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Background: The intricate relationship among gut microbiota, serum
metabolites, and immunophenotypes may significantly impact myocarditis.
However, direct causal links between these domains and myocarditis are not
well understood.

Methods: The study performed Mendelian randomization (MR) analysis using
genetic data from public sources. Exposure data included 211 gut microbiota,
486 serum metabolites, and 731 immunophenotypes from Mibiogen, the
Metabolomics GWAS server, and GWAS catalog databases. Single nucleotide
polymorphisms (SNPs) were selected as instrumental variables based on
established criteria. Myocarditis data from GWAS (427,911 participants, 24, 180,
570 SNPs) were used as the outcome variable. MR analysis was conducted using
Inverse Variance Weighting (IVW), with Cochran’s Q test for heterogeneity and
Egger’s intercept to assess horizontal pleiotropy.

Results: 9 gutmicrobiota, 10 serummetabolites, and 2 immunophenotypes were
negatively associated with myocarditis risk. In contrast, 5 gut microbiota,
12 serum metabolites, and 7 immunophenotypes were positively associated
with myocarditis risk (all, P < 0.05). Sensitivity analyses confirmed the stability
of these results.

Conclusion: This MR study suggests that gut microbiota, serummetabolites, and
immunophenotypes may causally influence myocarditis risk. These findings
provide genetic evidence for myocarditis etiology and could inform future
precision prevention and treatment strategies.
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1 Introduction

Myocarditis is characterized by inflammatory infiltration of the
myocardium, predominantly caused by viral infections,
autoimmune responses, bacterial infections, or other
inflammatory agents. Increasingly, research suggests a significant
association between myocarditis and the gut microbiota, serum
metabolites, and the immune system. Although less common
than other heart diseases, myocarditis can persist for extended
periods in certain populations. It can potentially progress to a
chronic stage, resulting in myocardial tissue fibrosis, hypertrophy,
and myocyte apoptosis. This progression can ultimately lead to life-
threatening conditions such as circulatory failure and lethal
ventricular arrhythmias (Sagar et al., 2012; Vdovenko and
Eriksson, 2018).

The heart contains a diverse array of immunophenotypes crucial
for maintaining tissue integrity. These immunophenotypes play a
pivotal role in cardiovascular health and disease (Wernersson and
Pejler, 2014). Current research has shown that their role extends
beyond host defense. Immunophenotypes are now known to be
involved in development, tissue dynamic homeostasis, and repair
(Saparov et al., 2017). For example, cardiac fibroblasts and
endothelial cells have immune functions essential for maintaining
and restoring homeostasis without infection (Drummer et al., 2021;
Rose, 1998). However, there have been no systematic large
population studies on immunophenotypes associated with the
pathogenesis of myocarditis until now.

The human gut microbiota is a complex and dynamic group of
microorganisms present in the gastrointestinal tract, which is slowly
becoming a hot topic in human pathogenesis and treatment (Adak
and Khan, 2019; Xie et al., 2024). The intricate symbiosis between
the gut microbiota and its host has profound implications. It
influences metabolic functions, immune system development, and
even behavioral aspects through the gut-heart axis (Zhao et al.,
2022). Serum metabolites, closely related to the gut microbiome, are
produced through its metabolic activities. These metabolites affect
the host’s metabolic, immune, and neurological functions (Sha et al.,
2023). While gut microbiota and serum metabolites play important
roles in acute coronary syndromes, studies on their involvement in
myocarditis are still lacking (Qiu et al., 2023).

Mendelian randomization (MR) studies leverage genome-wide
association data (GWAS) and bioinformatics analyses to uncover
causal relationships between exposures and outcomes (Wang et al.,
2023). MR functions as a naturally occurring large-scale randomized
controlled trial, adhering to fundamental MR principles (Birney,
2022; Davey Smith and Hemani, 2014). This study explored and
determined the causal relationships between gut microbiota, serum

metabolites, immunophenotypes, and myocarditis using MR
analysis (Figure 1, Table 1).

2 Materials and methods

2.1 Study design

The causal relationship between the two samples was explored
using 211 gut microbiota, 486 serum metabolites, and 731 immune
cell characteristics as exposure factors, with myocarditis as the
outcome. The study methods were compliant with the STROBE-
MR checklist (Skrivankova et al., 2021). MR methods employ
genetic variants as instrumental variables (IVs) to represent
potential risk factors, enabling causal inferences from
observational data: IVs in causal inference must satisfy three key
assumptions. To ensure the validity of MR analyses, the selected IVs
must satisfy three core assumptions: 1) genetic variation is directly
related to exposure; 2) genetic variation is independent of possible
confounders between exposure and outcome; 3) genetic variation
does not affect outcome through pathways other than
exposure (Figure 2A).

