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Patients with the target gene mutation frequently derive significant clinical
benefits from target therapy. However, differences in the abundance level of
mutations among patients resulted in varying survival benefits, even among
patients with the same target gene mutations. Currently, there is a lack of
rational and interpretable models to assess the risk of treatment failure. In this
study, we investigated the underlying coupled factors contributing to variations in
medication sensitivity and established a statistically interpretable framework,
named SAFE-MIL, for risk estimation. We first constructed an effectiveness
label for each patient from the perspective of exploring the optimal grouping
of patients’ positive judgment values and sampled patients into 600 and
1,000 groups, respectively, based on multi-instance learning (MIL). A novel
and interpretable loss function was further designed based on the Hosmer-
Lemeshow test for this framework. By integratingmulti-instance learningwith the
Hosmer-Lemeshow test, SAFE-MIL is capable of accurately estimating the risk of
drug treatment failure across diverse patient cohorts and providing the optimal
threshold for assessing the risk stratification simultaneously. We conducted a
comprehensive case study involving 457 non-small cell lung cancer patients with
EGFR mutations treated with EGFR tyrosine kinase inhibitors. Results
demonstrate that SAFE-MIL outperforms traditional regression methods with
higher accuracy and can accurately assess patients’ risk stratification. This
underscores its ability to accurately capture inter-patient variability in risk
while providing statistical interpretability. SAFE-MIL is able to effectively guide
clinical decision-making regarding the use of drugs in targeted therapy and
provides an interpretable computational framework for other patient
stratification problems. The SAFE-MIL framework has proven its effectiveness
in capturing inter-patient variability in risk and providing statistical interpretability.
It outperforms traditional regression methods and can effectively guide clinical
decision-making in the use of drugs for targeted therapy. SAFE-MIL offers a
valuable interpretable computational framework that can be applied to other
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patient stratification problems, enhancing the precision of risk assessment in
personalized medicine. The source code for SAFE-MIL is available for further
exploration and application at https://github.com/Nevermore233/SAFE-MIL.
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EGFR, non-small cell lung cancer, target therapy, risk estimation, Hosmer-Lemeshow test,
multi-instance learning

1 Introduction

Lung cancer holds the highest incidence rate among all types of
cancer and boasts the largest selection of approved targeted
therapeutic agents. Consequently, targeted therapy for lung
cancer has become a prevalent and routine treatment in clinical
practice. However, patients with target mutations show
heterogeneous and diminished responses to the treatment (Cheng
et al., 2020). Several studies have shown that its effectiveness is
related to the gene mutation abundance level (Blakely et al., 2017;
Samstein et al., 2019). Higher mutation abundance level may be
related to better treatment outcomes (Zhou et al., 2011; Yan et al.,
2019; Wang et al., 2021; Liu et al., 2022), such as a longer median
survival time (Liu et al., 2022). In the event of a low abundance level,
the therapeutic effect of targeted drugs may be reduced or
completely lost (Tang et al., 2021). However, this issue remains
unresolved in clinical practice. It is due to the absence of statistically
interpretable tools that can accurately assess the risk of treatment
failure in patients receiving targeted therapy. Furthermore, the
optimal stratification threshold for targeted therapy based on
mutation abundance level is unknown among the patient cohort.
Hence, there is an urgent and unmet clinical need to develop a
broadly applicable and statistically interpretable method approach
capable of effectively assessing the risk associated with medicine
utilization and then give the optimal threshold to assist clinical
decision-making in target therapy.

Performing drug screening and selecting appropriate
personalized treatment based on individual genomic, proteomic,
and clinical features is one of the paramount goals of precision
medicine (Nemati et al., 2018; Zhang et al., 2020; Banerjee et al.,
2021; Sotudian and Paschalidis, 2022; Diao et al., 2023; Chen et al.,
2024). Various clinical trials generate high quality results on
effectiveness comparison of different drugs for the treatment of
the same disease which is crucial for drug development and clinical
practice (Rubin and Gilliland, 2012; Zhang Y. et al., 2021). Clinically,
patients harboring same target gene mutations have different
medication risks due to differences in mutation abundance level
and drug sensitivity (Robichaux et al., 2021; Wang et al., 2021). The
use of inappropriate drug regimens in patients with high risk may
lead to delays in the patient’s condition and additional medical costs.
One of the results is that mild patients may suffer severe or even
catastrophic lesions (Schnipper et al., 2015; Daoud et al., 2020).
Therefore, it is very necessary to assess the risk of medication use
and utilize it in the clinical.

