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Background: Former research has emphasized a correlation between lung
cancer (LC) and sepsis, but the causative link remains unclear.

Method: This study used univariate Mendelian Randomization (MR) to explore the
causal relationship between LC, its subtypes, and sepsis. Linkage Disequilibrium
Score (LDSC) regression was used to calculate genetic correlations. Multivariate
MR was applied to investigate the role of seven confounding factors. The primary
method utilized was inverse-variance-weighted (IVW), supplemented by
sensitivity analyses to assess directionality, heterogeneity, and result robustness.

Results: LDSC analysis revealed a significant genetic correlation between LC and
sepsis (genetic correlation = 0.325, p = 0.014). Following false discovery rate
(FDR) correction, strong evidence suggested that genetically predicted LC (OR =
1.172, 95% CI 1.083–1.269, p = 8.29 × 10−5, Pfdr = 2.49 × 10−4), squamous cell lung
carcinoma (OR = 1.098, 95% CI 1.021–1.181, p = 0.012, Pfdr = 0.012), and lung
adenocarcinoma (OR = 1.098, 95% CI 1.024–1.178, p = 0.009, Pfdr = 0.012) are
linked to an increased incidence of sepsis. Suggestive evidencewas also found for
small cell lung carcinoma (Wald ratio: OR = 1.156, 95% CI 1.047–1.277, p = 0.004)
in relation to sepsis. ThemultivariateMR suggested that the partial impact of all LC
subtypes on sepsis might bemediated through bodymass index. Reverse analysis
did not find a causal relationship (p > 0.05 and Pfdr > 0.05).

Conclusion: The study suggests a causative link between LC and increased sepsis
risk, underscoring the need for integrated sepsis management in LC patients.
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1 Introduction

Sepsis is described as “a life-threatening organ dysfunction
caused by dysregulated host systemic inflammatory and immune
response to infection”. (Singer et al., 2016).Sepsis remains a
serious global health challenge (Tiru et al., 2015; Zhu et al.,
2022). Sepsis impacted close to 50 million individuals globally
and accounted for about 20% of global deaths before the COVID-
19 pandemic (Rudd et al., 2020). Key factors contributing to the
development of sepsis include the pathogen’s virulence, the site
and type of infection, and host factors such as age, genetic
predisposition, and comorbidities (Mao et al., 2013; Pan et al.,
2017; Moon et al., 2023). Despite advancements in understanding
its mechanisms, sepsis remains a significant challenge in
healthcare due to its rapid progression and high mortality rate
(Bauer et al., 2020). Early recognition and prompt management
are crucial in improving patient outcomes.

Lung cancer (LC) is responsible for 2.2 million new cases each
year, ranking as the world’s second most prevalent cancer.
Furthermore, it is the primary cause of cancer-related mortality,
resulting in approximately 1.79 million deaths annually (Sung et al.,
2021; Thai et al., 2021; Huang et al., 2022). From a pathological
classification perspective, LC can be roughly divided into two types:
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). NSCLC primarily includes histological subtypes such as
adenocarcinoma (LUAD) and squamous cell carcinoma (SqCLC).
The relationship between LC and sepsis is complex and intricate
(Pavon et al., 2013; Hensley et al., 2019; Mirouse et al., 2020; Moore
et al., 2020; Shvetsov et al., 2021; Xia et al., 2022). Most research
evidence supports the idea that LC poses a risk for sepsis (Pavon
et al., 2013; Hensley et al., 2019; Moore et al., 2020; Xia et al., 2022).
The immunosuppressive state induced by the tumor itself or by
cancer treatments can make these patients more susceptible to
infections (Pavon et al., 2013; Hensley et al., 2019; Xia et al.,
2022). The results of a prospective study on the likelihood of
sepsis following cancer showed a heightened risk of sepsis in
cancer survivors, these cancers include lung cancer, breast cancer,
prostate cancer, and other solid tumors, as well as hematological
tumors (Moore et al., 2020). Additionally, studies have shown that
the incidence andmortality rates of sepsis among cancer patients are
higher, severe sepsis is associated with 8.5% of all cancer deaths,
costing 3.4 billion dollars per year (Williams et al., 2004). However,
some study results differ from this view; for example, a study
suggests both complementary and antagonistic relationships
between cancer and sepsis (Mirouse et al., 2020). Yurii B.
Shvetsov and colleagues, in a multiethnic cohort study
concerning the association between sepsis mortality and specific
cancer sites and treatment types, found that lung cancer was
associated with a significantly lower increase in sepsis mortality
compared to non-sepsis mortality (Shvetsov et al., 2021).

