
MIFAM-DTI: a drug-target
interactions predicting model
based on multi-source
information fusion and
attention mechanism

Jianwei Li*, Lianwei Sun, Lingbo Liu and Ziyu Li

Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology,
Tianjin, China

Accurate identification of potential drug-target pairs is a crucial step in drug
development and drug repositioning, which is characterized by the ability of the
drug to bind to and modulate the activity of the target molecule, resulting in the
desired therapeutic effect. As machine learning and deep learning technologies
advance, an increasing number ofmodels are being engaged for the prediction of
drug-target interactions. However, there is still a great challenge to improve the
accuracy and efficiency of predicting. In this study, we proposed a deep learning
method called Multi-source Information Fusion and Attention Mechanism for
Drug-Target Interaction (MIFAM-DTI) to predict drug-target interactions. Firstly,
the physicochemical property feature vector and the Molecular ACCess System
molecular fingerprint feature vector of a drug were extracted based on its SMILES
sequence. The dipeptide composition feature vector and the Evolutionary Scale
Modeling -1b feature vector of a target were constructed based on its amino acid
sequence information. Secondly, the PCA method was employed to reduce the
dimensionality of the four feature vectors, and the adjacency matrices were
constructed by calculating the cosine similarity. Thirdly, the two feature vectors of
each drug were concatenated and the two adjacency matrices were subjected to
a logical OR operation. And then they were fed into a model composed of graph
attention network and multi-head self-attention to obtain the final drug feature
vectors. With the same method, the final target feature vectors were obtained.
Finally, these final feature vectors were concatenated, which served as the input
to a fully connected layer, resulting in the prediction output. MIFAM-DTI not only
integratedmulti-source information to capture the drug and target featuresmore
comprehensively, but also utilized the graph attention network and multi-head
self-attention to autonomously learn attention weights and more
comprehensively capture information in sequence data. Experimental results
demonstrated that MIFAM-DTI outperformed state-of-the-art methods in terms
of AUC and AUPR. Case study results of coenzymes involved in cellular energy
metabolism also demonstrated the effectiveness and practicality of MIFAM-DTI.
The source code and experimental data for MIFAM-DTI are available at https://
github.com/Search-AB/MIFAM-DTI.
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1 Introduction

The development of new drugs is commonly associated with
challenges such as high investment, high risks, long cycles, and low
success rates. These challenges primarily stem from the complexity
and uncertainty involved in drug discovery and development
(Berdigaliyev and Aljofan, 2020), as well as stringent regulatory
and requirements. In recent years, drug repositioning (Jourdan et al.,
2020) has emerged as a highly promising approach in drug
development. It involves repurposing approved drugs, originally
intended for treating one disease, for the treatment of other distinct
diseases. By repurposing existing drugs, the drug development cycle
can be significantly shortened, and costs can be reduced. In addition,
since the safety and side effects of these drugs have already been
validated in previous clinical trials, the clinical trial risks of drug
repurposing are greatly reduced. This not only expedites the
development process but also provides a higher level of assurance
in terms of safety and tolerability.

Accurate identification of potential drug-target interactions
(DTIs) is critical for drug repurposing efforts (Anusuya et al.,
2018). With the advancement of computer technology and the
widespread accessibility of various relevant biological databases,
computational methods (Talevi, 2018) have become indispensable
tools for predicting and identifying DTIs. These methods utilize
techniques such as machine learning, data mining, and network
analysis. By integrating known information of drugs and targets,
these models have been built to identify potential DTIs. Moreover,
the widespread availability of public corresponding biological
databases also provides critical support for drug repositioning.
The drug databases like DrugBank (Knox et al., 2024) and
PubChem (Kim, 2016), as well as target databases like UniProt
(Zaru and Orchard, 2023) and NCBI (O’Leary et al., 2016), offer rich
information about drugs and targets, including chemical structures,
biological activities, interaction networks, etc. Researchers can
leverage the data from these databases for comprehensive
analysis and discover new drug-target interactions. To date,
numerous prediction methods and models have been proposed to
uncover potential DTIs, which can be divided into three categories
based on their data sources and execution algorithms.

The first category of DTI prediction methods is the structure-
based methods (Fauman et al., 2011), which utilize the molecular
structure of drugs and the spatial structure of target proteins as
inputs to identify the drug-target interactions. These methods rely
on techniques such as molecular docking and structure alignment
(Ferreira et al., 2015) to predict how drugs bind to targets. However,
the application of them in large-scale DTI prediction is limited by
the fact that the three-dimensional structures of the majority of
target proteins with known sequences are still unknown. The second
category is ligand-based methods (Pozzan, 2006), which use known
information about drug-target binding ligands to predict the
binding of new drugs to similar targets. These methods compare
the binding ligands of drugs to known targets and make predictions
based on similarity. However, they heavily depend on the availability
of known binding ligand information and may not be suitable for
new drugs or targets without known binding ligands. The third
category encompasses methods based on machine learning or deep
learning (Askr et al., 2023). These methods employ algorithms to
learn patterns and rules from large amounts of drug and target data,

enabling the prediction of drug-target interactions. They can utilize
existing drug-target interaction networks and bioinformatics
features for feature extraction and pattern recognition. Machine
learning and deep learning methods offer flexibility and predictive
capabilities, allowing for DTI prediction even in the absence of
structural or ligand information. These methods have demonstrated
good accuracy and robustness on various datasets. As bioinformatics
features become more readily available and datasets expand,
machine learning methods are gradually being replaced by deep
learning methods. Deep learning methods can automatically learn
features and capture more accurate patterns and rules from large
datasets, making them more effective for DTI prediction (Schauperl
and Denny, 2022).