2.2 GWAS data sources and selection of IVs

Data on 211 gut microbiota traits were downloaded from the
MiBioGen website (https://mibiogen.gcc.rug.nl/). The dataset
included 16S rRNA gene sequencing profiles and genotyping data
from 18,340 subjects across 11 countries. These data encompassed
211 traits within 35 families, 20 orders, 16 phyla, 9 orders, and
131 genera. Due to the limited availability of single nucleotide
polymorphisms (SNPs) loci with P < 1 × 10−8 for gut microbiota,
SNPs loci with P < 1 × 10−5 were selected. The loci obtained from the
screening were used as instrumental variables in place of the clinical
risk exposure factor gut microbiota. Data from SNPs with chained
unbalanced aggregates were subsequently removed, with removal
conditioned on LD (r2 < 0.001, distance <10, 000 kb), and an
F-statistic >10 was used to exclude the effect of weak IVs bias
(Yu et al., 2023).

Data on 486 serum metabolites were downloaded from GWAS
data, involving 7,824 adult individuals from two European
population studies. SNPs were screened based on P < 1 × 10−5,
r2 < 0.01, distance <500 kb, and F > 10 to exclude the effect of weak
IVs bias (Zou et al., 2024).

Data on 731 immunophenotypes were downloaded from the
GWAS catalog (accession numbers GCST0001391 to
GCST0002121). This dataset included 3,757 European individuals
with a total of 731 immunophenotypes, including 118 absolute cell
counts, 389 median fluorescence intensities, 32 morphological
parameters, and 192 relative cell counts. The immunophenotypes
as exposed IVs fulfilled the following conditions: genome-wide
significant level (P < 1 × 10−5), removal of the linkage
disequilibrium threshold (r2 < 0.001, distance <10,000 kb), and
F > 10 to exclude the effect of weak IVs bias (Tang et al., 2024).

The studies included in our analysis were approved by the
relevant institutional review boards, and participants provided
signed informed consent.

FIGURE 1
Digestive organs and heart interplay through gut microbiota,
serum metabolites, and immunophenotypes.
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2.3 Data source of myocarditis

Myocarditis data (ebi-a-GCST90018882) were obtained from
the European Bioinformatics Institute (EBI), which enrolled a total
of 427,911 European individuals (Ncase = 633, Ncontrol = 427,278)
and contained 24, 180, 570 SNPs (Figure 2B).

2.4 MR analysis

The Inverse Variance Weighting (IVW) method was used as the
primary estimation technique to assess the causal association
between exposure and outcome. In this method, the causal effects
of different genetic variants on a trait are weighted by inverse
variance, making IVW the standard for MR analysis. A random
effects model was applied if heterogeneity existed; otherwise, a fixed
effects model was used. The results were expressed as odds ratios
(OR) with 95% confidence intervals (CI) to estimate the causal effect
of exposure on the outcome.

2.5 Statistical analysis

To ensure the stability and reliability of the results of the MR
analyses, the Cochran Q test was used in this study to assess the
heterogeneity of the SNPs, and the MR Egger intercept test was
performed to detect the presence of horizontal pleiotropy. P <
0.05 was considered to be the presence of heterogeneity or
horizontal pleiotropy.

3 Results

3.1 14 gut microbiotas may potentially
influence the risk of developing myocarditis

From the gut microbiota dataset, 178 SNPs were screened
(Supplementary Table S1). IVW analysis identified 14 gut
microbiotas as potentially causally associated with
myocarditis (Figure 3A) (Supplementary Table S2). 5 gut
microbiotas were positively associated with the risk of
developing myocarditis: class Bacilli (id.1673; OR = 1.98, 95%
CI = 1.25–3.15, P = 0.003), order Lactobacillales (id.1800; OR =
2.02, 95% CI = 1.21–3.38, P = 0.007), genus Defluviitaleaceae
UCG011 (id.11287; OR = 1.93, 95% CI = 1.18–3.14, P = 0.008),
an unknown genus (id.1868; OR = 1.71, 95% CI = 1.05–2.77, P =
0.029), and genus Clostridium innocuum group (id.14397; OR =
1.45, 95% CI = 1.00–2.10, P = 0.045). Nine gut microbiotas,
including genus Bilophila (id.3170; OR = 0.52, 95% CI =
0.31–0.88, P = 0.015) and class Clostridia (id.1859; OR =
0.51, 95% CI = 0.29–0.89, P = 0.019), were negatively
associated with the risk of developing myocarditis.