Nevertheless, this problem is different from the conventional
drug effectiveness prediction problem. With the rapid development
of artificial intelligence, a multitude of computational approaches to
drug effectiveness prediction have been developed (Göttlich et al.,
2016; Chang et al., 2022; Peng et al., 2022; Łosińska et al., 2022; Yang

et al., 2023). Most of these approaches focus on utilizing the
powerful feature extraction abilities and learning capabilities of
artificial intelligence models to predict the drug responses of
patients. Various computational models were employed to obtain
potential vector representations of drugs and diseases for drug
effectiveness prediction. However, a deep learning model is a
black box, posing challenges in elucidating the acquired
knowledge and the underlying principles guiding its predictive
capabilities (Kuenzi et al., 2020). The existing drug effectiveness
prediction models exhibit a tendency towards excessive complexity
and lack relevant statistical interpretations, such as deep neural
networks. According to Food and Drug Administration (FDA)
policy, the assessment needs to be conducted in a manner that
allows for statistical interpretation. Hence, this is a risk likelihood
estimation problem rather than a prediction problem. Furthermore,
the patient stratification problem is a matter of interest for both the
clinical and drug regulatory communities, rather than the drug
effectiveness prediction. Therefore, these existing drug effectiveness
prediction models have high predictive accuracy; yet, their practical
applicability in clinic practice is limited. Exploring the challenge of
designing a reasonable model from the perspective of optimal
patient stratification to consider the risk of treatment failure
holds significant academic value.

The widespread application of multiple instance learning (MIL)
in drug-target, drug activity, and drug effectiveness prediction (Fu
et al., 2012; Zhao et al., 2013; Saberian et al., 2022; Wang et al., 2022)
has attracted our attention. In clinical practice, the risk of drug
failure is typically assessed on a population-wide scale, making it
challenging to provide a personalized estimate of treatment failure
risk for an individual patient prior to the initiation of medication. In
MIL, the dataset is divided into groups of multiple instances, with
the group labels known but the instance labels unknown, which has
a good correlation with patient grouping in clinical drug practice.
For example, suppose there are manymicroscopic tissue slice images
used to detect cancer. Each image may contain multiple small
regions, which we refer to as “instances.” The whole image can
be labeled as “cancer” or “no cancer,” but it may be uncertain
whether each specific small region contains cancer cells. In this case,
we can consider each image as a “group” containing multiple
“instance regions.” The algorithm needs to predict the label of
the “group” based on the known labels of the “instances.” In the
context of drug effectiveness prediction, using MIL to consider and
model drug effectiveness may be a feasible idea.

This paper presents a generic novel framework termed SAFE-
MIL for screening potential targeted therapy patients based on risk
estimation, using epidermal growth factor receptor (EGFR)-mutant
non-small cell lung cancer (NSCLC) as an example. The proposed
framework integrates multi-instance learning with the Hosmer-
Lemeshow test (Hosmer and Lemesbow, 1980) to estimate the
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risk of drug use, which provides statistical interpretability and can
address the limitations of traditional methods. Experimental results
demonstrate that SAFE-MIL provides interpretability and higher
accuracy, hence potentially facilitating the process of therapeutic
drug selection for patients.

2 Patients and methods

In this paper, we present a spontaneous formulation of the drug
risk estimation problem as an instance of multi-instance learning.
We address the problem in three stages, first organizing the given
clinical information and drug action information of patients into
instances, then identifying the estimated scores of all instances in the
same group, and finally combining all the estimated scores as the
output. Prior to these stages, data preprocessing was performed.

2.1 Patients and samples collection

In this research, we acquired three sets of Non-Small Cell Lung
Cancer (NSCLC) sequencing data, exclusively sourced from EGFR-
mutated NSCLC patients. Inclusion criteria for patients in this
study: Patients must carry EGFR mutations (EGFRm) and be
clinically selected for anti-tumor treatment with a tyrosine kinase
inhibitor (TKI) based on the detection results. Exclusion criteria is
that patients who have not received EGFR-TKI treatment according
to the detection results, or patients carrying mutations in other drug
target sites. The first batch consists of data from 100 patients with
treatment-naive NSCLC (stage III–IV), all of whom underwent first-
line targeted therapy. This information was gathered from
14 medical centers spanning the period from 23 February 2017,
to 31 December 2019. The trial has been officially registered with the
identifier NCT03059641. The second and third batches comprises
data from 237 patients and 120 patients (stage IV) with EGFR-
mutated NSCLC who underwent next-generation sequencing at
Geneplus-Beijing (Beijing, China) between 2016 and December
2019 (Table 1). Tumor tissue samples were utilized to identify
actionable mutations for targeted therapy in these patients.
Notably, all these patients received anti-EGFR targeted therapy.
It’s important to note that all participants in the study provided

written informed consent. The research was conducted in
accordance with a protocol approved by the Institutional Review
Board of Shanghai Chest Hospital. Cohort 1 is the first batch of
NSCLC patients were collected. In order to better generate multi-
instance datasets, we conducted experiments using cohort 1 as
independent data.