In recent years, an increasing number of machine learning and
deep learning models for DTI prediction have been developed and
have achieved excellent prediction performance. Yuan et al. (2016)
developed a novel machine learning method called DrugE-Rank,
which improved prediction performance by calculating the chemical
similarity between input compounds and known active compounds.
Lee and Nam (2018) introduced a new DTI prediction method
called RWR, which utilized global network topology information
and a random walk with restart (RWR) algorithm to simulate drug-
target interaction and predict untested DTIs. Wan et al. (2019)
presented a deep learning model named DeepCPI, which employed
multi-layer convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) to extract features from drugs and targets.
After feature extraction, the model merged the drug and target
features and made predictions through fully connected layers. Lee
et al. (2019) proposed a deep learning model called DeepConv-DTI
based on convolutional neural networks, which extracted features
from the structural representation of drug molecules and the
sequence information of target proteins using multiple layers of
CNNs. After feature extraction, the model combined the drug and
target features and predicted DTI results through fully connected
layers. Chen et al. (2020) proposed a novel model called
TransformerCPI, which utilized attention mechanisms capable of
learning feature weights to assess the importance of different atoms.
Additionally, this model employed parallel computing techniques to
reduce the computational complexity. A deep learning model called
MHSADTI was developed by Cheng et al. (2022) which utilized
graph attention networks (GATs) and multi-head self-attention
(MHSA) to better extract features from drugs and proteins. The
drug and protein feature vectors were concatenated and fed into
fully connected layers for final result prediction. A deep learning
model called AMMVF-DTI was developed by Wang et al. (2023),
which combined multimodal and multi-view information and
incorporated attention mechanisms for feature fusion to enhance
prediction accuracy and reliability.

In this study, our objective was to develop a novel end-to-end
deep learning model named MIFAM-DTI, which integrated multi-
source information fusion and attention mechanisms to enhance the
accuracy of DTI prediction. To effectively extract and retain the
feature information of drugs and targets, the MIFAM-DTI model
incorporated graph attention networks and multi-head self-
attention, both of which were enriched with attention
mechanisms. First, the physicochemical property (PCP) feature
vector (Raevsky, 2004) and the Molecular ACCess System
(MACCS) molecular fingerprint feature vector of drugs were
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computed based on their SMILES sequences. For target proteins, the
feature vector of dipeptide composition (DC) and the Evolutionary
Scale Modeling -1b (ESM-1b) feature vector (Rives et al., 2021)
based on their amino acid sequences were calculated. As the
dimensions of the four feature vectors may be different and
contain noisy data, Principal Component Analysis (PCA) was
adopted to reduce each feature vector to 128 dimensions for
calculating the adjacency matrices of the four feature vectors
based on cosine similarity. Next, the two drug feature vectors
were concatenated, and a logical OR operation was performed on
the two adjacency matrices. The concatenated drug feature vector
and drug adjacency matrix were then fed into the deep learning
model, which comprised graph attention networks and multi-head
self-attention. This process resulted in the final drug representation
vector. The same operations were repeated for target data to obtain
the final representation vector of targets. Finally, the final
representation vectors of drugs and targets were concatenated
and input into a multilayer perceptron (MLP) composed of fully
connected layers and users could obtain the predicted scores of
drug-target interactions. To evaluate the performance of MIFAM-
DTI, we conducted experiments on two datasets, namely, C. elegans
and Human. The results demonstrated that our model
outperformed existing state-of-the-art methods in terms of AUC
and AUPR, which are commonly used evaluation metrics for DTI
prediction. Furthermore, to further validate the effectiveness of our
model, we conducted a case study focusing on coenzyme-like
substances involved in cellular energy metabolism.

2 Materials and methods

2.1 Datasets

In supervised learning tasks pertaining to DTI prediction, the
dataset often comprises positive samples representing confirmed
drug-target interactions and negative samples representing the
absence of such interactions. However, an imbalanced
distribution of negative samples in the experimental dataset,
either with an excess or a scarcity, can lead to inaccurate results,
reduced recall rate, model overfitting, and impaired generalization.
Therefore, the careful selection of appropriate negative samples to
construct the dataset is crucial for ensuring reliable
experimental results.

In this study, we employed two benchmark datasets, namely, C.
elegans and Human, which were originally generated by Liu et al.
(2015). To ensure the integrity of our evaluation, the duplicate
entries from these datasets were eliminated. The positive samples in
both datasets were derived from the DrugBank and Matador
databases, which are reputable sources of information on drug-
target interactions. As for the negative samples, they adopted a
meticulous approach involving multiple iterations of the classifier,
gradually selecting a highly reliable set of negative samples. The C.
elegans dataset, documented in Supplementary Table S1,
encompasses 3,893 positive interactions involving
1,434 compounds and 2,504 proteins. On the other hand, the
Human dataset, detailed in Supplementary Table S2, comprises
3,364 positive interactions between 1,052 compounds and
852 proteins. It is noteworthy that the ratio of positive to

negative samples is maintained at 1:1 in both datasets, ensuring a
balanced representation of different classes. For further insights,
Table 1 provides comprehensive information regarding these two
datasets, including their key properties.

2.2 The PCP feature vector of drugs

In the experiment, the calculation of physicochemical property
feature vectors for drugs was performed using RDKit, an open-
source cheminformatics toolkit widely utilized in computational
chemistry research, molecular modeling, and drug discovery. RDKit
offers a comprehensive range of tools and algorithms for handling
and analyzing chemical molecules, encompassing molecular
descriptor calculation, molecular transformation, molecular
fingerprinting, molecular alignment, chemical reaction
simulation, chemical data visualization, and more. To derive the
physicochemical property features of drug molecules, a set of
functions provided by the Descriptors module in RDKit was
employed. These functions enable the calculation of various
physicochemical properties, including molecular weight,
solubility, polarity, and other relevant information (Priya et al.,
2022). By applying these functions to the drug molecular object, we
obtained 202 different eigenvalues of physical and chemical
properties. Subsequently, these eigenvalues were connected in
series to form a 202-dimensional physicochemical property
feature vector for the drug. A detailed illustration of the process
involved in obtaining the physicochemical property feature vector
for drugs is presented in Figure 1 (refer to Supplementary Table S3).

Through the utilization of RDKit’s Descriptors module, we were
able to efficiently compute the physicochemical property feature
vectors, which encapsulate important characteristics of the drug
molecules. These feature vectors served as valuable inputs for
subsequent analysis and modeling in our study.

2.3 The MACCS molecular fingerprint
feature vector of drugs

The MACCS molecular fingerprint is a commonly employed
drug molecular descriptor for representing chemical structural
features of drugs (He, 2022). It utilizes a binary encoding
scheme, where each bit within the fingerprint corresponds to a
specific structural fragment or substructure. The MACCS molecular
fingerprint consists of 166 predefined structural features, along with
an additional dimension, resulting in a total of 167 dimensions.
These 166 predefined structural features encompass common

TABLE 1 Summary of the two datasets used in this study, C. elegans and
human.

Datasets C. elegans Human

Number of drugs 1,434 1,052

Number of proteins 2,504 852

Number of total samples 7,786 6,728

Number of positive interactions 3,893 3,364
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FIGURE 1
Flowchart for extracting the physicochemical property feature vector of drugs.

