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MicroRNAs (miRNAs) are promising biomarkers for the early detection of disease,
and many miRNA-based diagnostic models have been constructed to distinguish
patients and healthy individuals. To thoroughly utilize the miRNA-profiling data
across different sequencing platforms ormultiple centers, themodels accounting
the batch effects were demanded for the generalization of medical application.
We conducted transcription factor (TF)-mediated miRNA–miRNA interaction
network analysis and adopted the within-sample expression ratios of miRNA
pairs as predictive markers. The ratio of the expression values between each
miRNA pair turned out to be stable across multiple data sources. A genetic
algorithm-based classifier was constructed to quantify risk scores of the
probability of disease and discriminate disease states from normal states in
discovery, with a validation dataset for COVID-19, renal cell carcinoma, and
lung adenocarcinoma. The predictive models based on the expression ratio of
interacting miRNA pairs demonstrated good performances in the discovery and
validation datasets, and the classifier may be used accurately for the early
detection of disease.
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1 Introduction

MicroRNAs (miRNAs) have emerged as valuable biomarkers for the early detection of
diseases due to their tissue-specific expression profiles (Chen et al., 2008; Song et al., 2023;
Lv and Sun, 2024). However, the measure of miRNA expression levels may vary across
different platforms or protocols, which limits the application of diagnostic models. This
problem is known as batch variance and is prevalent in cross-sequencing platforms (Lazar
et al., 2013) and multi-center data (Leek et al., 2010; Heinicke et al., 2020a; Heinicke et al.,
2020b; Ibing et al., 2021). The difference in data distribution may be an obstacle to obtain
reliable conclusions in the joint analysis of multiple center datasets, and it prevents the
cross-validation of models on external datasets (Leek et al., 2010; Zhang et al., 2021; Whalen
et al., 2022; Peng et al., 2024). Thus, the effective handling of batch effects is the first problem
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that needs to be solved in the integrative analysis of large-scale
biological datasets (Goh et al., 2017).

Several batch effect correction methods have been developed to
facilitate the joint analysis of multi-center data. The “ComBat-seq”
tool based on the negative binomial regression model was developed
specifically for RNA-seq count data (Zhang et al., 2020a). The
“removeBatchEffect” function in the “limma” package can be
used to correct data variation based on the linear regression
model (Ritchie et al., 2015). However, these correction methods
require the artificial transformation of data shapes, which may
introduce false discoveries (Nygaard et al., 2016). In contrast, the
intrinsic regulatory networks are less likely to be affected by different
sequencing protocols, and the pathway-derived genes show
potential to be a type of normalizer-free and batch-insensitive
markers. Under this consideration, we propose a promising novel
tool to integrate datasets from multiple sources, termed as the ratio
of the expression values between related miRNAs (ERRmiR), by
calculating the ratio of expression values of two related miRNAs in
the intrinsic regulatory networks.

The miRNA interaction network was constructed based on prior
knowledge to discover ERRmiR features with a biological
significance. It is widely known that miRNAs not only regulate
the expression of protein-coding mRNAs but also target non-coding
RNAs, including long non-coding RNAs and miRNAs (Hill and
Tran, 2018; Vishnubalaji et al., 2022; Shang et al., 2023). The
miRNAs can directly bind to the 3′UTR of transcription factors
(TFs), which can also reverse activate or repress miRNA expressions
(Vishnubalaji et al., 2022; Khotib et al., 2023). For example, miR-
181b affects the expression of miR-21 through the TF FOS, a critical
signaling protein for glioma progression (Tao et al., 2013); miR-660-
5p controls the expression of miR-486-5p via mouse double minute
2 (MDM2) and p53 (also known as TP53) in a study of lung cancer
(Borzi et al., 2017). A recent review summarizes numerous examples
of miRNA–>TF (TF regulated by miRNAs) and TF–>miRNA
(miRNAs regulated by TF) interactions in various cancers,
demonstrating the importance of the interaction between miRNA
and pluripotent TFs in determining the occurrence of human
cancers (Vishnubalaji et al., 2022). All these examples provide
important clues for understanding the role of the TF-mediated
miRNA functional network in tumor regulation.