Cohort 3 comprised 120 patients with NSCLC accepted EGFR-
TKI target therapy (43.3% male, stage IV) (Supplementary Table
S5), with ages at diagnosis ranging from 35 to 83 years. In the tumor
samples, a total of 952 SVs are included (Supplementary Table S6).
All patients were found to carry EGFR-sensitive mutations. Cohorts
1 and 2, 3 have recorded slightly different survival information, with
the former documenting patients’ progression-free survival (PFS),
while the latter records time to treatment failure (TTF).

DNA extraction, targeted capture, and NGS Genetic analysis for all
data were performed as previously described (Nong et al., 2018; Zhang
et al., 2019). Sequencing libraries were prepared from genomic DNA
were prepared using Illumina TruSeq DNA Library Preparation Kits
(Illumina) or MGIEasy Universal Library Prep Set (MGI Tech).
Libraries were hybridized to custom-designed biotinylated
oligonucleotide probes (Integrated DNA Technologies, Inc) targeting
1,021 genes. Prepared libraries were sequenced on a NextSeq CN 500
(Illumina) or MGISEQ-2000 sequencer (MGI Tech, Shenzhen, China).
After the entire run was completed, image analyses, error estimation
and base calling were performed to generate primary data. We then
removed a few unqualified sequences from the primary data using a
local dynamic programming algorithm, which included low-quality
reads, defined as reads that contained more than 10 percent Ns in the
read length, 50% reads with a quality value of less than five and with an
average quality of less than 10 and adapter sequences including indexed
sequence. The remaining sequences were termed as clean reads for
further analysis. The clean reads were aligned to the reference human
genome (hg19) with Burrows-Wheeler Aligner (version 0.7.12-r1039).
Variants were called with GATK (version 3.4–46-gbc02625) and
MuTect (version 1.1.4). Contra (v2.0.8) was used to detect copy-
number variants (CNVs), and NCsv (in-house software version
0.2.3) was used to detect structural variants (SVs). Targeted capture
sequencing required a minimal mean effective depth of coverage of
300 in tumor tissues Variants were filtered to exclude synonymous
variants, known germline variants in dbSNP, and variants that occur at
a population abundance level of >1% in the Exome Sequencing Project.

TABLE 1 Demographic and baseline characteristics of cohort-1,2,3.

Participants (n = 457)

Cohort1(n = 100) Cohort2 (n = 237) Cohort3(n = 120)

Gender NO. % NO. % NO. %

Female 64 64 142 60 68 57

Male 36 36 95 40 52 43

Age (26–86)

>60 56 56 111 47 58 48

<=60 44 44 126 53 62 52

Stage

III 10 10 0 0 0 0

IV 90 90 237 100 120 100
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2.2 The model and algorithm

The SAFE-MIL framework was used, which utilizes multiple
instances learning to predict drug failure risk in patients. The main
steps of the SAFE-MIL framework include:

i. Designing drug effectiveness labels based on clinical features
of patients.

ii. Building a model using multiple instances learning to predict
drug failure risk by aggregating the labels of each patient.

iii. Using a new loss function based on the Hosmer-lemeshow test
to capture differences between groups and improve the
performance and statistical interpretability of the model.

iv. Learn the relationship between mutation abundance level and
drug failure risk, and determine the optimal positive threshold
for drug failure.

Cohort 1 is the first batch of NSCLC patients we collected. In
order to better generate multi-instance datasets, we conducted
experiments using cohort 1 as independent data. We randomly
divided cohort 1 into a training set and a testing set and conducted
independent experiments. Similarly, we subsequently collected more
samples (cohort 2 and cohort 3) and conducted similar independent
experiments. Due to slight differences in collection time, clinical
features, and other aspects among these three cohorts, we did
not merge them.