FIGURE 2
Flowchart for extracting the MACCS molecular fingerprint feature vector of drugs.

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2024.1381997

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1381997


chemical fragments, bonds, and rings. Each feature is encoded using
a binary bit, with the presence of the corresponding structural
element in the molecule denoted by a 1, while its absence is
represented by a 0. The additional dimension is utilized to
handle unknown or incorrect structures. In cases where certain
structural elements within the drug molecule cannot be accurately
encoded using the known structural features, they are assigned a
value of 1 in the extra dimension, indicating the presence of
unknown or erroneous structures.

In this study, the MolFromSmiles function from the RDKit
toolkit was employed to convert the drug’s SMILES sequence into a
molecular object. This conversion process facilitated the structured
representation and subsequent analysis of the drug. Subsequently,
the MACCSkeys function, also available within the RDKit toolkit,
was utilized to calculate the molecular fingerprint feature vector for
the drug (refer to Supplementary Table S4). This feature vector
encompasses both structural and property information relevant to
the drug. By computing the similarity between fingerprints, the
interaction relationships between drugs were inferred. A
comprehensive depiction of the process involved in extracting the
MACCS molecular fingerprint feature vector for the drug is
presented in Figure 2.

By effectively utilizing the capabilities offered by the RDKit
toolkit, the computation of MACCS molecular fingerprint feature
vectors for the drug molecules was efficiently achieved, capturing
crucial structural information. These feature vectors, incorporating
both structural and property details, played a pivotal role in the
analysis and modeling endeavors undertaken within this study.

2.4 The DC feature vector of targets

There are a total of 400 possible combinations of the 20 natural
amino acids. Therefore, the amino acid sequence P of each protein
can be represented by a 400-dimensional feature vector VDC(P). In
this experiment, we considered not only adjacent amino acid pairs in
the sequence, but also include pairs of amino acids with one amino
acid in between. Therefore, the feature vector VDC(P) had a
dimensionality of 800 (see Supplementary Table S5). The
calculation formula is shown in Eq. 1:

VDC P( ) � fgap0−1, fgap0−2,/, fgap0−400, fgap1−1, fgap1−2,/fgap1−400( )
(1)

where gap0 represents adjacent amino acid pairs, gap1 represents
amino acid pairs with one amino acid in between, and fgapi−j (i �
0, 1 j � 1, 2,/, 400) represents the frequency of occurrence of each
amino acid pair j in the protein sequence P.

2.5 The ESM-1b feature vector of targets

In this experiment, the ESM-1b version of the ESM model was
selected. ESM-1b, developed by DeepMind in 2022, represents an
advanced machine learning model specifically designed for protein
structure prediction. With its extensive architecture comprising
650 million parameters and 33 layers, ESM-1b stands out as one
of the largest protein language models currently available.

The ESM-1b model leverages neural networks and employs self-
supervised learning techniques, capitalizing on vast protein
sequence and structure databases for training purposes. Its
fundamental principle lies in the utilization of the Transformer
network to represent protein sequences and structures. The
Transformer network architecture incorporates a self-attention
mechanism, facilitating interactions between each position within
the sequence and other positions. This mechanism empowers the
model to acquire meaningful representations of protein sequences,
effectively capturing crucial features and patterns (Wang et al.,
2023). By employing self-attention, the ESM-1b model can
effectively capture long-range dependencies and contextual
information, thereby enhancing its capacity to make accurate
predictions regarding protein structure. Furthermore, the ESM-1b
model undergoes a pre-training phase using self-supervised learning
on a substantial amount of unlabeled protein sequences (Zhou et al.,
2023). During this phase, the model learns valuable features by
predicting the relationships between different positions within the
sequence. Additionally, the model leverages the evolutionary
information inherent in protein sequences. By performing
multiple sequence alignments of protein sequences from related
species, the model captures co-evolutionary relationships among
these sequences. The incorporation of evolutionary information
enhances the model’s ability to predict protein structure, as
related protein sequences often exhibit structural similarities.

First, we downloaded the pre-trained ESM-1b model to our local
environment and set up the necessary experimental environment
(For details, see https://github.com/facebookresearch/esm). Then,
the amino acid sequences of target proteins from the C. elegans
dataset and the Human dataset were fed into the model for training.
Finally, we obtained the ESM-1b feature vector for each protein (see
Supplementary Tables S6, S7).

2.6 Fusion of feature vectors

In order to fully retain the original feature information of the
drugs and the targets, PCA dimensionality reduction to
128 dimensions was performed on the PCP feature vector, the
MACCS molecular fingerprint feature vector, the DC feature
vector and the ESM-1b feature vector obtained in the above
steps. Then, the two feature vectors of the drugs and the two
feature vectors of the targets were concatenated and fused
respectively to obtain the drug fusion feature vector and the
target fusion feature vector.

For the concatenation fusion operation, it was assumed that the
PCP feature vector of drugs and the MACCS molecular fingerprint
feature vector of drugs after dimensionality reduction were
X ∈ Rn×m and Y ∈ Rn×k, where n was the number of drug
samples, m was the dimension of the PCP feature vector, and k
was the dimension of the MACCS molecular fingerprint feature
vector. By combining the two eigenvector matrices X and Y on the
column dimension, we obtained the drug fusion feature vector
Drug ∈ Rn×(m+k). The concatenation operation is shown in Eq. 2.

Drug � X Y‖[ ] �
X1,1 / X1,m

..

.
. . . ..

.

Xn,1 . . . Xn,m

Y1,1 . . . Y1,k

..

.
. . . ..

.

Yn,1 . . . Yn,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)
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Similarly, the target fusion feature vector Target ∈ Rn′×(m′+k′)

was obtained by concatenating the DC feature vector with the ESM-
1b feature vector. In the statement, n′ represented the number of
samples for the target, m′ represented the dimensionality of the DC
feature vector, and k′ represented the dimensionality of the ESM-1b
feature vector.

2.7 Calculation of similarity matrix

Cosine similarity serves as a widely utilized similarity measure
for comparing the degree of similarity between two vectors. It
quantifies the similarity by computing the cosine value of the
angle formed between the vectors. One notable advantage of
cosine similarity is its resilience to the dimensionality of the
vectors, rendering it suitable for assessing similarity even when
dealing with highly sparse vectors. Moreover, the simplicity and
efficiency of cosine similarity calculations make it well-suited for
large datasets (Zhou et al., 2021).

