer rat model.
Stable tumors expressed a higher Gini index with respect to their
B-cell and T-cell receptors. This implied a higher diversity in
immune response making these tumors not suitable for immune
therapies (Gil Del Alcazar et al., 2022).

The Gini index is usually used in combination with other
diversity metrics. Miroshnychenko et al. used the GDI to
quantify diversity between parental breast and epithelial cell
types, and hybrids of the two, which could have been formed
through cell fusions also known as somatic hybridization. While
the GDI can differentiate cells into different phenotypes, the Gini
index can capture cell-to-cell phenotypic variability. Therefore, the
Gini dispersion index provided information about the gene
expression variability of cells within the same phenotype. The
researchers found that hybrid cell populations had higher Gini
indexes compared to the parental populations indicating that
somatic hybridizations increased phenotypic diversity
(Miroshnychenko et al., 2021).

The application of economic mathematical principles has been
useful to study cancer in several ways. Game theory has been able
to explain different phenomena happening during cancer
development such as resistance, cell interaction, and the
emergence of different cell states. These processes were modeled
as a game with players and pay-offs tied to different strategies.
Game theory, in combination with ecology tools, has been able to
capture additional cellular interactions creating a more robust
framework to explain temporal data. Additionally, the Gini index
originally developed to measure economic inequality, has been
applied to quantify cellular diversity in tumors. Exploring the
cellular composition indicates effectiveness of treatment. For
instance, high diversity in immune populations within a tumor
indicate that immunotherapy treatment would be ineffective. Data
types such as population counts, or volume are necessary to utilize
game theory models while sequencing data would be necessary to
obtain a Gini index. Once again data availability becomes a
challenge when using these tools to study cancer progression or
treatment effectiveness.

5 Control engineering

Control theory has numerous applications in the fields of
control engineering and mathematics. The objective of this
theory is to control different systems and machines to obtain the
most optimal performance. However, this framework can be applied
to study cancer evolution as a system that can be controlled until a
certain criterion is met. These controls can be variables in an ODE
system that causes the system to minimize a certain process such as
the development of treatment resistance or overall tumor growth/
size (Lecca, 2020). Cecile Carrere et al. developed a control system to
study cancer resistance in an adaptive therapy context. In their
experiments, they analyzed the growth of both sensitive and
resistant populations in a co-culture of a lung cancer cell line
using ODEs. To transform their population dynamics model into
a control problem, they incorporated a control mechanism using a
Lebesgue measurable function. This function introduced measures
of length, area, and volume to the system, allowing the optimization
process to regulate and minimize the final tumor size when exposed
to different treatment schedules (Carrère, 2017). Jonsson et al. also
studied cancer resistance using control theory, focused on the switch
of different treatment strategies to prevent resistance development.
In their model, an equation described the growth, mutations, and
evolution of a population of non-small cell lung cancer cells.
Additionally, they considered a cost function that addressed the
effectiveness of a specific treatment over time. This cost function
tried to address whether it would be more optimal to continue with
the same treatment to keep the tumor population at a minimum or
to switch the treatment strategy to a different drug, or schedule.
Using non-small cell lung cancer cellular dynamics, the group was
able to simulate population growth under different treatment
strategies (Jonsson et al., 2017). Similarly, Plaugher et al.
developed a control model for different cellular populations
involved in pancreatic cancer. In this case, each cell type had a
different control influencing its growth such as treatment drugs,
cytokines, or growth factors. With this framework, researchers took
into consideration how different controls affect cellular populations
individually instead of one control affecting the entire population
(Plaugher and Murrugarra, 2021).

Control engineering is still under development when applied to
cancer. Researchers are exploring various control strategies,
optimization techniques, and mathematical models that could be
useful to improve therapeutic outcomes. Modeling cancer as a
control problem could provide precise manipulation of treatment
strategies such as dosage, timing, or combination therapies.
Contrary to game theory which is more accurate at capturing
cell-to-cell interactions.