In this study, we constructed a TF-mediated miRNA interaction
network using public databases and demonstrated that the ERRmiR
features were relatively insensitive to batch effects in multi-center
studies. We then adopted a genetic algorithm in the feature
screening process to avoid the dimension curse, which had a
great capacity for selecting markers with stable performances in
developing diagnostic models. Lastly, we used three independent
examples involving plasma and tissue samples to investigate the
predictive performance.

2 Materials and methods

2.1 Construction of the miRNA
interaction network

The TF-mediated miRNA–miRNA interaction network was
constructed by combining the data of miRNA–>TF and

TF–>miRNA relationships. If miRNA_a regulated a TF that was
regulated by miRNA_b, miRNA_a was assumed to be able to
influence miRNA_b, and they were connected in the miRNA
interaction network.

The regulatory network datasets were collected from several
public databases. The experiment validated that microRNA–target
pairs were collected from miRTarBase (Huang et al., 2020), among
which 8,014 targets were recognized as TFs based on the hTFtarget
(Zhang et al., 2020b) and AnimalTFDB (Hu et al., 2019) databases.
The 1,266 records of TF-regulating precursor miRNAs were
obtained from the TransmiR v2.0 database (Tong et al., 2019).
Combining themiRNAs–>TFs and TFs–>miRNA datasets (here, –>
denotes a regulatory relationship), a total of 51,770 pre-miRNA
indirect interactions were obtained, and then, pre-miRNAs were
mapped to mature miRNAs according to the miRBase genomic
coordinates. Finally, the miRNA–miRNA interaction network was
constructed based on the 75,507 unique records of the indirect
interaction relationships.

2.2 Predictive feature generation

The features were generated by calculating the expression
ratio for each miRNA pair in the reconstructed miRNA
interaction network. miRNAs with an expression value
smaller than 100 were filtered out to ensure stable detection.
The feature constructed with the connected pair of miRNA_a
and miRNA_b was denoted by ERRmiR (a,b) and calculated
as follows:

ERRmiR a, b( ) � Expression of miRNAa

Expression of miRNAb + 1
,

where the denominator was added by 1 to avoid the divisor being 0.

2.3 Data collection and pre-processing

The robustness of ERRmiR features was investigated on the
datasets using different library preparation kits [GSE133719 and
GSE141658 datasets on the Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016) database], and then, datasets for three
different disease categories were collected to construct the predictive
models, namely, COVID-19, renal cell carcinoma (RCC), and lung
adenocarcinoma (LUAD) projects [the NCI’s Genomic Data
Commons (GDC) (Jensen et al., 2017) database and GEO;
Table1]. We searched the GEO database to identify datasets
meeting the following criteria: both disease and control groups
had sample sizes of 10 or more, and each disease had at least
2 datasets with consistent sample types and sequencing platforms.
From the filtered datasets, representative validation sets were
chosen, which included viral respiratory infections and cancers
caused by non-viral mechanisms. These sets were selected to
ensure diversity in etiology, validation centers, and sample types,
thereby ensuring the generalizability of our feature selection model
across different populations. The miRNA expression matrices in the
CPTAC (Edwards et al., 2015)/TCGA (Hutter and Zenklusen, 2018)
database were downloaded using the GDC tool, and the annotation
and quantification were performed using exceRpt (Rozowsky et al.,
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2019) to obtain the expression matrices of miRNAs. For
comparing the results among different datasets, counts of
reads were uniformly converted to reads per million (RPM)
mapped read values. In the COVID-19 project, the plasma of
persons with non-severe symptoms (mild patients and healthy)
was categorized as the controls, and the plasma of those with
serious symptoms was used as the disease samples. In the RCC
and LUAD projects, normal tissues were categorized as the
controls, and primary tumor tissues were used as the
disease samples.

2.4 Feature screening and
classification modeling

In each project, the dataset with the most samples was used as
the discovery dataset and divided into a training set and a test set
proportionally, i.e., 0.75:0.25. In the training dataset, the univariate
analysis of the ERRmiR features was performed, the expression fold
change in disease samples against the controls and the fdr-adjust
p-value were obtained. The “sklearn-genetic” package was adopted
to screen the optimal subsets of features. The features with higher
appearance frequencies in the optimal subsets were selected as
targets for the disease.

The “scikit-learn” package was used to build models for disease
classifications. The learning curves were used to detect whether the
estimator was overfitting during model training. The trained model
was validated on a test set and the external validation datasets for
each project.