3.2 22 Serum metabolites may potentially
influence the risk of developing myocarditis

From the dataset of serum metabolites, 361 SNPs were
screened (Supplementary Table S3). IVW analysis found
22 serum metabolites to be potentially causally associated

FIGURE 2
(A) This study strictly followed the three core assumptions of MR studies. (B) Workflow of the MR.
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FIGURE 3
(A) 14 gut microbiotas may potentially influence the risk of developing myocarditis. (B) 22 serum metabolites may potentially influence the risk of
developing myocarditis. (C) 9 Immunophenotypes may potentially influence the risk of developing myocarditis.
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with myocarditis (Figure 3B) (Supplementary Table S2).
12 serum metabolites, including 10-heptadecenoate (OR =
50.77, 95% CI = 2.26–1136.45, P = 0.013) and valerate (OR =
10.34, 95% CI = 1.15–92.72, P = 0.036), were positively
associated with the risk of myocarditis. Conversely, 10 serum
metabolites, including N1-methyladenosine (OR = 0.01, 95%
CI = 0.00–0.91, P = 0.046) and gamma-glutamylisoleucine (OR =
0.19, 95% CI = 0.04–0.85, P = 0.029), were negatively associated
with the risk of myocarditis.

3.3 9 Immunophenotypes may potentially
influence the risk of developing myocarditis

From the dataset of immunophenotypes, 51 SNPs were screened
(Supplementary Table S4). IVW analysis identified 9

immunophenotypes as potentially causally associated with
myocarditis (Figure 3C) (Supplementary Table S2).
7 immunophenotypes were positively associated with the risk of
developing myocarditis. These included CD39+ secreting
CD4 regulatory T cells (OR = 1.30, 95% CI = 1.06–1.59, P =
0.011), CD39+ CD4 regulatory T cells (OR = 1.31, 95% CI =
1.06–1.60, P = 0.011), HLA DR on monocytes (OR = 1.53, 95%
CI = 1.06–2.19, P = 0.019), CD39+ CD4+ T cells (OR = 1.25, 95%CI =
1.03–1.51, P = 0.022), CD39 on CD39+ activated CD4 regulatory
T cells (OR = 1.22, 95% CI = 1.02–1.45, P = 0.021), CD39+ CD4+

T cell absolute count (OR = 1.22, 95% CI = 1.01–1.47, P = 0.031),
and D33dim HLA DR+ CD11b- (OR = 1.16, 95% CI = 1.00–1.35,
P = 0.044). 2 immunophenotypes were negatively associated with
the development of myocarditis: CD33dim HLA DR + CD11b
(OR = 0.85, 95% CI = 0.73–0.99, P = 0.044) and CD25 on naive-
mature B cells (OR = 0.73, 95% CI = 0.55–0.97, P = 0.031).

TABLE 1 Details of the genome-wide association studies and datasets used in our analyses.

Exposure/
Outcome

Year Author Participants Number of
SNPs

Web source if publicly

Myocarditis (ebi-a-
GCST90018882

2021 Sakaue S 427,911 individuals (633 cases and
427,278 controls) of European ancestry

24,180,570 https://gwas.mrcieu.ac.uk/datasets/ebi-a-
GCST90018882 (Access time:4 February

2024)-

211 gut microbiota 2021 Kurilshikov 18,340 individuals of Asian and European
ancestry

NA https://mibiogen.gcc.rug.nl (Access time:
4 February 2024)

486 serum metabolites 2014 Shin et al 7,824 individuals of European ancestry approximately
2.1 million SNPs

(http://metabolomics.helmholtz-muenchen.
de/gwas/(Access time:4 February 2024)

731 immunophenotypes 2020 Orrù V, et al 3,757 individuals of European ancestry Approximately
22 million SNPs

https://www.ebi.ac.uk/gwas/downloads/
summary-statistics (Access time:4 February

2024)

TABLE 2 Sensitivity analyses of the causal effect of gut microbiota on myocarditis.