Conversely, there is currently no consensus on whether sepsis
increases the risk of cancer incidence. A multicenter observational
study suggests that the incidence of sepsis does not alter the
oncological and prognostic results in patients with epithelial
ovarian cancer (Said et al., 2023). However, another study
confirms that sepsis was significantly linked to a higher risk of
nine types of cancer within 5 years after sepsis diagnosis, including
LC (Liu Z. et al., 2019).

Given these inconsistent academic findings and the constraints
of observational research in establishing cause-and-effect
relationships, Mendelian randomization (MR) can provide
insights into causality that observational studies lack. MR uses
genetic variations as instrumental variables (IVs) derived from
genomic-wide linkage analyses for causality inference. MR
functions like a natural randomized controlled trial (RCT),
offering more substantial evidence and less vulnerability to
confounding factors than observational studies. MR is extensively
used in cancer and disease research (Li and Wang, 2023; Xu et al.,
2023). Hence, performing a bidirectional MR study could be critical
in deciphering causal links between sepsis and LC, paving the way
for better prevention and therapies.

2 Materials and methods

2.1 Study design

This study explores the causal relationship between LC and
sepsis using summary-level data from the largest publicly accessible
genome-wide association study (GWAS) currently available on
these conditions. A suite of sophisticated analyses was conducted,
incorporating bidirectional univariate MR, complementary
multivariable MR (MVMR) analysis, and in-depth genetic
correlation evaluations. IVs for exposure were established based
on stringent criteria: (i) strong association of the genetic instrument
with the exposure; (ii) independence of the instrument from
confounding variables; (iii) the exclusive pathway of the genetic
variants’ impact on the outcome is through the exposure (Lawlor
et al., 2008). The methodological intricacies of the MR framework
are presented in Figure 1, while the comprehensive summary data
are systematically detailed in Table 1. This study is reported
following the Strengthening the Reporting of Observational
Studies in Epidemiology Using Mendelian Randomization
guidelines (STROBE-MR) (Skrivankova et al., 2021).

2.2 Selection of genetic
instrumental variables

The MR analysis operationalized rigorous selection parameters
for Single nucleotide polymorphism (SNP) identification: (i) SNP, to
serve as instrumental variables, showcased genome-wide significant
associations with the exposure (p < 5 × 10−8). In the reverse analysis,
due to the inability to obtain SNPs at the genome-wide significance
level for the sepsis phenotype, we adjusted to a more relaxed
threshold (p < 5 × 10−6) based on previous MR analysis
experience to acquire a sufficient number of SNPs for the
analysis (Liu et al., 2024; Xu et al., 2024; Yang et al., 2024). (ii)
The selection of SNPs underwent rigorous scrutiny to exclude
confounding variable associations and to confirm independence,
thus preventing biases due to linkage disequilibrium (r2 < 0.001,
clumping distance = 10,000 kb). (iii) SNP validity as instrumental
variables was gauged by F-statistics (F = R2 ×(N− 2)/(1 − R2)), where
R2 denotes the percentage of variance in the exposure explained by
the SNPs, and N is the sample size of the GWAS from which the
exposure is drawn). This criterion helped to eliminate weak
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instruments, with an F-statistic threshold of >10, ensuring robust
instrument strength (Teumer, 2018). (iv) MR-Steiger filtering was
applied to remove variants demonstrating stronger associations
with outcomes than with exposures (Hemani et al., 2017). (v) In
instances of SNP unavailability in the outcome dataset, the
SNiPa web interface (http://snipa.helmholtz-muenchen.de/

snipa3/) was employed, leveraging genotype data from the
European cohort of the 1000 Genomes Project Phase 3, to
locate a proxy SNP in strong linkage disequilibrium with the
primary SNP (r2 > 0.8). (vi) Consistency was essential, with the
SNP’s effects on exposure and outcome required to be in the
same allelic direction.