Prior to computing the cosine similarity, it becomes necessary to
normalize the vectors by converting them into unit vectors. This
normalization step is essential as cosine similarity primarily focuses
on the directional aspect of vectors rather than their magnitude (Xie
et al., 2021). The calculation of cosine similarity is represented by
Eq. 3:

S A, B( ) � A · B
A‖ ‖ × B‖ ‖ �

∑n
i�1 Ai × Bi( )������∑n

i�1Ai
2

√
×

������∑n
i�1Bi

2
√ (3)

where S(A, B) represents the cosine similarity between vector A and
vector B. A · B denotes the dot product of vectors A and B, ‖A‖
represents the magnitude of vector A, and Ai denotes the i-th
component of vector A. The cosine similarity ranges from −1 to
1, where 1 indicates complete similarity, −1 indicates complete
dissimilarity, and 0 indicates no correlation. A higher value
indicates a higher similarity.

2.8 Graph attention network

The graph attention network (GAT) stands as a deep
learning model specifically designed for analyzing graph data,
with a particular focus on node-level tasks like node
classification and node attribute prediction. Distinguishing
itself from traditional graph convolutional neural networks,
the GAT model assigns distinct attention weights to each
neighbor of a node (Keicher et al., 2023). Consequently, each
node possesses the ability to dynamically adjust its attention
towards neighboring nodes based on its own features and the
features exhibited by its neighbors. The model’s foundation lies
in its attention mechanism, enabling it to autonomously learn
the importance weights associated with the relationships
between each node and its neighboring nodes (Zhao
et al., 2022).

Similar to other attention mechanisms, the computation within
the GAT model involves two primary steps: the calculation of
attention coefficients and weighted summation. Initially, for a
given node i, we computed the similarity coefficients with its

neighboring nodes (j ∈ Ni) and itself. The calculation formula is
shown as Eq. 4:

eij � a Whi Whj
[ ]( ), j ∈ Ni (4)

where eij represents the importance of node j with respect to node i,
Ni is the set of neighboring nodes of node i, [ ‖ ] denotes the
concatenation operation applied to the features of nodes i and j.
Finally, a(·) maps the concatenated high-dimensional features to a
scalar value. Next, we need to normalize the values using the softmax
function to obtain the attention coefficient aij. The calculation
process is shown in Eq. 5:

αij � softmax eij( ) � exp LeakyReLU eij( )( )∑k∈Ni
exp LeakyReLU eik( )( ) (5)

The steps for calculating the attention coefficient aij can be
understood by referring to Figure 3.

After calculating the attention coefficients, we need to perform a
weighted summation of the features. The summation formula is
shown as Eq. 6:

′
i � σ ∑

j∈Ni
αijWhj( ) (6)

where σ(·) represents the ReLU activation function, W is the
dimension transformation matrix, hj is the feature vector of the
j-th neighboring node, and′

i is the new feature of node i calculated
by the GAT algorithm. During the computation, the new feature of
node i is represented as a weighted sum of the features of all its
neighboring nodes.

FIGURE 3
Example diagram of the calculation of attention coefficient aij.
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To make the learning process of the attention mechanism more
stable and effective, we introduce the concept of multi-head
attention. This involves calculating new features using multiple
attention mechanisms and concatenating the resulting features to
obtain the final feature vector. As shown in Eq. 7:

″
i �

K
‖

k � 1
′k

i �
K
‖

k � 1
σ ∑

j∈Ni
αkijW

khj( ) (7)

Where ″
i represents the final feature vector after concatenation, K

represents the number of attention heads, ‖ denotes the
concatenation operation applied to the new features ′

i of K
nodes, resulting in a final feature vector of dimension
K ×dim (′

i). The equation can be understood by referring
to Figure 4.

2.9 Multi-head self-attention

Multi-head self-attention (MHSA) represents a prominent form
of multi-head attention mechanism extensively employed for the
analysis of sequential data, particularly in natural language
processing (NLP) applications encompassing machine translation,
text classification, and semantic understanding (Wang et al., 2021).
It serves as an extension and enhancement of the conventional self-
attention mechanism. MHSA introduces multiple heads, each
associated with distinct attention weight matrices, to augment the
model’s expressive capabilities (Deng et al., 2022).

In the traditional self-attention mechanism, for each element in
the input sequence, it computes a query vectorQ, a key vectorK, and
a value vector V. These vectors are obtained by linear

transformations of the input elements using weight matrices
learned during training. It is assumed that the input sequence is
X � [x1, x2,/, xn], and the weight matrices areWQ,WK, andWV.
For each element xi, the calculation formulas for it are shown as
Eq. 8:

Qi � WQ · xi, Ki � WK · xi, Vi � WV · xi (8)
where Qi, Ki, and Vi represent the query vector, key vector, and
value vector of the i-th element, respectively. Afterwards, it can
compute the attention score between element xi and xj. This
attention score is computed as the dot product of the query
vector and the transpose of the key vector, divided by a scaling
factor (usually the square root of the dimension of the key vector,
i.e.,

���
dK

√
). The calculation formula is given by Eq. 9:

score Qi, Kj( ) � Qi ·Kj
T���

dK

√ (9)

Next, it normalizes the attention scores using the softmax
function to obtain attention weights wij, which are transformed
into values between 0 and 1. The computation process for wij is
shown as Eq. 10:

wij � softmax score Qi, Kj( )( ) � softmax
Qi · Kj

T���
dK

√( ) (10)

Finally, it multiplies each element’s value vector with its
corresponding attention weight and sums them up to obtain the
final output vector, as shown in Eq. 11:

A xi( ) � ∑n

j�1wijVj � ∑n

j�1softmax
Qi ·Kj

T���
dK

√( )Vj (11)

FIGURE 4
Example diagram of calculating the final features based on multi-head attention.
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where A(xi) represents the final output vector of the i-th element.
For the sequence X � [x1, x2,/, xn], its output vector is calculated
as shown in Eq. 12:

A X( ) � softmax
QKT���
dK

√( )V (12)

whereX represents the input sequence, Q,K,V represent the results
of linear transformations mapping X to the query, key, and value
spaces respectively, dK is the dimension of the key vectors, and
softmax is the normalization function.