6 Discussion

In this review, we have explored how mechanistic mathematical
modeling tools from different disciplines can be applied to derive
novel insights into progression and treatment response in
adenocarcinomas (broadly summarized in Table 1). Being able to
study cancer using mathematical concepts (summarized in Figure 3)
provides a great advantage when designing treatment strategies,
especially in adenocarcinomas that are often asymptomatic until
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TABLE 1 Examples of open questions in cancer research that can be answered using cross-disciplinary insights from ecology and evolution, economics, and
control engineering. Broadly these questions can be divided into temporal/dynamical, spatial/environmental, and historical/evolutionary.

Scale Question Discipline Data Frameworks Notable
applications

Ref.

T
em

po
ra
l=
D
yn
am

ic
al

How does cancer progress
over time?

Ecology &
Evolution

Time dependent data (e.g.,
cell counts, volume
changes, biomarker levels
. . . )

ODE, ABM Lotka-Volterra population
dynamics models predicting
changes in tumor population
size over time

Cerasuolo et al. (2020),
Michelson (1987); Michelson
et al. (1987); Maley and
Forrest (2000); Deisboeck
and Wang (2008); Sega and
Chignola (2014); Voutouri
and Stylianopoulos (2014);
Belfatto et al. (2016); Roy and
Finley (2017); Zhang et al.
(2017); Draghi et al. (2019);
Grassberger et al. (2019);
Cunningham et al. (2020);
Milotti et al. (2020); Reed
et al. (2020); Belkhir et al.

(2021); Damaghi et al. (2021);
Kimmel et al. (2021);

Gallaher et al. (2023); Strobl
et al. (2023)

How do selective
pressures affect it?

How does cancer progress
over time due to random
changes?

Ecology &
Evolution

Time dependent data (e.g.,
cell counts, biomarker
levels . . . ), mutation and
survival data

ODE, ABM, MCMC
models, random walk,
functional networks

Models can predict random
changes in tumor population
size over time

Peirolo and Scalerandi
(2004), Veestraeten (2006),
Yeh et al. (2008), Hur et al.
(2010), Fang and Gough

(2014), Curtius et al. (2020),
Jiang et al. (2020), Lakatos
et al. (2020), López et al.

(2020), Curtius et al. (2021),
Chen et al. (2022)

How does an individual
cell’s strategy affect tumor
progression?

Economics Time dependent data (e.g.,
cell counts, biomarker
levels . . . ), spatial/location
data

Game theory, Trade
theory

Game theoretic model
describes interacting
populations over time based
on strategies and pay-offs or
trade-offs to explain resistance
development, and the
emergence of cell states

Kaznatcheev et al. (2015);
Malekian et al. (2016);

Archetti (2021); Nam et al.
(2021); Wölfl et al. (2022),
Zhang et al. (2017), Laruelle
et al. (2023), Stanková et al.
(2019), Hausser and Alon
(2020), Boddy et al. (2018)

How can cancer
treatment be optimized?

Control
Engineering

Time dependent data (e.g.,
cell counts, fold changes . . .
), marker expression

Control theory,
Decision theory

Optimize cancer systems in
real-time until a desired state
is reached by identifying
optimal treatment schedules

Carrère (2017), Jonsson et al.
(2017), Kenn et al. (2021),
Plaugher and Murrugarra
(2021), Foahom Gouabou

et al. (2022)

How do cancer cell
populations interact
based on resource
availability?

Ecology &
Evolution

Time dependent data
(binding ability), flow
cytometry data, ATP
competition data

Competition Identify competitive ability of
a population for resources and
bind to receptors to produce a
downstream effect on cancer
progression

Yu et al. (2020), Cheng et al.
(2022), Furman et al. (2022)

Economics

Sp
at
ia
l=
E
nv
ir
on

m
en
ta
l

What is the cellular and
molecular diversity of the
tumor
microenvironment?