FIGURE 1
Overview of research design and analysis strategy. Overview of the research design. The MR framework is based on three fundamental MR
assumptions. IVs, instrumental variables; MR, Mendelian randomization; MR-PRESSO, MR Pleiotropy Residual Sum and Outlier; SNP, single nucleotide
polymorphism.

TABLE 1 Detailed information of data sources.

Phenotypes Ref Ieu id Consortium Ancestry Participants

Exposure and outcome

LC 28604730 ebi-a-GCST004748 McKay JD European 29,266 cases/56,450 controls

SqCLC 28604730 ebi-a-GCST004750 McKay JD European 7,426 cases/55,627 controls

LUAD 28604730 ebi-a-GCST004744 McKay JD European 11,273 cases/55,483 controls

SCLC 28604730 ebi-a-GCST004746 McKay JD European 2,664 cases/21,444 controls

Sepsis 36402876 ieu-b-4980 United Kingdom Biobank European 11,643 cases/474,841 controls

Adjustment of the model

BMI 30124842 ieu-b-40 GIANT European 681,275 individuals

EA 30038396 ieu-a-1239 SSGAC European 1,131,881 individuals

T2DM 35551307 NA DIAGRAM European 80,154 cases/853,816 controls

ASI 30643251 ieu-b-4877 GSCAN European 311,629 cases/321,173 controls

CPD 30643251 ieu-b-25 GSCAN European 337,334 individuals

ADPW 30643251 ieu-b-73 GSCAN European 335,394 individuals

COPD 36777996 NA GBMI European 58,559 cases/937,358 controls

ADPW, alcoholic drinks per week; ASI, age of smoking initiation; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CPD, cigarettes per day; DIAGRAM, DIAbetes

Genetics Replication AndMeta-analysis; EA, education attainment; GBMI, Global BiobankMeta-analysis Initiative; GSCAN, GWAS, and Sequencing Consortium of Alcohol and Nicotine use;

GIANT, genetic investigation of anthropometric traits; LC, lung cancer; LUAD, lung adenocarcinoma; Ref, reference (Pubmed id); SCLC, small cell lung carcinoma; SqCLC, squamous cell lung

carcinoma; SSGAC, social science genetic association consortium; T2DM, type 2 diabetes mellitus.
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2.3 Source of lung cancer phenotype

This study utilizes the most extensive dataset to date, drawn from
a meta-analysis by McKay JD et al., encompassing European ancestry
GWAS for LC with 29,266 cases and 56,450 controls, SqCLC with
7,426 cases and 55,627 controls, LUAD with 11,273 cases and
55,483 controls, and SCLC with 2,664 cases and 21,444 controls
(McKay et al., 2017). The research integrates novel data from the
OncoArray genotyping platform with existing data from previous LC
GWAS, conducting a large-scale association analysis on over
29,000 patients and 56,000 controls of European descent.

2.4 Source of sepsis phenotype

The latest and most exhaustive aggregate GWAS analysis about
sepsis is derived from the UK Biobank (Sudlow et al., 2015).
Methodological adjustments in this study included age, sex, ten
principal genetic components, and genotyping batch effects. It
comprised 11,643 sepsis cases juxtaposed against
474,841 controls, all of European descent. Case identification
hinged on the presence of ICD-10 codes A02, A39, A40, and A41.

2.5 MVMR models

Lung cancer and sepsis share common risk factors, including
smoking, chronic obstructive pulmonary disease (COPD), body
mass index (BMI), chronic conditions like type 2 diabetes
mellitus (T2DM), and other factors such as education level
(Biesalski et al., 1998; Pallis and Syrigos, 2013; Henriksen et al.,
2015; Bohl et al., 2016; Malhotra et al., 2016; Locham et al., 2021;
Bladon et al., 2024). Considering potential confounding factors,
seven major confounding factors were selected. BMI data was
sourced from the Genetic Investigation of Anthropometric Traits

(GIANT) consortium (Yengo et al., 2018). Educational attainment
(EA) data came from the Social Science Genetic Association
Consortium (SSGAC) (Lee et al., 2018). T2DM data was acquired
from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) consortium (Mahajan et al., 2022). Data on
cigarettes per day (CPD), age of smoking initiation (ASI), and
alcoholic drinks per week (ADPW) were derived from the
GWAS and Sequencing Consortium of Alcohol and Nicotine Use
(GSCAN) (Liu M. et al., 2019). COPD data came from the Global
Biobank Meta-analysis Initiative (GBMI) (Zhou et al., 2022).