2.5 Statistical analysis and visualization

The quartile plots of miRNA expression/ERRmiR feature values
were drawn using the Matplotlib tool. The p-values and fdr-
corrected q-values were calculated using SciPy. The miRNA
network was visualized using Pyvis and seaborn tools. In miRNA
pathway enrichment analyses, target genes of miRNAs were first
identified through the TarBase database using the multMiR package
in R language, and then, pathway enrichments were performed
using clusterProfiler.

3 Results

3.1 The schematic of ERRmiR signature
generation and screening

We developed a screening method for the generation of the
ERRmiR signature based on machine learning (Figure 1). We first
constructed the miRNA interaction network by integrating several
databases, including miRTarBase, hTFtarget, AnimalTFDB, and
TransmiR v2.0. We then calculated the expression ratios of
related miRNA pairs as ERRmiR features. The discovery dataset
was randomly divided into training and test sets, and the features
were filtered in the training set using univariate analyses according
to the fold change of the mean expressions between two groups. We
used a genetic algorithm to screen the features, and those with higher
frequencies in the screening processes were selected as candidate
markers. The trained model was validated on the test set within the
same screening dataset and evaluated on external validation
datasets. This approach was suitable for discovering biomarkers
for various samples.

3.2 Construction of the miRNA
interaction network

We constructed the miRNA interaction network based on
indirect interactions mediated by TFs. The interactions indicated
that the expression of one miRNA induced the activation or
inhibition of other miRNAs. miR-183-5p is taken as an example
to show how miRNAs regulate other miRNAs through TFs
(Figure 2A). Here, the pentagram-labeled miR-183-5p is a
regulatory miRNA, which regulates the square-labeled TF and
further affects the round-labeled target miRNAs. The blue
linkages represented the interaction of miR-183-5p acting on the
TF, and the pink linkages represented the effects of TFs on other
miRNAs. The complete miRNA–miRNA interaction network
contained 75,507 unique records of indirect interaction
relationships among 2,196 miRNAs (Supplementary Table S1).
The degree distribution and topological parameters indicated that
the miRNA interaction network has canonical scale-free and small-
word characteristics (Figures 2B, C).

TABLE 1 Sample information in three projects. The datasets with the most samples were selected as discovery (lines colored by gray background), and the
other datasets were used as validation (lines colored by white background) for each project.

Project Dataset Number of control cases Number of disease cases Platform Source

COVID-19 GSE178246a 272 264 Illumina NextSeq 500 Plasma

GSE176498 29 16 Illumina NextSeq 550 Plasma

RCC CPTAC-3-RCC 148 311 Illumina Tissue

TCGA-KIRP 34 34 Illumina HiSeq 2000 Tissue

GSE109368 12 12 Illumina NextSeq 500 Tissue

LUAD CPTAC-3-LUAD 102 111 Illumina Tissue

GSE110907 48 48 Illumina HiSeq 2000 Tissue

GSE196633 10 10 Illumina HiSeq 2500 Tissue

aEach sample has four pieces of sequencing data for GSE178246 and treated as four cases.
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3.3 Characterization of ERRmiR signatures

To verify the hypothesis that the expression ratios between the
interacting miRNAs would be stable across multi-center data, the
distribution of ERRmiR values was compared with the distribution
of the miRNA expression levels of the same samples (Figure 3). The
sequencing datasets of the peripheral blood CD8+ T cells in triplicate
from rheumatoid arthritis (RA) patients and healthy controls were
generated by different library construction methods. The quartile
plots showed that the original miRNA expression data generated by
different library preparation kits had significant variance on the
scale and distributions (Figure 3A), while the variation of ERRmiR
features decreased (Figure 3B), which demonstrated the potential of
ERRmiR features as batch-insensitive markers. We presented three
application examples from various sample types and diseases.