In MHSA, multiple heads will produce multiple final output
vectors. These output vectors can be concatenated or averaged to
produce the final MHSA representation. This representation can be
used for various downstream tasks such as semantic understanding,
named entity recognition, machine translation (Zhou et al., 2023),
etc. The final MHSA representation is shown as Eq. 13:

MHSA X( ) � Concat A1 X( ), A2 X( ),//, An X( )( ) (13)

We can refer to Figure 5 to understand the above formulas and
computation process.

2.10 Classifier and training

During both the training and inference stages of this model, we
concatenated the final feature vectors of the drugs and targets. Then,

we passed the concatenated vector through a fully connected layer
and applied the sigmoid function to obtain the final predicted value
of the result. The calculation formula for the fully connected layer is
shown as Eq. 14:

Z � Woutput ydrug yprotein

[ ] + boutput (14)

where Woutput represents the weight matrix, boutput represents the
bias vector, and [·‖·] denotes the concatenation operation applied to
the two feature vectors. The sigmoid function is shown as Eq. 15:

Sigmoid x( ) � 1
1 + e−x

(15)

The mean squared error (MSE) function was selected as the loss
function for this model due to the desired final computed result
being a continuous value within the range of 0–1. TheMSE stands as
a widely adopted loss function utilized to quantify the disparity
between predicted values and true values. It assesses the discrepancy
by calculating the sum of squared differences between the predicted
values and the true values, subsequently dividing it by the number of
samples to acquire the squared average error. A smaller MSE
signifies a reduced disparity between the predicted values and the
true values, indicating a more favorable fit of the model. The
calculation formula is represented as Eq. 16:

MSE � 1
N

∑N
i�1

xi − yi( )2 (16)

FIGURE 5
Schematic diagram of the multi-head self-attention mechanism.
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WhereN represents the total number of training samples, xi and yi

are the predicted and true values of the i-th training sample,
respectively.

2.11 MIFAM-DTI model

In this study, a drug-target interaction prediction model named
MIFAM-DTI was proposed, which leveraged multi-source
information fusion and attention mechanisms. The model
consisted of four main sections.

The first section involved the extraction of features for both
drugs and targets. For drugs, the PCP feature vectors (refer to
Supplementary Table S3) and the MACCS molecular fingerprint
feature vectors (refer to Supplementary Table S4) were computed
based on their SMILES sequences, utilizing the RDKit tool. For
targets, the DC feature vectors (refer to Supplementary Table S5)
and the ESM-1b feature vectors (refer to Supplementary Tables S6,
S7) were calculated based on their protein amino acid sequences.

The second section of the study encompassed the fusion of
feature vectors and adjacency matrices. Regarding the two types
of feature vectors for drugs, an initial step involved utilizing PCA
to reduce their dimensions to 128. Subsequently, cosine
similarity matrices were computed for each type of feature
vector. Employing PCA for dimensionality reduction served
to denoise the data, eliminate redundant information, and
enhance the accuracy of subsequent analyses. Furthermore, it
aided in reducing the complexity associated with data storage
and computation (Hussain et al., 2019). Following this, the
reduced-dimensional PCP feature vectors and MACCS feature
vectors were concatenated, resulting in fused drug feature
vectors. The PCP cosine similarity matrix and MACCS cosine
similarity matrix were then combined using a logical OR
operation, yielding the fused drug adjacency matrix. The
same operations were repeated for the two types of target
feature vectors to obtain the fused target feature vectors and
the fused target adjacency matrix.

The third section of the study centered around the utilization of
the graph attention network and multi-head self-attention
framework. At this stage, the fused drug feature vectors and
adjacency matrices obtained from the second section were fed
into the GAT. Within the multiple layers of the GAT,
concatenation was performed on the various computed features,
resulting in a feature vector denoted as VGAT1 with dimensions
Nlayer × Ndim −GAT. This approach allowed us to extract and retain
more important information from the input vectors. Next, we fed
the feature vector VGAT1 into the MHSA module. For the multiple
heads of MHSA, we calculated multiple features and then averaged
them.We took the average of these new feature vectors together with
the feature vector VGAT1 to obtain the feature vector VMHSA1. Thus,
we considered the combination of GAT and MHSA as a single
entity. Next, we re-inputVMHSA1 and the drug adjacency matrix into
another combination of GAT and MHSA. After performing the
computations, we obtained the final feature vector for drugs.
Similarly, for the fused feature vectors and adjacency matrix of
targets, we repeated the above operations. After going through two
layers of the GAT and MHSA combination, we finally obtained the
final feature vector for targets.

The fourth section encompassed the final prediction stage of the
model. In this stage, a multilayer perceptron was constructed,
consisting of three fully connected layers. The output of the fully
connected layers was then passed through the sigmoid function to
obtain probability values between 0 and 1. During this stage, the final
feature vectors obtained from the third section were concatenated
for both drugs and targets. Subsequently, these concatenated feature
vectors were fed into the MLP to predict the final interaction scores.

The descriptions for each section of the MIFAM-DTI model
flowchart shown in Figure 6 are as follows: (A) Drug and target
feature extraction stage. (B) Feature vector fusion and adjacency
matrix fusion stage. (C) GAT and MHSA framework. (D)
Interaction score prediction stage. For more detailed information,
please refer to Figure 6.

2.12 Configuration and parameters

The MIFAM-DTI model was based on the PyTorch (GPU)
framework and utilizes Python 3.7.13 and CUDA 11.4. The
implementation of this study was carried out on the CentOS
6.5 operating system, with an Intel(R) Xeon(R) CPU E5-2660 v3
@ 2.60 GHz processor. The total memory capacity is 189GB, and the
GPU used is the NVIDIA Tesla V100S-PCI 32GB.

In this study, an ArgumentParser object was instantiated to
define command line arguments and options. The model was
optimized using the MSE loss function and the Adam optimizer.
MSE loss function is widely employed for regression tasks as it
facilitates the comparison of continuous numerical values between
model outputs and target values. The Adam optimizer, a popular
gradient descent optimization algorithm, adjusts the values of model
parameters based on gradient information from the loss function
(Yaqub et al., 2020). Its objective is to enhance the model’s fit to the
training data and overall performance. The hyperparameter settings
for this model can be found in Table 2.

3 Results

In this study, model training for the MIFAM-DTI model was
conducted on two datasets, namely, C. elegans and Human. The
initial step involved the extraction of feature vectors separately for
drugs and targets. Subsequently, the data was utilized as input for the
MIFAM-DTI model, enabling the generation of final drug-target
interaction prediction scores. To assess the effectiveness of the
model, a comparison was made with results obtained from
current state-of-the-art methods, resulting in the demonstration
of superior performance. The rationality and significance of each
module within the model were validated through ablation
experiments. Additionally, the practical applicability of the
MIFAM-DTI model was demonstrated through case studies.