Ecology &
Evolution

Transcriptomic data
(single-cell RNA
sequencing data)

Diversity metrics, Gini
index

Assess diversity (richness,
evenness, dominance) and
equity of cell types and
distributions in a sample
under different conditions

Shannon, 1948; Jost (2006),
Crupi et al. (2019),

Ferrall-Fairbanks et al. (2019),
Hinohara et al. (2019), Filho
et al. (2021), Miroshnychenko
et al. (2021), Roswell et al.

(2021), Ferrall-Fairbanks et al.
(2022a), Ferrall-Fairbanks

et al. (2022b), Gil Del Alcazar
et al. (2022)

How are cells disturbed
under different
conditions and
environments?

Economics

Where are cells located
within the tumor
microenvironment?

Ecology &
Evolution

Time series volume data,
transcriptomic data (bulk
and single-cell sequencing
data), epigenetic data (DNA
methylation sites)

Geospatial measures,
ODE/PDE

Provides spatial distribution
and clonal evolution patterns
of cellular populations to
identify malignant clones for
treatment

Andres et al. (2001),
González-García et al. (2002),
Sápi et al., 2015; Yuan (2016),
Sievers et al. (2017), Sun et al.
(2017), Casasent et al. (2018),
Farkas et al. (2018), Dietz

et al. (2019), Yamamoto et al.
(2019), Efremova et al.

(2020), Shan et al. (2022),
Karasaki et al. (2023), Yang

et al. (2023)

(Continued on following page)
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presenting at advanced stages when diagnosed. Computational
models able to diagnose or personalize treatment schedules using
only a few inputs have the potential to vastly improve patient
outcomes and personalize treatment strategies. In this review we
have focused on analyzing mechanistic or analytical models that
already existed in different fields and were applied to cancer. These
models that already describe mechanisms present in different
frameworks have been leveraged to obtain novel insights about
cancer progression and personalized treatment.

From ecology, cancer researchers have leveraged frameworks
historical applied to describe interacting populations in an
ecosystem, to control engineering where cancer researchers have
designed and used optimization to regulate systems to meet
performance specific tasks, to application of economics metrics to
assess wealth and game theoretic interactions, cancer researchers
have utilized these foundational concepts to develop a new
perspective at understanding tumor dynamics. At the base of all
these cross-disciplinary frameworks are the same mathematical
modeling approaches including differential equations (ODEs/
PDEs), stochastic and probabilistic models, agent-based models
(ABMs), Markov models, and Bayesian approaches that have all
been aimed to study cancer progression and treatment response.
Choosing the most effective cross-disciplinary tool depends on the
scientific question and available data. When trying to quantify the
diversity of cell types and phenotypes in a tumor, diversity (e.g.,
Shannon index, GDI) and inequity (Gini index) measures have been
used to stratify patients based on disease characteristics and
potential treatment response. To learn the location of these cell
types across the tumor, spatial ecology concepts could be
implemented on transcriptomic or tumor volume data. If the
focus is more specific and researchers wanted to identify what
biomarker to therapeutically target, then the construction of

phylogenetic trees would be optimal. Phylogenetic topologies can
provide insights into what biomarker is responsible for cancer
progression to aggressive phenotypes.

Most researchers, however, are focused on mechanisms of
cancer progression and treatment resistance. How does cancer
progress over time? How can cancer be treated effectively?
Mathematical concepts have been used to answer these questions.
Ecological population-based modeling has provided insights on
cancer progression considering interactions between multiple
cellular populations. Leveraging concepts such as Lotka-Volterra
interactions in mathematical modeling frameworks such as ODEs
and ABMs, facilitates the representation of tumor growth as a
heterogeneous population with specific interactions between
species in the model. Both ODE and ABM frameworks can
capture the dynamics tumor growth dynamics, but ABM models
can also describe the stochasticity often involved in cancer. Tumors
can accumulate mutations over time that may affect their growth or
behavior. Thus, to capture randomness associated with cancer
progression into differential equation-based models, stochastic
and probabilistic frameworks from ecology have been used.
These concepts include Markov Chain Monte Carlo (MCMC)
approaches, random walk models, or functional networks.