2.6 Statistical analyses

2.6.1 MR analysis
The univariate MR framework evaluated individual IVs using the

Wald ratio, which calculates the causal effect by dividing SNP-outcome
association (β_Y) by the SNP-exposure association (β_X). This method
provides a causal estimate for each genetic variant, assuming IVs
significantly influence the exposure, are independent of confounders,
and affect the outcome solely through the exposure (Burgess et al.,
2013). Concurrently, to elucidate the causal associations involving
multiple IVs (two or more), use the multiplicative random-effects
inverse-variance-weighted (IVW) method (Burgess et al., 2013). It is
critical to note that when the heterogeneity index I2 is below 50%,
outcomes derived from the fixed-effects model are considered robust.
This statistical strategy was additionally refined by incorporating the
MR-Egger and weighted median methodologies. The IVW technique’s
weighting schema is coherent with the Wald ratio estimates for each
SNP, inversely correlating with its variance (Hemani et al., 2018). By
integrating the full complement of genetic variants, the IVW approach
ensures systematic and reliable results. Contrariwise, the weighted
median method gains prominence when more than half of the
genetic variants are presumed invalid; concurrently, the MR-Egger
method operates under the premise that all such variants are invalid

FIGURE 2
Scatterplot summary of all MR analyses. The vertical and horizontal lines denote the 95% confidence intervals for the effect size, while the slopes of
the fitted lines indicate the estimated Mendelian randomization effect per method. (A) Lung adenocarcinoma on sepsis (B) Lung cancer on sepsis (C)
Squamous cell lung carcinoma on sepsis (D) Sepsis on lung adenocarcinoma (E) Sepsis on small cell lung carcinoma (F) Sepsis on lung cancer (G) Sepsis
on squamous cell lung carcinoma. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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(Bowden et al., 2016). Furthermore, the constrained maximum
likelihood (CML) process was employed, allowing for collective
analysis over an expansive array of genetic variants while adjusting
for possible confounders and intrinsic genetic heterogeneity.
Particularly when addressing a comprehensive array of genetic
variants and confounders, the CML method is indispensable for
obtaining accurate and robust results (Zhang et al., 2008).

Additional MVMR analyses were carried out to delineate the
direct causal pathways from exposure to outcome (Burgess and
Thompson, 2015). These analyses were to define the direct causal
connections precisely, thereby differentiating them from the
univariate MR model. Contrary to UVMR, which concentrates on
a singular exposure, MVMR considers genetic variations linked to
multiple exposures. The initial stage involved generating Mendelian
Randomization effect estimates for the exposure-to-outcome
relationships using the IVW method. Subsequently, an MVMR
assessment was carried out to assess the impact of six mediators
on the outcome, considering the specific attributes of the exposure.

This study conducted its analysis using the
“MendelianRandomization,” “TwoSampleMR,” “MR-PRESSO,”
and “MRMR” packages in R version 4.3.0 software.

2.6.2 LDSC regression analysis
The linkage disequilibrium score (LDSC) regression, designed for

analyzing GWAS summary data, constitutes an effective instrument

for discerning genetic correlations among complex diseases or traits.
This method facilitates the separation of authentic polygenic
influences from confounding factors, which include subtle family
structures and population stratification (Bulik-Sullivan et al., 2015). A
significant genetic correlation, characterized by statistical solidity and
substantial effect size, implies that the correlation between phenotypes
is not merely attributable to environmental influences. The LDSC,
available at (https://github.com/bulik/ldsc), provides a direct path for
investigating the genetic foundations linking exposure and
outcome traits.