2.3 The design of drug effectiveness labels
for patients

In order to better illustrate the variations in therapeutic efficacy
among different patients, we have considered representing the
therapeutic efficacy of a drug as a probability value ranging from
0 to 1. Initially, we evaluated the correlation between patients’ clinical
characteristics and the effectiveness of the drug based on existing
literature. Given that a patient’s drug response is closely linked to
their PFS (Paz-Ares et al., 2018), we utilized the patients’ PFS to
determine the drug’s effectiveness for each individual of cohort 1.
For cohort 2, we attempted to assess the efficacy of the drug using TTF.
To begin, patients with a PFS/TTF exceeding 8 months as of the cut-off
value were included in the experimental cohort. Subsequently, we
employed a min-max scaling technique to map the PFS/TTF values
of these patients onto a scale of 0–1. This scaled value was then used to
represent the probability of the patient’s drug efficacy.

2.4 Data preprocessing and patient grouping

The data preprocessing process is shown in Figure 2A. Given
that the efficacy of a medication for an individual patient remains
unobservable prior to treatment, we propose an unsupervised
clustering approach to categorize patients with analogous
characteristics into distinct cohorts. Subsequently, we employ
multi-instance learning to estimate the probability of drug
effectiveness across these patient groups. We used the K-means
unsupervised clustering algorithm to group patients into four
clusters (details see Supplementary Materials S1, S2, Figure S1).

We then randomly sampled 1–10 patients with replacement to form
a group, with each patient serving as an instance. We created
datasets based on the two aforementioned patient cohorts. For
each cohort, we generated two datasets of varying sizes to
demonstrate the model’s generalization capacity. One dataset
comprised 600 bags (cohort 1–600 and cohort 2–600), with
150 bags randomly generated from each cluster. The other
dataset included 1,000 bags (cohort 2–1,000 and cohort 2–1,000),
with 250 bags randomly generated from each cluster. The drug
effectiveness of the groups was determined by calculating the
average value of the drug effectiveness label assigned to the
instances in the group. The raw input data, preprocessed output
data, and grouped data can be accessed at GitHub repository.

2.5 Objective function

Here, risk estimation is formulated as a regression problem. We
combine multiple instances learning and Hosmer-lemeshow test to
design ourmodel. Suppose that the training set consists ofN training
groups {G1, G2, . . ., GN} and each group contains Mi instances {Gi1,
Gi2, . . ., GiMi}, where the label corresponding to each training group
Gi is marked Li. In addition, each instance in the groups is a
p-dimensional attribute value vector.

In multi-instance learning, the task is to predict the labels of
unseen groups. The learning algorithm can acquire the label of the
group, but cannot obtain the label of the instance. Therefore, we
define the global error function of the neural network at the group
level using the labels of the training groups as

E � ∑N

i�1Ei (1)

Where Ei is the output error corresponding to the group Gi

(Equation 1).
To enhance the statistical interpretability of our framework and

establish trust between clinicians and our framework, we consider
designing loss functions based on statistical tests. We found that the
Hosmer-Lemeshow test (Hosmer and Lemesbow, 1980), which
evaluates the goodness-of-fit of grouped data, is closely related to
multiple instance learning. The Hosmer-Lemeshow test is widely used
in the evaluation of risk models (Kramer and Zimmerman, 2007;
Zhang L. et al., 2021; Davies et al., 2022). Given the excellent
performance of the Hosmer-Lemeshow test in model verification,
we design the loss function according to the calculation formula of
Hosmer-Lemeshow (HL) statistic (HLs) (Equation 2). The Hosmer-
Lemeshow test is a statistical method used to evaluate the goodness-
of-fit for binary logistic regression models. The basic idea is to divide
the data into several groups and then compare the actual observed
values with the predicted values in each group. In the Hosmer-
Lemeshow test, the p-value is calculated based on the chi-squared
distribution, corresponding to the Hosmer-Lemeshow statistic’s
cumulative distribution function value. If the p-value is very small
(less than 0.05), it indicates that the model does not fit well, meaning
there is a significant difference between the predicted probabilities and
the actual observed values. If the p-value is large, it indicates that the
model fits well, meaning there is no significant difference between the
predicted probabilities and the actual observed values. Suppose that
the observed value (Observed.A, Observed.not.A) and expected values
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(Expected.A, Expected.not.A) of Event A are divided intoQ groups {G1,
G2, . . . , GQ}, the HL statistic and p-value (HLp) of HL test are
defined as

HLs � ∑Q

q�1
Observed.A − Expected.A( )2

Expected.A
(
+ Observed.not.A − Expected.not.A( )2

Expected.not.A
) (2)

HLp � 1 − chisq HLs, Q − 2( ) (3)

where chisq (HLs,Q-2) is the chi-square distributionwithQ-2 degrees of
freedom (Equation 3 more details in Supplementary Material S3).