3.4 Prediction of COVID-19 patients with
severe symptoms using plasma ERRmiR
signatures

The advantage of ERRmiR features was first investigated on the
dataset of COVID-19 plasma samples. GSE178246 was randomly
divided into a training and test set, and GSE176498 was used as the
external validation set. The 42 ERRmiR features were obtained by
conducting the genetic algorithm 100 times on the screening dataset.
As shown in Figure 4A, the frequency distribution of the ERRmiR
appearance was very steep, 3 ERRmiRs have frequencies greater than
10, and the highest frequency was up to 60. We selected the top three
high-frequency features as markers and tested them on the validation

set. As expected, they were significantly different between the serious
and non-serious groups (p < 0.05) and showed consistent trends
across multiple datasets (Figure 4B; Supplementary Table S2). The
TFs intervening between the ERRmiR pairs for the top three high-
frequency features were mothers against decapentaplegic homolog 4
(SMAD4), PR domain zinc finger protein 1 (PRDM1), and forkhead
box O3 (FOXO3). To confirm the batch-insensitive nature of the
ERRmiR features, the biomarker selection was also directly applied on
the expression matrix of miRNAs. As shown in Figure 4C, the targets
screened from the expression matrix of miRNAs lost effectiveness
across the batches of data, with miR-1224-5p even showing opposite
regulation trends (Supplementary Table S3). Based on the three high-
frequency ERRmiR markers, the C-support vector classification
(SVC) model that was established on the training set showed
stable high performances on both the test set and validation
dataset (Figure 4D). The model with three high-frequency miRNA
panels had a high area under curve (AUC) of 0.906 on the test set but
failed on the independent validation set with an AUC of 0.783
(Figure 4E). The performance verification data of the model are
shown in Table 2. In addition, the five miRNAs of three ERRmiR
markers were used for pathway enrichment (Figure 4F). Infection
pathways of bacteria and viruses, including Salmonella infection and
human papillomavirus infection, were significantly enriched.

3.5 Prediction of the renal cell carcinoma
using tissue ERRmiR signatures

Themethod of marker discovery was also validated on the dataset
of the RCC tissue samples. The CPTAC-RCC dataset was used for

FIGURE 1
Overview of the ERRmiR marker discovery process. The miRNA network was constructed based on the transcription factor (TF)-mediated
interactions, and the ERRmiR features were calculated between the connected genes in the network. Target screening and model construction were
performed based on the ERRmiR features of the screening dataset and verified on the validation dataset.
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screening targets and building the model, and TCGA-KIRP and
GSE109368 datasets were used for external validations. After
conducting the genetic algorithm, we obtained 115 miRNA pairs

(Figure 5A). We take the top three highest frequent ERRmiR features
as biomarkers, which showed significant differences between the
cancer and control groups (p < 0.05), with consistent regulation

FIGURE 2
Illustration of the miRNA interaction network. (A) TF-mediated miRNA–miRNA indirect interactions. Pentagrams denote the regulating miRNAs,
squares denote the TFs, and circles denote the regulatedmiRNAs. (B)Degree distribution of themiRNA interaction network followed a power-law tail. (C)
Topological characteristics of the interaction network. TF, transcription factors.
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trends across multiple datasets (Figure 5B; Supplementary Table S4).
The TFs intervening between the ERRmiR pairs for the top three high-
frequency features were Jun proto-oncogene (JUN, AP-1
transcription factor subunit), HIF1A (HIF1A), nuclear factor
erythroid 2-related factor 2 (NFE2L2), and zinc finger E-box-
binding homeobox 2 (ZEB2). As part of the miRNAs in ERRmiR
markers, miR-221-3p and miR-221-5p were not significantly
differentially expressed between the two sample groups in all the
datasets (Figure 5C; Supplementary Table S5). A prediction model
using the SVC algorithm was established on the training dataset and
achieved high AUC values on both independent validation datasets
(Figure 5D). The performance verification data of the model are
shown in Table 3. The five miRNAs comprising the three ERRmiR
markers were significantly enriched in several pathways associated
with cancers (Figure 5E). In particular, the p53 signaling pathway and
Hippo signaling pathway had been widely reported to be associated
with RCC (Gurova et al., 2004; Guan et al., 2018).