2.6.3 Sensitivity analysis
Diversity among chosen genetic variants was measured using

Cochran’s Q test, with a p-value less than 0.05, denoting notable
differences within the SNPs under study (Kulinskaya et al., 2020).
MR-Egger regression was utilized to investigate directional pleiotropy
within theMR context (Burgess and Thompson, 2017). AnMR-Egger
intercept with a p-value below 0.05 indicates notable directional
pleiotropy despite the acknowledged limitations of this method
(Wu et al., 2020). The MR Pleiotropy Residual Sum and Outlier
(MR-PRESSO) approach was used to pinpoint outliers and evaluate
horizontal pleiotropy, with a global p-value below 0.05 confirming its
presence (Verbanck et al., 2018). Outliers were rigorously removed to
refine analytical accuracy. This was followed by a leave-one-out
sensitivity analysis to appraise the effect of single SNPs on the

FIGURE 3
Summary of results from MR analysis of genetically predicted lung cancer phenotypes for sepsis. CML, constrained maximum likelihood; FDR, false
discovery rate; IVW, inverse-variance-weighted; LC, lung cancer; LUAD, lung adenocarcinoma; MR, Mendelian randomization; MR-PRESSO, MR
Pleiotropy Residual Sum and Outlier; OR, odd ratio; P-val, p-value; SCLC, small cell lung carcinoma; SqCLC, squamous cell lung carcinoma; SNP, single
nucleotide polymorphism.
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collective outcomes (Cheng et al., 2017). The false discovery rate
(FDR) method was employed to correct multiple comparisons
rigorously. Post-correction, p-values less than 0.05 denoted
significant causal associations. Conversely, outcomes with raw
p-values under 0.05 that did not maintain this significance after
FDR adjustment were classified as suggestive rather than definitive.

For the calculation of R2 values, equation 2×MAF×(1-MAF)×beta2

was used, where MAF represents the minor allele frequency for each
SNP. These calculated R2 values were then gathered to establish the
combined parameter for power calculation (Guan et al., 2014). The
mRnd platform (Brion et al., 2013) (https://shiny.cnsgenomics.com/
mRnd/) provided the means for statistical power assessment.

3 Results

3.1 Genetic instrument selection and genetic
correlation between phenotypes

The research findings suggest that the F-statistics for all
instrumental variables surpassed 500, suggesting a significant
decrease in bias due to weak instrument variation. The quantity
of SNPs selected as instrumental variables ranged from one to 14,
with the explained variance in genetic variation ranging from 1.75%
to 12.36% (Supplementary Table S1). The scatter plot (Figure 2)
provides an intuitive representation of the direction of causal
associations, while the forest plot (Supplementary Figure S1)
displays the effects contributed by all IVs. Detailed SNP
information can be found in Supplementary Tables S2–S8.

The LDSC study uncovered a substantial genetic link between
LC and sepsis (rg = 0.325, p = 0.014); however, no genetic correlation
was detected between the subtypes of LC: SqCLC (rg = 0.095, p =
0.605), LUAD (rg = 0.295, p = 0.052), and SCLC (rg = 0.151, p =
0.305), and sepsis. The SNP-based liability-scale heritability (h2)
ranged from 0.24% to 10.13% (Supplementary Table S3).

3.2 Association of genetically predicted lung
cancer with sepsis

In the progressive MR analysis (Figure 3), a significant causal
relationship was identified between all subtypes of LC and sepsis.
Expressly, after FDR correction for multiple comparisons, the
primary analysis method, IVW, indicated that each standard
deviation (SD) increase in genetically predicted LC was linked to
a 17.2% increase in the risk of sepsis, with both random (OR = 1.172,
95% CI 1.083–1.269, p = 8.29 × 10−5, Pfdr = 2.49 × 10−4) and fixed
(OR = 1.172, 95% CI 1.098–1.252, p = 2.24 × 10−6, Pfdr = 6.72 × 10−6,
I2 = 30%) effects models showing concordance. Supplementary
methods provided consistent evidence of this causal
relationship. With an OR of 1.172, we achieved 100% statistical
power to detect the association between LC and sepsis. Among LC
subtypes, for each SD increase in genetically predicted SqCLC, the
risk of sepsis increased by 9.8%, with IVW random (OR = 1.098,
95% CI 1.021–1.181, p = 0.012, Pfdr = 0.012) and fixed (OR = 1.098,
95% CI 1.021–1.181, p = 0.012, Pfdr = 0.012, I2 = 0%) effects models
in agreement. Supplementary methods, including the Weighted
median (OR = 1.148, 95% CI 1.043–1.264, p = 0.005) and CML