Since the HL based loss function (HL loss) is partially non-
differentiable, we use the mean square error loss function to replace
the non-differentiable points of the HL loss function (Equation 4).
Research indicates that the output value of a group in neural
network is determined by the maximum output value of the
instance in the group (Amar et al., 2001). Therefore, to simulate
the above rules, the output error of group Gi is defined as

Ei �

max oij( ) − Li( )2
max

0≤ j≤Mi

oij( ) max
0≤ j≤Mi

oij( ) ≠ 0

1
2

max
1≤ j≤Mi

oij( ) − Li( )2

max
0≤ j≤Mi

oij( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where oij is the network output corresponding to the instance Gij.
The input of the model is all the training groups, and the output is

the drug effective probability of the patients in the group, which is used
tomeasure the patient’s drug use risk (1- drug effective probability). The
hyperparameters used for SAFE-MIL are summarized in Table 2. In
addition, we explored the correlation between the risk stratification and
the survival benefits of the patients. In all analyses, P < 0.05 was
considered statistically significant.

In addition, after training the model, we search for the optimal
positive threshold that can differentiate the drug use risk of patients
based on the model’s outputs on the training set. Firstly, we define the
search space for the optimal positive threshold as [MAmargin-margin, +
MAmargin margin], where MA represents the mutation abundance and
the margin boundaries determine the size of the search space (Equation
5). The objective function of optimal positive threshold is defined
as follows:

diff � max
t

1
j − t

∑j
i�t
di − 1

t
∑t
i�1
di

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

τ � Tt (5)

Where di represents the drug failure risk, and τ represents the
optimal positive threshold. When t is set to Tt, the samples are
divided into two groups based on τ, and the average drug failure risk
difference between them is the largest.

2.6 Baselines

We evaluated SAFE-MIL with the four classical regression loss
functions, including mean absolute error loss (MAE loss) (Fisher,
1915) (Equation 6), mean square error loss (MSE loss) (Equation 7)

(Fisher, 1921), Huber loss (Equation 8) (Huber, 1992) and Log-cosh loss
(Equation 9) (Shen et al., 2018). During one neural network iteration, the
formulas of the four regression loss functions are defined as

Mse loss � 1
2
yp − yt( )2 (6)

Mae loss � yp − yt

∣∣∣∣ ∣∣∣∣ (7)

Huber loss �
1
2
yp − yt( )2 for yp − yt

∣∣∣∣ ∣∣∣∣≤ δ

δ yp − yt

∣∣∣∣ ∣∣∣∣ − 1
2
δ2 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

Log cosh loss � log cosh yp − yt( )( ) (9)

where yp is the predicted value of the group, and yt is the true value of the
group. In Huber loss, the value of δ is determined by cross-validation. In
addition to evaluating the model using the mean square error (MSE), we
also use theHL statistic and its corresponding p-value to test the accuracy
and rationality of the predicted value. In the HL test, if the p-value is
greater than 0.05, it means that the model has passed the HL test, which
means that there is no significant difference between the predicted value
and the real value, otherwise it means that the model fit is poor. The
complete calculation process of the risk based on the SAFE-MIL
framework is given in Algorithm 1.

Input: N training groups{G1, G2,. . .,GN}.

Output: Drug failure risk of N groups {D1, D2, . . . , DN},

Q1, Q2, Q3.

SAFE-MIL (Epochs, Threshold)

Initialize neural network Net;

for (epoch=1; epoch<=Epochs; epoch++)

GlobalErr=0; //Set the initial value of global

error to be zero

for (i=1; i<=N; i++)

Compute the output error Ei of group Bi
according to Equation 2;

GlobalErr = GlobalErr+Ei;

The weights in Net are modified according to

Ei and the

weight-updated rule of BP algorithm;

end

If (GlobalErr<=Threshold)
return Net;

end

end

return Net;

Algorithm 1. SAFE-MIL.

TABLE 2 Hyperparameter of the SAFE-MIL.