3.6 Prediction of lung adenocarcinoma
using tissue ERRmiR signatures

In the LUAD project, the CPTAC-LUAD dataset was used to
screen the ERRmiR features and build the model, and the

GSE110907 and GSE196633 datasets were used for external
validations. Thirty one ERRmiRs were obtained by conducting
the genetic algorithm with a relatively flat frequency distribution,
as shown in Figure 6A. We selected the top three highest frequent
ERRmiR features as markers, which presented consistent trends of
significant differences between the cancer and control groups (p <
0.05) across multiple datasets (Figure 6B; Supplementary Table S6).
The TFs intervening between the ERRmiR pairs for the top three
high-frequency features were nuclear factor kappa B (NFKB1),
myocyte enhancer factor 2A (MEF2A), and Yin Yang 1 (YY1).
The model constructed in the training set had AUC values of
0.995 and 0.91 in the GSE110907 and GSE196633 validation sets,
respecively (Figure 6C). The performance verification data of the
model are shown in Table 4. The five miRNAs of the three ERRmiR
markers were significantly enriched in the p53 signaling, cell cycle,
and PI3K-Akt pathways, which are widely reported to be associated
with LUAD (Huang et al., 2022; Tang et al., 2022; Zhang et al.,
2022) (Figure 6D).

4 Discussion and conclusion

The miRNA biomarkers have shown initial success in disease
diagnosis and prognosis monitoring (Inoue and Inazawa, 2021);

FIGURE 3
Quartile plots of miRNA expression (A) and log2 ratios of every two miRNAs (B) for each sample. Each plot was represented with the median (a solid
point), the 0.25 quartile, and the 0.75 quartile of the distribution.
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however, different sequencing prepares can cause variances across
different batches, making it difficult to use the normalization of
expression matrices alone for multi-center applications. In this

study, we included three types of miRNA– miRNA interactions
(direct interactions, indirect interactions, and global interactions)
summarized in a previous review (Hill and Tran, 2021) and

FIGURE 4
Analysis of ERRmiR features in the COVID-19 project. (A) Occurrence frequencies of the ERRmiR features in the 100-time genetic algorithm. (B,C)
The top three high-frequency ERRmiRs showed a relatively stable regulatory trend in both datasets rather than miRNAs. ROC curves of the models based
on ERRmiR markers (D) and miRNA markers (E). (F) Pathway enrichment analysis of miRNAs involved in ERRmiR markers showed the top
20 enriched pathways.
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considered the indirect miRNA interactions mediated by TFs.
Coordinated with an integrated screening method utilizing the
genetic algorithm, we demonstrated the effectiveness of this
strategy at tissue and plasma levels in three datasets and
demonstrated its capacity for universal usage in developing
diagnostic and classification models. The generalizability of our
findings across diverse datasets was demonstrated through
validation in multiple datasets from various sources,
encompassing different diseases such as COVID-19, RCC, and
LUAD. Specifically, our approach has been validated in two
distinct datasets for COVID-19, three separate datasets for RCC,
and three different datasets for LUAD. This multi-dataset validation
strategy enhances the robustness and reliability of our findings by
confirming the consistency and effectiveness of our method across
different disease types and data sources.

Biomedical big data are often described as “small sample size in
high-dimensional space,” indicating a scenario where the sample
size is small but each individual possesses a high-dimensional
feature set (Zeng et al., 2016). High-dimensional data often lead
to the curse of dimensionality, resulting in less reliable predictive
analysis. Feature selection is a crucial step in classification tasks as
retaining important features through feature selection can expedite
the training process and address the curse of dimensionality. Genetic
algorithms can be utilized to select the optimal subset of candidate
features through crossover and mutation operations. As an
embedded feature selection method, its feature selection process
requires integration with machine learning models, such as the SVC
model selected in this study. Tournament selection, the most
popular selection strategy in genetic algorithms, was chosen in
this study due to its advantages including lower complexity, less
susceptibility to local optima, and ease of parallelization compared
to other selection methods like roulette wheel selection (Shukla
et al., 2015).

The miRNA possesses various mechanisms to regulate its
generation and expression. In addition to directly targeting
primary or precursor miRNA to modulate miRNA generation, it
can also regulate the expression of TF–mRNA by directly binding to
its 3′UTR. Simultaneously, TFs can induce or inhibit miRNA
expression (Zhang et al., 2020a; Vishnubalaji et al., 2022).
Moreover, many miRNAs may synergistically drive molecular
changes, resulting in greater effects than individual miRNAs
alone (Bertero et al., 2014). Among these interactions, the
miRNA–>TF–>miRNA interaction represents one significant
mechanism, as two TF-mediated miRNAs may involve multiple
related TFs, and parts of miRNAs are influenced by more than one
miRNA. The feature selection method employed in this study can
identify robust differential miRNA features relevant to dataset

diseases from numerous interactions, aiding in the more accurate
identification of potential biological mechanisms and disease-related
molecular biomarkers.