(OR = 1.099, 95% CI 1.022–1.181, p = 0.011), also yielded consistent
causal evidence. At an OR of 1.098, we possessed 78% statistical
strength to identify the relationship between SqCLC and sepsis.
Similarly, for each SD increase in genetically predicted LUAD, there
was a 9.8% increase in sepsis risk, with concordance across random
(OR = 1.098, 95% CI 1.024–1.178, p = 0.009, Pfdr = 0.012) and fixed
(OR = 1.098, 95% CI 1.040–1.159, p = 7.27 × 10−4, Pfdr = 0.001, I2 =
39%) effects models in IVW and consistency in supplementary
methods excluding the simple mode (OR = 1.150, 95% CI
0.998–1.326, p = 0.076). With an OR of 1.098, we had a 96%
statistical strength to determine the relationship between LUAD
and sepsis. Finally, in the case of SCLC and sepsis, due to the limited
IVs available for analysis, only Wald ratio (OR = 1.156, 95% CI
1.047–1.277, p = 0.004) and CML (OR = 1.159, 95% CI 1.048–1.283,
p = 0.004) were used, which also showed a 100% statistical strength
to identify the association. However, due to the inability to perform
multidimensional validation, the evidence indicated a
suggestive risk.

In the sensitivity analysis (Table 2), all IVs passed the MR-
Steiger filtering, and Cochran’s Q statistic indicated no significant
heterogeneity (p > 0.05). Likewise, MR-Egger andMR-PRESSO tests
revealed no pleiotropy (p > 0.05). Leave-one-out analysis confirmed
that the causal inference was not driven by any single SNP
(Supplementary Figure S2), and the funnel plot exhibited a
symmetrical distribution (Supplementary Figure S3).

3.3 Association of genetically predicted
sepsis with lung cancer

In the reverse MR analysis (Figure 4), the primary method, IVW,
indicated no reverse causal effects between sepsis and LC (OR =
0.983, 95% CI 0.878–1.102, p = 0.771, Pfdr = 0.771), SqCLC (OR =
1.087, 95% CI 0.875–1.350, p = 0.451, Pfdr = 0.771), LUAD (OR =
1.039, 95% CI 0.887–1.216, p = 0.638, Pfdr = 0.771), or SCLC (OR =
0.938, 95% CI 0.684–1.286, p = 0.691, Pfdr = 0.771). Additional
supplementary methods provided consistent evidence supporting
these associations (p > 0.05). Comprehensive sensitivity analyses
confirmed the robustness of the findings (p > 0.05), as detailed in
Table 2. Corresponding figures are provided in Supplementary
Figures S2–S3.

3.4 MVMR analysis

In the univariate MR analysis, evidence supported a causal
relationship between LC and its subtypes and the risk of sepsis,
reaching statistical significance (p < 0.05 and Pfdr < 0.05). Since only
one IV related to SCLC was obtained, we excluded the SCLC
phenotype from further analysis to avoid biased results in
MVMR adjustments. In the MVMR analysis (Table 3), the causal
link between LC and sepsis was no longer notable when adjusting for
BMI (OR = 1.023, 95% CI 0.944–1.108, p = 0.581). Similarly, SqCLC
adjusted for BMI (OR = 1.031, 95% CI 0.975–1.091, p = 0.279), EA
(OR = 1.052, 95% CI 0.990–1.118, p = 0.099), T2DM (OR = 1.070,
95% CI 0.992–1.154, p = 0.081), and LUAD adjusted for BMI (OR =
0.989, 95% CI 0.923–1.060, p = 0.752) and CPD (OR = 1.060, 95% CI
0.989–1.136, p = 0.101) also showed no significant causal
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TABLE 2 Summary of sensitivity results.