3.1 Results on the C. elegans and
human datasets

To evaluate the performance of MIFAM-DTI, we conducted 10-
fold cross-validation on the C. elegans and Human datasets, using
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the values of AUC, AUPR, Precision, Recall and F1-score as the
main indicators of performance, and averaged the experimental
results as the final results of the experiment. Table 3 shows the
experimental results of MIFAM-DTI and compares them with seven
mainstream methods, DrugE-Rank, RWR, DeepCPI, DeepConv-
DTI, MHSADTI, TransformerCPI and AMMVF-DTI. The font of
Table 3 represents the highest value.

On the C. elegans dataset, the values of AUC, AUPR, Precision,
Recall and F1-score achieved by the MIFAM-DTI model are 0.9964,
0.9956, 0.9862, 0.9625 and 0.9742, respectively. These results
indicated that the model effectively discriminates between
positive and negative samples in the dataset, exhibiting high

prediction accuracy. Moreover, the values of AUC, AUPR,
Precision and Recall of the MIFAM-DTI model surpassed those
of the other mainstream methods. Only the F1-score indicator was
slightly below the MHSADTI model of 0.0021. Specifically, the AUC
value was higher than DrugE-Rank, RWR, DeepCPI, DeepConv-
DTI, MHSADTI, TransformerCPI, and AMMVF-DTI by 0.1743,
0.1471, 0.0206, 0.0182, 0.0126, 0.0084, and 0.0064, respectively.
Similarly, the AUPR value was higher by 0.1634, 0.1744, 0.0385,
0.0245, and 0.0124, respectively.

On the Human dataset, the MIFAM-DTI model achieved values
of 0.9874 for AUC, 0.9876 for AUPR, 0.9762 for Precision, and
0.9443 for F1-score, outperforming the other seven mainstream

FIGURE 6
Flowchart of theMIFAM-DTImodel. (A) Extraction of drug and target feature vectors. (B) The concatenation of feature vectors and the calculation of
adjacency matrices. (C) Construction of deep learning model using GAT and MHSA. (D) Prediction of interaction scores using a MLP composed of fully
connected layers.
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methods. However, the value of Recall was 0.9145, which was lower
than some mainstream models. Importantly, the AUPR value
significantly improved from 0.9568 to 0.9876. Overall, the AUC
value of the MIFAM-DTI model exceeded DrugE-Rank, RWR,
DeepCPI, DeepConv-DTI, MHSADTI, TransformerCPI, and
AMMVF-DTI by 0.1312, 0.1499, 0.0182, 0.0136, 0.0052, 0.0144,
and 0.0014, respectively. Additionally, the AUPR value was higher
by 0.1619, 0.1711, 0.0477, 0.0439, and 0.0308, respectively.

Combined with the aforementioned analysis, the MIFAM-
DTI model demonstrated effective prediction of drug-target

interactions. We attributed its exceptional performance to
three key factors. First, the model incorporated the
physicochemical properties of drugs along with the MACCS
molecular fingerprint properties, DC properties of targets, and
ESM-1b properties. This fusion approach better preserved the
original properties of drugs and targets, enhancing the model’s
predictive capability. Second, the MIFAM-DTI model utilized
graph attention network and multi-head self-attention. GAT is
adept at capturing local and global relationships in graph data by
flexibly learning the importance among nodes through the
attention mechanism (Gu et al., 2021). Since drug-protein
interactions are often influenced by neighboring nodes, GAT
is particularly suitable for tasks such as drug-protein interaction
prediction. Alternatively, MHSA is employed to process
sequence and graph data, leveraging the self-attention
mechanism to learn dependencies among features. In drug-
protein interaction prediction, where drug and protein
features often contain rich sequence information, MHSA
helps the model capture long-term dependencies in these
sequences, thereby improving prediction accuracy (Jin et al.,
2024). The simultaneous use of GAT and MHSA enabled
comprehensive capture of complex relationships, leveraging
their respective strengths on different data structures. This
combination enhanced the model’s expressiveness and
predictive performance, making it valuable in drug discovery,
protein interactions, and related tasks. Third, the MIFAM-DTI
model incorporated a two-layer GAT and MHSA ensemble. This
architecture facilitated multi-level feature learning, enabling the
gradual acquisition of higher-level feature representations and
improving prediction accuracy (Kang et al., 2021). Furthermore,
the sequential utilization of GAT and MHSA allowed for the

TABLE 2 Default parameter settings of MIFAM-DTI.

Parameters Value

Epochs 15

Patience 5

The learning rate 1e-4

Number of batch size 128

Number of hidden units 16

Number of layers of GAT 4

Number of heads of MHSA 4

Alpha for the leaky_relu 0.2

Activation Function (FC) ReLU

Activation Function (Output) Sigmoid

Loss function MSELoss

Optimizer Adam

TABLE 3 The results on all the dataset.

Datasets Methods AUC AUPR Precision Recall F1-score

C.elegans DrugE-Rank 0.8221 0.8322 0.7906 0.7474 0.7684

RWR 0.8493 0.8212 0.7860 0.7128 0.7475

DeepCPI 0.9758 0.9571 0.9393 0.9271 0.9394

DeepConv-DTI 0.9782 0.9711 0.9435 0.9423 0.9579

MHSADTI 0.9838 0.9832 0.9465 0.9451 0.9763

TransformerCPI 0.9880 — 0.9520 0.9530 —

AMMVF-DTI 0.9900 — 0.9620 0.9600 —

MIFAM-DTI 0.9964 0.9956 0.9862 0.9625 0.9742

Human DrugE-Rank 0.8562 0.8257 0.7181 0.8668 0.7851

RWR 0.8375 0.8165 0.7707 0.7243 0.7466

DeepCPI 0.9692 0.9399 0.9187 0.9210 0.9096

DeepConv-DTI 0.9738 0.9437 0.9295 0.9175 0.9204

MHSADTI 0.9822 0.9568 0.9472 0.9365 0.9346

TransformerCPI 0.9730 — 0.9160 0.9250 —

AMMVF-DTI 0.9860 — 0.9760 0.9380 —

MIFAM-DTI 0.9874 0.9876 0.9762 0.9145 0.9443
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integration of their modeling capabilities and characteristics,
leveraging the advantages of each to enhance the model’s
robustness and generalization ability.