Genomics Expoure Test for directional horizontal pleiotropy Cochran’s Q test

Egger intercept SE P-Value Q P-Value

gut microbiota class Bacilli id.1673 0.061 0.048 0.224 12.1 0.740

gut microbiota class Clostridia id.1859 0.013 0.053 0.811 7.80 0.731

gut microbiota class Lentisphaeria id.2250 −0.13 0.099 0.237 1.17 0.979

gut microbiota family Actinomycetaceae id.421 0.048 0.081 0.593 2.76 0.430

gut microbiota genus Bilophila id.3170 −0.028 0.096 0.78 9.30 0.503

gut microbiota genus Clostridium innocuum group id.14397 0.002 0.121 0.987 3.41 0.845

gut microbiota genus Defluviitaleaceae UCG011 id.11287 0.065 0.091 0.495 3.60 0.824

gut microbiota genus Ruminiclostridium9 id.11357 0.015 0.114 0.9 7.65 0.365

gut microbiota genus Ruminococcaceae UCG004 id.11362 0.065 0.113 0.58 8.80 0.456

gut microbiota order Actinomycetales id.420 0.049 0.081 0.589 2.74 0.433

gut microbiota order Lactobacillales id.1800 0.066 0.05 0.211 12.7 0.468

gut microbiota order Victivallales id.2254 −0.13 0.099 0.237 1.17 0.979

gut microbiota phylum Lentisphaerae id.2238 −0.135 0.101 0.224 1.41 0.985

gut microbiota unknown genus id.1868 −0.003 0.072 0.967 9.72 0.465
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TABLE 3 Sensitivity analyses of the causal effect of serum metabolites on myocarditis.

Genomics Expoure Test for directional horizontal pleiotropy Cochran’s Q test

Egger intercept SE P-Value Q P-Value

serum metabolites Biliverdin 0.002 0.027 0.944 10.9 0.693

serum metabolites X-03003 −0.026 0.155 0.871 2.66 0.850

serum metabolites N1-methyladenosine 0.093 0.081 0.293 0.49 0.998

serum metabolites 2-hydroxybutyrate (AHB) 0.049 0.034 0.172 9.34 0.809

serum metabolites Aspartylphenylalanine 0.02 0.076 0.808 4.30 0.367

serum metabolites Pyroglutamylglycine 0.026 0.107 0.828 0.421 0.810

serum metabolites X-11261 −0.045 0.039 0.265 6.16 0.962

serum metabolites X-11852 −0.034 0.039 0.417 5.26 0.729

serum metabolites Valerate −0.067 0.077 0.413 6.58 0.583

serum metabolites X-12188 −0.022 0.033 0.521 17.6 0.485

serum metabolites X-12231 −0.038 0.039 0.35 10.4 0.498

serum metabolites 10-heptadecenoate (17:1n7) 0.202 0.19 0.347 5.53 0.237

serum metabolites Gamma-glutamylisoleucine −0.041 0.03 0.192 23.6 0.425

serum metabolites X-13183–stearamide −0.155 0.058 0.029 2.63 0.956

serum metabolites 2-oleoylglycerophosphocholine −0.027 0.053 0.623 12.0 0.682

serum metabolites X-14304–leucylalanine 0.062 0.053 0.259 9.43 0.926

serum metabolites X-14632 −0.061 0.027 0.014 0.04 0.710

serum metabolites Phenylalanine −0.046 0.033 0.167 32.3 0.453

serum metabolites Total cholesterol in very large HDL 0.002 0.027 0.942 22.6 0.654

serum metabolites Cholesterol esters in very large HDL −0.007 0.029 0.822 21.3 0.673

serum metabolites Free cholesterol in very large HDL −0.005 0.034 0.89 10.5 0.981

serum metabolites Total lipids in very large HDL 0.032 0.047 0.51 5.46 0.964

TABLE 4 Sensitivity analyses of the causal effect of immunophenotypes on myocarditis.

Genomics Expoure Test for directional horizontal pleiotropy Cochran’s Q test

Egger intercept SE P-Value Q P-Value

immunophenotypes HLA DR on monocyte 0.261 0.193 0.404 0.587 0.443

immunophenotypes CD39+ secreting CD4 regulatory T cell 0.007 0.135 0.959 4.98 0.418

immunophenotypes CD39+ secreting CD4 regulatory T cell 0.007 0.138 0.959 5.00 0.415

immunophenotypes CD39 on CD39+ activated CD4 regulatory T cell −0.041 0.131 0.777 2.35 0.503

immunophenotypes CD39+ CD4+ T cell −0.021 0.108 0.860 2.35 0.503

immunophenotypes CD39+ CD4+ T cell Absolute Count −0.041 0.101 0.709 3.48 0.481

immunophenotypes CD33dim HLA DR+ CD11b- −0.1 0.192 0.694 0.892 0.345

immunophenotypes CD33dim HLA DR + CD11b −0.1 0.192 0.694 0.892 0.345

immunophenotypes CD25 on naive-mature B cell −0.033 0.101 0.766 2.23 0.527
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3.4 No heterogeneity or horizontal
pleiotropy found

No heterogeneity was found for the 14 gut microbiotas and
22 serum metabolites and 9 immunophenotypes analyzed in this
study, while at the same time no horizontal pleiotropy was found to
exist (Tables 2–4).