Hyper-parameters Setting

Learning rate 0.001

Epochs 200

Optimizer Relu

Hidden layer neuron 50
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3 Results

3.1 Patient characteristics and somatic
variation detection

Cohort 1 included 100 patients with NSCLC accepted first-line
EGFR-TKI target therapy (36% male, 90% stage IV)
(Supplementary Table S1). The age at diagnosis ranged from
33 to 80 years, with a median of 61 years (Table 1). In the
tumor samples, a total of 592 somatic alterations were detected,
including 539 SNVs (single nucleotide variants, SNVs) and small
indels (insertion and deletions, indels), 50 copy number variants
(CNVs), and 1 structural variants (SVs) (Supplementary Table S2).
Cohort 2 comprised 237 patients with NSCLC accepted EGFR-TKI
target therapy (40% male, stage IV) (Supplementary Table S3),
with ages at diagnosis ranging from 26 to 86 years and a median
age of 60 years (Table 1). In the tumor samples, a total of
1738 somatic alterations were detected, including 1,454 SNVs,
268 CNVs, and 4 SVs (Supplementary Table S4). Cohort
3 comprised 120 patients with NSCLC accepted EGFR-TKI
target therapy (43.3% male, stage IV) (Supplementary Table
S5), with ages at diagnosis ranging from 35 to 83 years
(Table 1). In the tumor samples, a total of 930 SNVs or Indels,
and 12 structural variants (SVs) were detected (Supplementary
Table S6). All patients were found to carry EGFR-sensitive
mutations. Cohorts 1 and 2, 3 have recorded slightly different
survival information, with the cohort one documenting patients’
progression-free survival (PFS), while the cohort 2/3 records time
to treatment failure (TTF). In our study, both PFS and TTF were
used as evaluation criteria to assess the predictive performance of
our algorithm. These two outcomes are related, they showed a high

correlation in NSCLC of targeted therapy, immunotherapy, and
chemotherapy. Especially in targeted therapies of EGFRm-TKI, the
correlation is even higher (r = 0.91, 95% CI 0.90,0.92) (Blumenthal
et al., 2019).While PFS focuses specifically on disease progression,
TTF offers a broader perspective by considering various factors
influencing treatment continuation. The study utilized clinical data
from patients and somatic alterations for the SAFE-MIL
investigation. The study workflow is illustrated in Figure 1.

3.2 The result of SAFE-MIL for predicting
EGFR-TKI failure risk in patients with EGFR-
mutated NSCLC

The workflow of this study is shown in Figure 2B. We
collected clinical data and SNV mutation data of 457 EGFR-
mutated NSCLC patients and conducted data preprocessing.
Following the mentioned criteria from the preceding text, we
calculated the drug effectiveness label for each patient.
Subsequently, an unsupervised clustering of patients was
performed using the k-means algorithm based on the features
including age, gender, mutation abundance, TP53 co-mutated or
not, and the number of co-mutations, which were outlined in
Table 3. Consequently, we normalized these features using min-
max normalization and employed them for unsupervised
clustering using the k-means algorithm. After the feature
selection process, mutation abundance was identified as the
most significant feature and selected as a key predictor.
Although the presence of co-TP53 mutation and the number
of co-mutations are two important genomic molecular features,
but in this study the two features were indicated not important.
The reasons may be from two aspects: firstly, the enrolled
population was exclusively EGFR-mutant, with a relatively
homogeneous molecular subtype; secondly, the data used in
this study originated from a panel sequencing of ~ 1Mb,
which may have limited the representation of the feature
regarding the number of co-mutations compared to whole-
exome sequencing data. Finally, we randomly selected 1 to
10 patients from each cluster using a with-replacement
sampling method to generate groups. The drug effectiveness
label of each group was determined by the average
effectiveness label of the instances within the group.

We compared the performance of the HL loss function and
four traditional regression loss functions in terms of mean
squared error (MSE), HL statistic, and P-value. In the cohort1,
overall, all loss functions passed the HL test with a p-value greater
than 0.05 (Figure 3A), and achieved low mean squared error
(MSE) (Figure 3B). SAFE-MIL demonstrated the lowest MSE and
HL statistics among the two generated datasets in predicting drug
effectiveness (Figures 3B, C), indicating that the HL-based loss
functions can capture differences among instances within groups,
ensuring accurate estimation results while maintaining statistical
interpretability. Similarly, in the cohort2, SAFE-MIL based on
the HL loss also achieved lower MSE (Figure 4). Due to the larger
sample size of cohort2 compared to cohort1, theoretically, the
model of HL-based SAFE-MIL predictive performance should be
somewhat better. In summary, HL-based SAFE-MIL achieved the
lowest MSE and passed the HL test in both datasets, obtaining

FIGURE 1
Flow of participants in the study.
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optimal HL statistics. Similarly, in the cohort2 and cohort3,
SAFE-MIL based on the HL loss also achieved lower MSE
(Figures 4, 5). Due to the larger sample size of

cohort 2 compared to cohort1, theoretically, the model of HL-
based SAFE-MIL predictive performance should be somewhat
better. In summary, HL-based SAFE-MIL achieved the lowest

FIGURE 2
The flowchart of SAFE-MIL. (A) Data preprocessing process. First, cluster patients into 4 clusters using unsupervised learning. Then, randomly select
1–10 patients from each cluster to form a group, with each patient serving as an instance. (B) SAFE-MIL workflow. SAFE-MIL learns the representation of
drug failure risk for each patient group through the HL loss function and determines the optimal positive threshold based on mutation abundance level.