Overall, the MIFAM-DTI model’s effectiveness stemmed from
its fusion of multi-source information, the utilization of GAT and
MHSA, and the incorporation of a two-layer GAT and MHSA
ensemble. These factors collectively contributed to its enhanced
expressiveness, improved predictive performance, and suitability for
various applications in drug discovery, protein interactions, and
related tasks.

3.2 Ablation experiments on PCA
dimensionality reduction

By judiciously utilizing PCA (Principal Component Analysis)
technology, it is possible not only to transform high-dimensional
data into low-dimensional data, removing redundant information
while preserving the main information of the data, but also to reduce
the memory space required for storing data and lower the
computational complexity of the model. To verify the impact of
applying PCA on the model’s prediction results, we conducted a
series of ablation experiments on the dimensions reduced by PCA.
Since the dimension of the MACCS molecular fingerprint feature
vector of drugs was 167, we set the dimensions of PCA
dimensionality reduction to 128, 64, 32 and non-dimensionality
reduction groups, respectively. In addition, the dimensionality of
PCA reduction was set to integer powers of 2, and these numbers
were more efficient to process in computer hardware, helping to
optimize the performance and practicality of the model while
adapting to the requirements of modern computing architectures.
The experimental results are shown in Table 4. The highest values
were indicated in bold black.

In Table 4, “None” indicates that PCA was not used for
dimensionality reduction, while 128, 64, and 32 represent the
dimensions to which the input features were reduced using PCA.
According to the experimental results, the model achieved favorable
experimental outcomes on two datasets when the input features
were reduced to 128 dimensions using PCA. In the C. elegans and
Human datasets, when the dimensionality reduction of PCA was set
to 128, the experimental results for AUC, AUPR, Precision, and F1-
score all reached the maximum values among the conditions tested,

with only Recall being slightly lower than in other dimensional
settings. The comparison between “None” and 128 dimensions
indicated that reducing the dimensionality of input features
through PCA removed noise data and preserved the important
parts, thereby enhancing the model’s predictive performance.
However, when the dimensionality reduced by PCA was changed
from 128 to 32, the model’s predictive performance decreased. This
could be due to the loss of feature information in the original input
caused by PCA dimensionality reduction, which in turn led to a
decline in the model’s predictive capability.

3.3 Ablation experiments on multi-source
information fusion

Figure 7 displays the AUC and AUPR values of theMIFAM-DTI
model across different data characteristics. Subplots (A) and (B)
represent the AUC and AUPR values on the C. elegans dataset,
respectively. It is evident that the experimental results obtained
through the fusion of drug characteristics and target characteristics
were optimal. This outcome served as conclusive evidence of the
model’s effectiveness in leveraging the fusion of multi-source
information. Subplots (C) and (D) illustrate the AUC and AUPR
values of the model on the Human dataset. Despite the MACCS
molecular fingerprint feature vector of the drug exhibiting less
impressive performance on this dataset, the experimental results
following the fusion of both drug features still surpassed those of the
single feature. This outcome further validated the rationale behind
the fusion of multi-source information. Moreover, the robust and
stable performance of the multi-source information fusion-based
approach on both datasets demonstrated the model’s resilience
and stability.

3.4 Ablation experiments on the number of
layers of GAT and MHSA complexes

Table 5 provides the outcomes of employing different numbers
of layers in the GAT and MHSA combination. The highest values
were indicated in bold black. The models were denoted as MIFAM-
DTI-i, where i corresponded to the number of layers in the GAT and
MHSA combination. The results showed that for both the C. elegans

TABLE 4 The results of the different dimensions reduced by PCA.

Datasets Dimensions AUC AUPR Precision Recall F1-score

C. elegans None 0.9957 0.9939 0.9660 0.9552 0.9606

128 0.9964 0.9956 0.9862 0.9625 0.9742

64 0.9959 0.9941 0.9485 0.9699 0.9591

32 0.9920 0.9886 0.9416 0.9416 0.9416

Human None 0.9776 0.9775 0.9167 0.9395 0.9279

128 0.9874 0.9876 0.9762 0.9145 0.9443

64 0.9808 0.9786 0.9385 0.9208 0.9295

32 0.9801 0.9739 0.9267 0.9182 0.9224
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and Human datasets, the AUC, AUPR, Precision, Recall and F1-
score values were maximized when i equaled 2. This finding
suggested that the best experimental performance was achieved
when utilizing a GAT and MHSA combination with two layers.
For instance, considering the C. elegans dataset, as the number of
layers in the combination increased from 1 to 2, the AUC, AUPR,
Precision, Recall and F1-score values rose by 0.0004, 0.0010, 0.0411,
0.0062 and 0.0235, respectively. This observation indicated that
through multi-layer feature learning, deep learning models could
extract more representative feature representations from the raw
input data, resulting in improved model performance and
generalization (Parvandeh et al., 2019). However, when the
number of layers increased from 2 to 3, both the AUC, AUPR,
Precision, Recall and F1-score values declined. This decline may be

attributed to the excessive utilization of GAT and MHSA, wherein
their attention mechanisms might focus more on noise and
irrelevant features within the training data, consequently leading
to overfitting of the model (Kim and Simon, 2014).

3.5 Case studies of coenzymes involved in
cellular energy metabolism

To further demonstrate and analyze the predictive ability of the
MIFAM-DTI model, we selected two coenzyme-like substances
related to cellular energy metabolism, NADH (Li et al., 2009)
and Adenosine-5′-triphosphate (Szewczyk and Pikuła, 1998), as
validation targets from the Human dataset. We screened twenty

FIGURE 7
Results of ablation experiments on multi-source information fusion. (A) The AUC values on the C. elegans dataset. (B) The AUPR values on the
C. elegans dataset. (C) The AUC values on the Human dataset. (D) The AUPR values on the Human dataset.

TABLE 5 The results of the GAT and MHSA combination with different layers.