Previous studies have also explored the use of target ratios as
features. Research has investigated the creation of novel features
based on the relative expression order of genes within samples,
achieving insensitivity to batch effects and facilitating the
development of diagnostic models across different platforms,
including sequencing and microarray data (Yang et al., 2020).
Furthermore, studies have employed microarray data from two
cohorts to generate new features based on the size relationship of
miRNA pairs, converting quantitative data into qualitative data via a
binarization process, albeit leading to notable information loss (Liu
et al., 2021). Researchers identified 93 miRNAs showing significant
differential expression among healthy controls and adenoma and
colorectal cancer groups. They computed ratios between these
93 miRNAs in all possible pairwise combinations, resulting in
2,529 ratios. Among these, 36 miRNA ratios were found to
exhibit significant differences in colorectal cancer samples
compared to healthy controls and adenoma samples (Zhang
et al., 2018a). The combination of two negatively correlated
miRNAs may offer substantial potential for distinguishing
experimental groups. Differential expression miRNA pairs were
derived through the subtraction of the original Ct value of one
miRNA from the Ct value of another miRNA, providing a novel
avenue for biomarker discovery through self-normalization
(Matthaei et al., 2012). Previous studies on miRNA ratio features
have not systematically explored all miRNAs, whether by generating
ratio features first and then screening for differences or by initially
calculating differences in miRNAs and subsequently deriving ratios.
Some studies validate only within different batches from the same
center, without validating samples from different centers.
Furthermore, these studies have often overlooked the potential
biological significance inherent in these ratios, particularly
miRNA–miRNA interactions. Our feature selection method is
robust, effectively mitigates batch effects, and applicable across
datasets sourced from diverse centers. Moreover, it has the ability
to forecast biologically pertinent miRNA pairs, thereby establishing
the groundwork for acquiring robust and high-performing
biomarkers.

Using this protocol, we discovered some miRNAs with
biological significance in all three examples. let-7b-5p, which is a
selected marker for predicting severe COVID-19, plays a role in
regulating ACE2 and DPP4 receptors and is significantly
downregulated in nasopharyngeal swabs of patients (Latini et al.,
2022); miR-21-3p, which is regulated by let-7b-5p, shows an
upregulation trend in this project and is consistent with the
previous experiments of mice infected with COVID-19
(Nersisyan et al., 2020). miRNA-mediated transcription factors
are closely associated with COVID-19. Modulating the SMAD
signaling pathway to enhance Robo4 expression holds promise in
alleviating vascular permeability and mortality in COVID-19
(Cheema et al., 2021). FOXO transcription factors play crucial
roles in maintaining normal cellular physiology by regulating
survival, apoptosis, oxidative stress, and the development and
maturation of T and B lymphocytes. The activation of FOXO can
be utilized as a strategy to mitigate inflammatory outbreaks
following SARS-CoV-2 infection (Morita et al., 2023).

TABLE 2 Comparison of miRNAs and ratio feature model performance on
the COVID-19 data.

Signature Cohort Sensitivity Specificity AUC

miRNA Test 0.955 0.897 0.906

GSE176498 0.889 0.655 0.783

ERRmiR Test 0.924 0.721 0.862

GSE176498 0.889 0.759 0.841
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The ERRmiRmarker selected in the RCC project is found to be a
critical oncogene in previous studies. The high expression of miR-
106b-3p may be an important factor in predicting poor prognosis in

RCC patients (Li et al., 2016; Liu et al., 2019), and the overexpression
of miR-214-5p attenuates cell proliferation and metastasis (Guo
et al., 2021). Upregulation of miR-200c-3p inhibits proliferation,

FIGURE 5
ERRmiR markers discovered in the renal cell carcinoma (RCC) project. (A) The frequency distribution of the ERRmiR features. Violin plots of the top
three high-frequency ERRmiR features (B) and the composite miRNAs (C) among the three independent datasets. (D) ROC curves of the model based on
the ERRmiR markers. (E) Pathway enrichment analysis of miRNAs in the ERRmiR markers.
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TABLE 3 Model performance on the renal cell carcinoma (RCC) data.