4 Discussion

As far as we know, this is the first study based on a publicly
available database to explore the causal relationship between 211 gut
microbiotas, 486 serum metabolites, 731 immunophenotypes and
myocarditis.

Recent studies have proposed a link between gut microbes and
heart health, the so-called “gut-heart axis” (Liu et al., 2018; Li et al.,
2024). Among this MR analysis, a variety of gut microbiotas have
been shown to be strongly associated with the inflammatory
response. Clostridia, Ruminococcaceae and Bilophila may be
negatively associated with the risk of developing myocarditis,
while Lactobacillales and Clostridium difficile may be positively
associated with the risk of developing myocarditis. It has been
reported that Clostridia, a group of microorganisms known to
influence intestinal barrier function and immunomodulation, are
involved in anti-inflammatory processes through the production of
short-chain fatty acids (e.g., butyric acid) (Stoeva et al., 2021; Chen
et al., 2020a; Weng et al., 2015). Certain members of the
Ruminococcaceae are also thought to be beneficial for the
maintenance of intestinal health and immune homeostasis (Fu
et al., 2020; Keshteli et al., 2022). Interestingly, while
Lactobacillales have mostly served to reduce the inflammatory
response in previous studies of a wide range of diseases, in the
present study, Lactobacillales increased the risk of myocarditis (Li
et al., 2023;Wang et al., 2020). It has been reported that Lactobacillus
can intervene in excessive inflammatory responses throughout the
body by altering the number, recruitment, and differentiation of
immunophenotypes, as well as affecting the release and degradation
of inflammatory factors by binding to specific recognition receptors
(Zhang et al., 2023). Therefore, we hypothesize that although
Lactobacillus has a modulatory effect on the immune system,
however, the same studies have reported that in some cases it
may also overstimulate the immune response, leading to
immune-mediated inflammation, including cardiac effects (Ashraf
and Shah, 2014; Torres-Chavez et al., 2023). Clostridium, a Gram-
positive anaerobic bacterium, has been reported to secrete toxins
that disrupt the epithelial cytoskeleton and tight junctions, increase
epithelial permeability, and promote the production of
inflammatory cytokines, thus playing a role in disease
pathogenesis (Pruitt and Lacy, 2012; Pietrangeli et al., 2021).
These microorganisms participate in the host’s inflammatory
response and immune regulation through different mechanisms,
showing the complex impact of gut microbial diversity on health.
The above explanations are only hypothetical and the actual
biological mechanisms are likely to be more complex and need to
be validated by specialized studies.

The presence of several serum metabolites was found to be
potentially causally related to myocarditis. Four types of “Free

cholesterol in very large HDL”, “Total lipids in very large HDL”,
“Total cholesterol in very large HDL” and “Cholesterol esters in very
large HDL serum metabolites may be positively associated with the
risk of developing myocarditis. We hypothesize that they may be
primarily related to abnormal cholesterol metabolism, inflammatory
response, and genetic factors. All four serum metabolites are used to
assess lipid metabolism and the composition of lipid particles, and
when these markers are elevated, they may lead to cholesterol
deposition in cardiac tissues, triggering an inflammatory response
and thus increasing the risk of myocarditis. At the same time,
existing studies have reported that elevated lipid levels may lead
to a systemic inflammatory response, and thus may similarly
increase the risk of developing myocarditis (Khadge et al., 2018;
Choy and Sattar, 2009). In addition, it can be speculated from a
genetic perspective that these lipid parameters may be associated
with specific metabolic pathways or pathogenesis of myocarditis.
The study also found that 2-hydroxybutyrate is strongly associated
with the risk of developing myocarditis. 2-hydroxybutyrate is a
metabolite involved in fatty acid metabolism and ketone body
metabolism, and is commonly associated with energy production
processes. It has now been found that Clostridium has the ability to
produce 2-hydroxybutyrate (Sharma et al., 2021; Di Marino et al.,
2018; Castro et al., 2023). Coincidentally, in the present MR analysis
of the gut microbiota, it was also found that Clostridiummay have a
potential causal relationship with myocarditis, but the complexity of
the link still needs to be further explored (Wan et al., 2022).