How different cell types affect cancer development is one of the
questions that game theory from economics aims to answer.
Considering cancer as players able to execute different strategies,
game theory explores what are the pay offs of performing one
strategy versus another. In the context of cancer treatment, the
strategies have also been modeled as different treatment options that
have different associated payoffs. However, game theory is not able
optimize cancer treatment to reach a desired state. Other economic
tools such as decision theory could explain how the cell population
make decisions based expected outcomes and costs, which could

TABLE 1 (Continued) Examples of open questions in cancer research that can be answered using cross-disciplinary insights from ecology and evolution,
economics, and control engineering. Broadly these questions can be divided into temporal/dynamical, spatial/environmental, and historical/evolutionary.

Scale Question Discipline Data Frameworks Notable
applications

Ref.

H
is
to
ri
ca
l=
E
vo
lu
ti
on

ar
y

What biomarkers are
responsible for cancer
progression?

Ecology &
Evolution

Transcriptomic data
(single-cell sequencing),
genomic data (whole exome
sequencing, CNVs and
SNVs)

Bayesian, maximum
parsimony, tumor
clonality, clustering

Retrieve complex
phylogenetic topologies in
cancer evolution and reveal
therapeutic markers

Kostadinov et al. (2013),
Leung et al. (2017), Fimereli
et al. (2022), Frankell et al.
(2023), Turajlic et al. (2015),
Nascimento et al. (2017),
Toosi et al. (2019), Reiter

et al. (2017),
Makohon-Moore et al.
(2018), Li et al. (2020),
Nalbantoglu et al. (2016),
Nixon (1999), Murugaesu

et al. (2015), von Heydebreck
et al. (2003), Petersson et al.
(2022), Zhao et al. (2016), V
Alekseyenko et al. (2008),

McPherson et al. (2016), Wu
et al. (2019), Malikic et al.
(2015), Abbosh et al. (2017),
Prandi et al. (2014), van der
Mijn et al. (2022), Niknafs
et al. (2015), Niknafs et al.
(2019), Saitou and Nei
(1987), Siravegna et al.

(2018), Matsui et al. (2017),
Popic et al. (2015), El-Kebir
et al. (2017), Gertz et al.
(2016), Roth et al. (2014)

What biomarkers can be
therapeutically targeted?
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help create precise personalized treatments. While decision theory
has mostly been explored in a theoretical realm, researchers have
used breast cancer or melanoma data to determine the best decision
option (treatment option). This involved identifying the decision/
treatment that maximizes a desired outcome, as determined by the
decision maker (Foahom Gouabou et al., 2022; Kenn et al., 2021).

Similarly, concepts from economics such as trade theory or
competition assays, that were originally used to assess the exchange
of goods or competitive fitness, respectively, can be applied to
cancer. Trade theory has conceptually been used to identify
cellular trade-offs when performing different biological tasks
(Hausser and Alon, 2020; Boddy et al., 2018). On the other hand,
competition assays have focused on studying the ability of different
molecules to bind to a receptor and produce a downstream effect on
cancer progression (Yu et al., 2020; Cheng et al., 2022; Furman et al.,
2022). Contrary to Lotka-Volterra interactions that assess
population dynamics, economic competition assays focus on
resource competition and cellular interactions based on the
exchange of signals. Based on the constraints of the literature

search utilized here, the manuscripts identified with mathematical
modeling of economics concepts applied to adenocarcinomas were
confined to EGT and the Gini index. Trade theory, competition
assays, and decision theory are additional concepts from economics
that represent an opportunity for researchers to further utilize this
cross-disciplinary space to continue to identify novel applications of
these principles in cancer research. Control engineering uses a
similar approach to decision theory where cancer progression is
optimized to a final state. Modeling cancer as a control system
provides the opportunity to design personalized treatment schedules
to achieve a desired outcome, such as minimizing tumor growth or
preventing the development of resistance.