Cohort Sensitivity Specificity AUC

Test 1.000 1.000 1.000

TCGA 0.941 1.000 0.992

GSE109368 1.000 1.000 1.000

FIGURE 6
Discovery results on the lung adenocarcinoma (LUAD) project. (A) Statistics of the frequencies of ERRmiR features. (B) Violin plots of ERRmiR
features ranked top three by frequency. (C) ROC curves of the models based on ERRmiRmarkers. (D) Pathway enrichment analysis of miRNAs involved in
the ERRmiR markers.

TABLE 4 Model performance on the lung adenocarcinoma (LUAD) data.

Cohort Sensitivity Specificity AUC

Test 0.964 1.000 0.999

GSE110907 1.000 0.958 0.995

GSE175462 0.900 1.000 0.910
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migration, and invasion and induces apoptosis in RCC cells (Li et al.,
2019). miRNA-mediated transcription factors are closely associated
with RCC. HIF1A is upregulated in RCC tissues and closely
correlated with tumor size and differentiation (Chen et al., 2021).
The positive expression of ZEB1 is associated with poor prognosis in
RCC patients (Harb et al., 2018).

In the LUAD project, the pairs containing miR-30a-3p or miR-
30c-2-3p have been screened out. The role of the miR-30 family as
tumor suppressors has been validated in previous reports (Saleh
et al., 2019); in particular, miR-30c-2-3p is reported to inhibit tumor
progression in esophageal squamous cell carcinoma, breast cancer,
and hepatocellular carcinoma (Zhang et al., 2018b; Ma et al., 2018;
Zhang et al., 2019). miR-9-5p and miR-503-5p, which are related
with miR-30 in the ERRmiR markers, have also been reported to be
associated with cell proliferation, migration, and invasion in non-
small cell lung cancer (Sun et al., 2017; Zhu et al., 2021). miRNA-
mediated transcription factors are closely associated with lung
cancer. The expression of NFKB is related to the tumor stage,
lymph node metastasis, and 5-year survival rate in lung cancer
(Zhang et al., 2023). YY1 is upregulated in lung cancer tissues, and
its higher expression correlates with larger tumor size, poor
differentiation, higher TNM stage, and lymph node metastasis.
The ectopic expression of YY1 in lung cancer cells promotes cell
proliferation and invasion, while YY1 silencing suppresses cell
proliferation and induces apoptosis (Huang et al., 2017; Zhu
et al., 2023). These miRNAs and TFs are disease-related and
have been validated in previous studies. The results further
demonstrate that the proposed approach in this study is more
helpful in exploring the pathogenic mechanisms of diseases.

We propose an algorithm based on the expression ratio of
interacting miRNAs for feature selection. The features selected by
this method are stable, capable of removing batch effects, and
contribute to data standardization and consistency, providing a
basis for obtaining high-performing stable biomarkers. Moreover,
our method can identify biologically relevant miRNA pairs, further
deepening the understanding of disease pathogenesis. The algorithm
relies on prior knowledge about miRNA interactions, effectively
reducing the dimensionality of features, alleviating the pressure of
feature selection, and facilitating the discovery of true relationship
markers. Although we validated the feasibility of our feature
selection method across datasets from three different diseases,
our study has certain limitations. It is confined to the same
detection platform of one disease. We did not investigate the
impact of platform transition on differential targets, such as the
stability of differential targets between NGS and QPCR platforms.
Therefore, further consideration of platform migration is necessary
to ensure the robustness and applicability of our method across
diverse settings. We will continue our efforts to address these
limitations through rigorous validation and method refinement to
fully realize its potential in clinical practice.

In conclusion, this study introduces an innovative feature
selection algorithm based on the expression ratio of interacting
miRNAs. Leveraging prior knowledge about miRNA interactions,
the algorithm effectively reduces feature dimensionality, easing the
burden of feature selection and aiding in the discovery of genuine
relationship markers. This approach not only ensures stable feature
selection, eliminating batch effects and facilitating data
standardization and consistency, but also identifies biologically

relevant miRNA pairs, thereby enhancing our understanding of
disease pathogenesis. This method lies in providing a robust tool for
the discovery of stable and biologically relevant biomarkers, offering
new avenues and methodologies for early disease diagnosis
and treatment.
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