This study also found that three types of immunophenotypes,
CD39+ secreting CD4 regulatory T cell, CD39+ CD4 regulatory
T cell, and CD39 on CD39+ activated CD4 regulatory T cell, all
belong to the T cell category, but in fact perform different functions.
For example, the CD39+ secreting CD4 regulatory T cell has the ability
to suppress the immune response by secreting regulatory cytokines (e.g.,
IL-10 and TGF-β) to inhibit the activities of other immunophenotypes,
whereas the CD39+ CD4 regulatory T cell regulates the immune
response through the activity of the enzyme CD39, which converts
excess ATP and ADP to AMP, thereby reducing the role of these
excitatory molecules in the immune response. Based on previous
studies, CD4 regulatory T cells were found to be a subpopulation of
immunophenotypes, similar in function to CD39. It has been reported
that CD4 regulatory T cells can secrete regulatory cytokines (IL-10 and
TGF-β) to inhibit the activities of other immunophenotypes, and thus
we speculate that CD4 regulatory T cells play an important role in
myocarditis (Chen et al., 2003; Jutel et al., 2003;Wan and Flavell, 2008).
Interestingly, both CD4 regulatory T cells and CD39 may be positively
correlated with the risk of developing myocarditis, and it can be
hypothesized that overexpression or aberrant activation of
CD39 and CD4 regulatory T cells leads to a weakening of their
inhibitory effects, causing abnormalities in the immune system,
which then exacerbates immune responses, including inflammatory
responses, in cardiomyocytes. Absolute CD39+ CD4+ T cell count is the
absolute number of CD39+ CD4+ T cells and is also associated with
regulatory T cells (Tregs). This is consistent with the previous trend in
this study, so it can be hypothesized that there may be a link between an
increase in the absolute CD39+ CD4+ T cell count and the onset or
progression of myocarditis. CD25 is the alpha subunit of the IL-2
receptor, which is mainly associated with T cell activation and
immunomodulation. CD25 on naive-mature B cells refers to a
subpopulation of B cells that are not yet activated and at the same
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time not uninvolved in antibody production or immune response. It has
also been shown that an increase in CD25 on naive-mature B cells
reduces damage in myocarditis, which is consistent with previous
findings (Ono et al., 2006; Wei et al., 2006; Chen et al., 2020b; Cen
et al., 2021).

This study also suffers from a number of shortcomings, including
the following three. 1. Population limitations: This study is based
primarily on genetic data from a European population, which may
limit the generalizability of the results. 2. Data type limitations: Because
this study used secondary data analysis and relied on aggregated data
from publicly available databases, it lacked detailed information at the
individual level, such as lifestyle, dietary habits, and other potential
confounders, which may affect the accuracy of causal inferences.
Meanwhile, there are still “unknown” in the gut microbiota and
serum metabolite data, which need to be further identified. 3.
Potential mechanisms are not clear: Although the study identified
potential causal associations between the gut microbiota, serum
metabolites, and immunophenotypes with myocarditis, the specific
biological mechanisms have not been fully elucidated.

This study has some implications for future clinical applications.
Firstly, longitudinal studies are needed to confirm identified causal
relationships and explore underlying mechanisms. Studies should
also focus on different populations to ensure that findings are
applicable to different genetic backgrounds. Secondly, findings
based on gut microbiotas, serum metabolites and
immunophenotypes could attempt to develop individualized
strategies for the prevention and treatment of myocarditis. For
example, in patients at high risk for myocarditis, the risk of
morbidity could be reduced by altering the composition of the
gut microbiotas or supplementing with specific metabolites. In
addition to this, future studies could explore how these
biomarkers could be used to personalize prevention and
treatment strategies.

5 Conclusion

The MR study initially revealed potential causal associations
between the gut microbiota, serum metabolites, and
immunophenotypes with myocarditis risk. Although limited by
the diversity of data sources and the limitations of the study
population, these findings provide important clues for a deeper
understanding of the etiologic mechanisms of myocarditis and the
development of precision medicine strategies. Future studies are
needed to validate these results in a wider population and to explore
interventions based on these biomarkers through clinical trials to
facilitate the prevention, early diagnosis, and treatment of
myocarditis.
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