Intuitively, the selection of a modeling approach depends on the
biological question, data availability, and computational resources.
Additionally, there are several limitations that all these frameworks
encounter when analyzing or predicting tumor dynamics.
Populations models consider interactions among a few cell
populations and physiological agents. However, the entire tumor
microenvironment involves additional factors like immune or

FIGURE 3
Representation of most commonly applied mathematical frameworks leveraged to answer open questions in cancer research using insights from
ecology and evolution, economics and control engineering.
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epithelial cells, and physiological conditions such as pH, oxygen, or
glucose levels. These elements influence cancer growth differently
depending on the tumor structure and arrangement of cells, which
are not addressed in the 2D tumor models presented in this review.
Moreover, most cancer progression models presented here are
deterministic and fail to capture stochastic events characteristic
of cancer progression. While phylogenetic algorithms do a great
a job at recreating possible evolutionary cancer trajectories by
accounting for randomness, using the wrong algorithm for a
certain data type could lead to incorrect trajectories and
indicators for treatments. Another limitation, and opportunity for
future work, in using these approaches is that they are not yet robust
to leverage the ever expanding different types of input data available
in cancer research. Some cancer biomarker data becoming more
popular that could be combined with the approaches detailed here
include circulating tumor DNA (ctDNA) and cell-free DNA
(cfDNA). In these approaches, DNA fragments shed from the
tumor into the blood stream and can be collected using liquid-
biopsies (Dao et al., 2023). While using this data offers great
opportunities to monitor disease status and treatment response,
the utilization in mechanistic models has been lacking and most
approaches rely on non-analytical models to interpret their
significance. Consequently, more work needs to be done to
effectively use information obtained from these clinically useful
measures to enhance the potential predictive power and utility of
the mechanistic modeling approaches presented in this review.
Additionally, the refinement of these mechanistic approaches
provides an opportunity to study other cancer types, such as
childhood cancers, that present different cancer progression
mechanisms.

Utilizing the foundational concepts from ecology, economics,
and control theory has provided useful information to predict tumor
response and progression under different environmental conditions.
However, these frameworks have largely been applied to small
cohorts of in vivo and in vitro environments, which fail to
capture the overall picture of the disease. Clinically, most cancers
are treated using maximum tolerated doses of chemotherapeutics
which leads to resistance development and high toxicities on the
host. Understanding how each patient’s disease develops throughout
the treatment course is a crucial step when developing these models.
Therefore, a clinician’s perspective is required when developing
translational mathematical models of tumor progression. In
addition to tumor size changes across different timepoints during
treatment, a patient’s previous history can be used when developing
these models making them patient specific. Once a model is adjusted
for each patient, different treatment strategies can be explored
virtually, and modelers and oncologists would be able to decide
the most optimal treatment. After treatment, the model can be
refined based on the patient’s response. Collaborations between
clinicians and modelers must be develop for these strategies to be
successful. Some institutions are starting to have success in this area
as demonstrated with the idea of an Evolutionary Tumor Board for
personalizing treatment strategies (Robertson-Tessi et al., 2023).
Modelers could also request additional patient data such as
sequencing information or biomarker expression to inform the
design of their model. Bringing clinicians and additional patient
data can improve patient prognosis. However, challenges arise from

the lack of previous patient medical history, insufficient equipment
to collect necessary tumor characteristics, and uncertainty when
selecting a modeling tool or framework. To overcome these
challenges, researchers have started exploring diverse modeling
strategies to available datasets to predict cancer evolution in
cancers with different characteristics. As in silico mathematical
tools become more widely used, it is crucial for clinicians and
other experts to collaborate closely with cancer researchers. These
collaborations will help identify and address any additional
limitations that may arise.
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