TABLE 3 The input features of SAFE-MIL.

Feature Data type Description

Age Numerical The age of patients

Gender Categorical The gender of patients. A value of 1 corresponds to female, while 0 corresponds to male

Mutation abundance level Numerical Mutation Abundance level/Copy Number

TP53 Categorical Does the patient have a TP53 gene mutation? A value of 1 indicates presence, while 0 indicates absence

The number of co-mutated genes Numerical The number of co-mutated genes
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MSE and passed the HL test in all three datasets, obtaining
optimal HL statistics.

Additionally, we selected cohort1-600 as examples to illustrate
the relationship between the optimal positive threshold and drug
efficacy. Based on the optimal positive threshold determined of
mutation abundance, we divided patients in cohort1-600 into two
groups to observe differences in drug failure risk and survival
outcomes. Following the calculation rules mentioned earlier, the
optimal positive threshold for mutation abundance in cohort1-600
was determined to be τ = 0.479. Firstly, using the threshold τ, we
categorized patients into high-risk (mutation abundance level < τ)
and low-risk (mutation abundance level >= τ) groups. In cohort1-
600, the average drug failure risk in the high-risk group was 0.715,
significantly higher than the 0.332 in the low-risk group (t-test, p<
2.2e-16, Figure 6A). Since survival information for patients in
cohort1-600 was recorded, we evaluated the survival differences
between the high-risk and low-risk groups in cohort1-600. The
results indicated that the average progression-free survival in the
high-risk group in cohort1-600 was 8.4 months, significantly lower
than the 16.4 months in the low-risk group (Log-rank test, p = 2.8e-
9, Figure 6B).

The optimal positive threshold identified by SAFE-MIL
represents the mutation abundance level at which patients are
stratified into high-risk and low-risk groups with respect to
treatment failure. This threshold is determined based on
statistical analysis and represents a critical point for
distinguishing patients who are more likely to experience

treatment failure from those who are likely to respond
favorably to therapy. Patients identified as high-risk above the
threshold may benefit from closer monitoring, alternative
treatment options, or enrollment in clinical trials for novel
therapies. Conversely, patients below the threshold may be
considered lower risk and may continue with standard therapy
with confidence in treatment efficacy. The use of the optimal
positive threshold enhances patient risk stratification by
providing a quantitative measure that correlates with
treatment outcomes. This allows for more accurate risk
assessment and personalized treatment approaches, ultimately
improving patient outcomes and optimizing resource allocation
in healthcare settings. The identification of an optimal positive
threshold enables clinicians to make informed decisions
regarding treatment selection by considering individual patient
risk profiles. SAFE-MIL facilitates precision medicine
approaches, ensuring that patients receive the most
appropriate and effective treatments based on their unique
characteristics.

4 Discussion

The traditional clinical decision-making approaches often
simplify drug efficacy into binary classifications, which fails to
capture the nuanced risks associated with drug failure in
individual patients. To address this limitation, we proposed that

FIGURE 3
The performance of the HL loss function and four traditional regression loss functions were compared on cohort one in terms of P-value (A), mean
squared error (B), and HL statistic (C).

Frontiers in Genetics frontiersin.org08

Guan et al. 10.3389/fgene.2024.1381851

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1381851


the clinical drug response for patients should be a regression value,
reflecting individual variability in drug failure risk. This study
introduces the SAFE-MIL framework, a new method for
calculating and predicting the risk of drug failure in patients,
which designs drug effectiveness labels based on clinical features
of patients and builds a model to predict the risk of drug failure using
multiple instance learning. A critical enhancement in SAFE-MIL is
the integration of a loss function derived from the Hosmer-
Lemeshow test. This integration not only boosts model
performance but also ensures statistical interpretability, enabling
robust assessments of drug failure risks and facilitating patient
stratification by identifying the optimal positive threshold. Our
results indicate that SAFE-MIL outperforms traditional regression
methods in accuracy, particularly in capturing inter-patient
variability in risk assessments, and successfully passes the HL test.