Datasets Layers AUC AUPR Precision Recall F1-score Time (s)

C.elegans MIFAM-DTI-1 0.9960 0.9946 0.9451 0.9563 0.9507 40.71

MIFAM-DTI-2 0.9964 0.9956 0.9862 0.9625 0.9742 76.10

MIFAM-DTI-3 0.9925 0.9884 0.9618 0.9438 0.9527 108.52

Human MIFAM-DTI-1 0.9678 0.9622 0.9237 0.8996 0.9115 57.36

MIFAM-DTI-2 0.9874 0.9876 0.9762 0.9145 0.9443 111.00

MIFAM-DTI-3 0.9767 0.9753 0.9357 0.9065 0.9209 162.53

Frontiers in Genetics frontiersin.org13

Li et al. 10.3389/fgene.2024.1381997

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1381997


targets (Q99714, P07195, P03897, P51649, Q9UI09, P16083,
P20839, Q04828, P09622, P51970, P09601, O43920, P40926,
Q06278, P14679, Q16878, P49448, Q08426, P31937, and
O60701) that interact with NADH from the PubChem database
and UniProt database. Additionally, we selected sixteen targets
(P42684, Q07912, Q04771, P00414, P00734, Q02880, Q12888,
Q5S007, Q9Y2U5, P08253, P14780, P35228, Q12809, P37231,
P53041, and P35354) that interact with Adenosine-5′-
triphosphate. None of these drug targets pairs are annotated as
interacting in the Human dataset. Additionally, we selected 4-
Epitetracycline hydrochloride and 5-HT3 antagonist 3 as control
groups for NADH and Adenosine-5′-triphosphate, respectively.
Database review confirmed that there were no known
interactions between 4-Epitetracycline hydrochloride and the
twenty corresponding targets, nor between 5-HT3 antagonist
3 and the sixteen corresponding targets.

Initially, the MIFAM-DTI model was trained on the Human
dataset while preserving all its parameters. Subsequently, the
SMILES sequences of four drugs were obtained from the
PubChem website, and the amino acid sequences of the
aforementioned thirty-six targets were retrieved from the UniProt
database. After calculating the corresponding feature vectors, the
data was inputted into the pre-trained MIFAM-DTI model for
interaction prediction. The interaction prediction scores between
the four drugs and their respective targets are presented in Figure 8.

Figure 8A exhibits the prediction scores of interactions between
NADH and 4-Epitetracycline hydrochloride with twenty targets, while
Figure 8B showcases the predicted scores of interactions between
Adenosine-5′-triphosphate and 5-HT3 antagonist 3 with sixteen
targets. The X-axis represents the UniProt ID of each target, and the
Y-axis denotes the predicted scores of interactions between drug-target
pairs. In Figures 8A, B, NADH and Adenosine-5′-triphosphate are
depicted as red circles, while control group 4-Epitetracycline
hydrochloride and 5-HT3 antagonist 3 are represented by blue
squares. The green triangle signifies the initial threshold, set at 0.5 in
this case. The results demonstrate that the predicted scores of the two

coenzyme substances and their corresponding targets surpassed the
threshold, while the predicted scores of the control drugs and their
corresponding targets fall below the threshold. This observation
indicated the model’s proficient forecasting ability. Although some
values in the prediction scores of NADH and Adenosine-5′-
triphosphate may not be notably high, they still exceed the
threshold in this case without significant bias. Hence, the model’s
prediction outcomes remained within an acceptable range.

Consequently, the following steps should be followed when
employing the MIFAM-DTI model. Firstly, training on an
extensive dataset of drug-target interactions is necessary to
comprehend the general relationship within such interactions.
The drug input requires the provision of the SMILES sequence,
while the target input necessitates the amino acid sequence of the
protein. Secondly, information regarding the drug and target
should be acquired and screened from existing databases,
followed by preprocessing of the data and inputting it into
the MIFAM-DTI model for interaction score prediction.
Lastly, the predicted scores of the drug and target serve as a
reference standard for identifying candidate drugs that may
impact the target or possess potential therapeutic effects on
the target. It is important to note that the prediction score
derived from the deep learning model MIFAM-DTI is merely
an auxiliary tool in drug development and cannot be solely relied
upon for judging drug-target interactions. To ensure the drug’s
efficacy, it is imperative to conduct biological experiments and
clinical trials on the candidate drug. Upon approval by
regulatory authorities, the drug can be utilized for treating
the target disease, ultimately concluding the drug
development process.

4 Conclusion and discussion

Accurate prediction of drug-target interactions is crucial for
enhancing drug development efficiency and mitigating unknown

FIGURE 8
Predicted scores of DTIs about Coenzyme substances using our MIFAM-DTI model. In figure (A), the red circle represents the interaction between
NADH and its 20 targets, and the blue square represents the interaction between the unrelated drug 4-Epitetracycline hydrochloride and the same
targets. In figure (B), the red circle represents the interaction between Adenosine-5′-triphosphate and its 16 targets, and the blue square represents the
interaction between the unrelated drug 5-HT3 antagonist 3 and the same targets. In both graphs, the green triangle is the threshold, set to 0.5.
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risks (Wang et al., 2022). Despite the increasing number of DTI
prediction methods and their improved accuracies, there is still
considerable room for further improvement.

In this study, a deep learning model named MIFAM-DTI was
proposed, which leveraged multi-source information fusion and
attention mechanisms to predict DTIs. MIFAM-DTI integrated
multiple sources of characteristic information from drugs and
targets, thereby preserving more original information. Through
graph attention network and multi-head self-attention, MIFAM-
DTI effectively extracted and retained important features while
eliminating or reducing unnecessary ones, resulting in the final
feature vectors for drugs and targets. These feature vectors were
combined and fed into a multi-layer perceptron constructed by fully
connected layers to obtain the final prediction probability. The
performance of the proposed model was evaluated using 10-fold
cross-validation, demonstrating improved prediction results.

Although MIFAM-DTI had shown promising experimental
results, it still exhibited certain limitations that required further
refinement. Firstly, while the fusion of multi-source information of
drugs and targets had been considered, the ever-increasing
availability of such information necessitated careful selection, as
the current approach might be biased (Kennedy et al., 2022).
Furthermore, the characteristic information employed in this
method was derived solely from one-dimensional data, such as
drug SMILES and amino acid sequences of targets. In the future,
incorporating additional feature information into deep learning
models is being contemplated (Lv et al., 2023). Secondly, the
adjacency matrix information used in the model was obtained
through cosine similarity calculations among feature vectors.
Incorporating network information, such as drug-drug
interaction networks and target-target interaction networks, is
anticipated to enhance the accuracy of DTI prediction. Lastly, the
method employed multiple GAT and MHSA, resulting in a
substantial number of parameters. During the model training
phase, this led to challenges such as extended training time and
high memory consumption. To address these issues, future research
can focus on optimizing the model structure and reducing its time
and space complexity (Stahlschmidt et al., 2022).
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