The concept of drug failure risk introduced in this study
provides a more comprehensive characterization of drug
effectiveness. Due to the significant molecular heterogeneity
observed in tumors, there are often many different molecular
features and feature combinations that can lead to the model
predicting specific drug responses. However, elucidating these
features and discerning whether they are distinct or functionally
linked can be challenging. This is primarily due to the “black box”
nature of most machine learning models, which prioritize predictive
accuracy over an understanding of the underlying biological
mechanisms (Ching et al., 2018). SAFE-MIL addresses this by
enhancing clinical interpretability through its novel use of MIL

and HL test integration, thereby somewhat bridging the gap between
clinical needs and machine learning methodologies.

Furthermore, the study critically evaluates and expands upon
existing methods for interpreting deep learning algorithms in
clinical settings [(Zhang et al., 2018)]. Our approach incorporates
the Hosmer-Lemeshow test into the MIL framework to estimate
the risk of treatment failure, significantly improving the model’s
predictive calibration performance and offering a unique risk
assessment perspective beyond traditional interpretation
methods. The results demonstrate that our framework
outperforms traditional regression loss functions in terms of
accuracy and successfully passes the Hosmer-Lemeshow test,
highlighting its capability to accurately capture inter-patient
variability in risk while ensuring statistical interpretability.
Additionally, our framework enables the identification of an
optimal threshold for mutation abundance level, allowing for
effective patient stratification into high-risk and low-risk groups.
This stratification reveals significant disparities in drug failure
risk and progression-free survival, showcasing the utility of our
approach in guiding treatment decisions.

Although our study primarily focuses on patients with EGFR-
mutant non-small cell lung cancer treated with EGFR tyrosine
kinase inhibitors, the potential of SAFE-MIL extends far beyond
this specific context. Moving forward, efforts to validate and refine
the SAFE-MIL framework across different cancer types and
therapeutic modalities will further enhance its utility and broaden
its impact on clinical practice. Beyond its predictive capabilities,

FIGURE 4
The performance of the HL loss function and four traditional regression loss functions were compared on cohort 2 in terms of P-value (A), mean
squared error (B), and HL statistic (C).

Frontiers in Genetics frontiersin.org09

Guan et al. 10.3389/fgene.2024.1381851

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1381851


SAFE-MIL offers early risk identification and optimizing clinical
trial design. For instance, SAFE-MIL enables the identification of
patient subgroups with distinct risk profiles, paving the way for
targeted interventions and precision medicine approaches.
Moreover, integrating automated risk assessment tools into
clinical workflows holds promise for streamlining decision-
making processes and improving patient outcomes in real-world
practice. Consequently, the integration of SAFE-MIL is poised to
transform clinical practice by boosting treatment efficacy and

ensuring patient safety. The drug failure risk metrics derived
from SAFE-MIL appear to correlate with the patient’s resistance
mechanisms, a relationship that warrants deeper investigation.

Despite these promising results, our study acknowledges several
limitations. Firstly, due to the limited number of patients, we could
only generate groups through bootstrap sampling, and we
constrained the number of groups and the number of instances
per group. Additionally, the availability and quality of data sources
pose significant challenges to model development and validation.

FIGURE 5
The performance of the HL loss function and four traditional regression loss functions were compared on cohort 3 in terms of P-value (A), mean
squared error (B), and HL statistic (C).

FIGURE 6
(A) The distribution of drug failure risk under the optimal positive threshold grouping (Independent Samples t-test, p < 2.2e-16). (B) The survival
analysis of patients according to the optimal positive threshold (Log-rank test, p = 2.8e-9).
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Future efforts should focus on employing SAFE-MIL in larger-scale
studies to explore more robust and efficient risk calculation models.
Furthermore, implementing SAFE-MIL in real-world healthcare
settings necessitates careful consideration of practical challenges
such as workflow integration, clinician training, and patient
acceptance.

5 Conclusion

This paper presented SAFE-MIL, a novel risk assessment
framework tailored to address the issue of varying survival benefits
among patients with certain target gene mutations undergoing
targeted therapy. By incorporating multiple instance learning
(MIL), SAFE-MIL constructs patient-specific effectiveness labels
and designs a novel interpretable loss function based on the
Hosmer-Lemeshow test. This risk assessment framework accurately
estimates the risk of treatment failure and also provides the optimal
threshold for risk stratification. A comprehensive case study involving
457 non-small cell lung cancer patients with EGFR mutations treated
with EGFR tyrosine kinase inhibitors demonstrated that SAFE-MIL
outperforms conventional regression methods in accuracy, effectively
capturing inter-patient variability in risk. This computational
framework possesses statistical interpretability and adaptability,
rendering it a helpful tool in clinical decision-making for targeted
therapy. It has the potential to advance personalized medicine by
enhancing patient stratification methods.
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