Exposure Outcome MR-egger intercept MR-PRESSO global
test

Cochrane’s Q Steiger_test

Intercept SE P-val RSSobs P-val Q Q_df Q_P-val I2 (%) Direction P-val

Forward MR analysis

LC Sepsis −0.016 0.012 0.194 21.537 0.179 18.775 13 0.130 30 TRUE 1.06E-185

SqCLC Sepsis 0.012 0.020 0.564 7.193 0.470 4.493 5 0.481 0 TRUE 9.25E-64

LUAD Sepsis −0.023 0.018 0.237 25.984 0.067 21.527 13 0.063 39 TRUE 4.08E-155

SCLC Sepsis - - - - - - - - 0 TRUE 1.15E-17

Reverse MR analysis

Sepsis LC 0.007 0.013 0.615 10.745 0.544 8.859 10 0.545 0 TRUE 8.10E-04

Sepsis SqCLC −0.022 0.027 0.458 7.313 0.599 5.591 7 0.588 0 TRUE 0.028

Sepsis LUAD −0.010 0.019 0.629 11.394 0.482 9.481 10 0.487 0 TRUE 0.011

Sepsis SCLC 0.020 0.034 0.581 3.050 0.966 2.404 8 0.966 0 TRUE 0.124

df, degree of freedom; LC, lung cancer; LUAD, lung adenocarcinoma; MR, mendelian randomization; MR-PRESSO, MR, pleiotropy residual sum and outlier; P-val, p-value; RSSobs, residual sum of squares observation; SCLC, small cell lung carcinoma; SE, standard

error; SqCLC, squamous cell lung carcinoma.
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relationship with sepsis. This suggests that these confounding
factors may partially mediate the causal relationship between LC,
subtypes, and sepsis.

4 Discussion

This research undertook a comprehensive MR analysis to
explore the link between genetic predisposition to sepsis and LC.
The results of the MR support earlier epidemiological research
(Pavon et al., 2013; Rhee et al., 2017; Xia et al., 2022), confirming
a causal link between sepsis and LC. Furthermore, no reverse causal
link was found between LC and sepsis. Additional MVMR analysis
suggested that factors such as body mass index, level of education,
type 2 diabetes, and information on daily cigarette consumption
might play a role in mediating part of this causative link.

Prior studies have indicated a link between sepsis and LC, with
results showing a correlation between LC and an increased
likelihood of sepsis (Pavon et al., 2013; Hensley et al., 2019; Xia
et al., 2022). The immunosuppressive state induced by the tumor
itself or by cancer treatments can make these patients more
susceptible to infections (Pavon et al., 2013). In a group of more

than one million hospital admissions for sepsis in the U.S., over 20%
had a connection to cancer (Hensley et al., 2019). The results of a
prospective study on the risk of sepsis after cancer showed an
increased risk of sepsis in cancer survivors (Moore et al., 2020).
Nonetheless, previous research has yielded inconsistent results
concerning the relationship between general sepsis and LC.
Notably, one study demonstrated that the relationship between
cancer and sepsis is complementary and antagonistic (Mirouse
et al., 2020). Our results are similar to the results of previous
mainstream studies. Our MR results support the idea that LC
contributes to sepsis.

Alternatively, there is currently no consensus on whether sepsis
increases the risk of cancer incidence. A multicenter observational
study suggests that the occurrence of sepsis does not affect the
oncological and survival outcomes in patients with epithelial ovarian
cancer (Said et al., 2023). However, another study confirms that
sepsis was notably linked with a heightened risk of nine different
cancer types in 5 years after a sepsis diagnosis, including LC (20). In
our study, sepsis was not found to act as a genetic predisposing
element for LC.

Based on previous disparities in research and incorporating the
findings of this study, we posit that, given cancer and sepsis are not

FIGURE 4
Summary of results from MR analysis of genetically predicted sepsis for lung cancer phenotypes. CML, constrained maximum likelihood; FDR, false
discovery rate; IVW, inverse-variance-weighted; LC, lung cancer; LUAD, lung adenocarcinoma; MR, Mendelian randomization; MR-PRESSO, MR
Pleiotropy Residual Sum and Outlier; OR, odds ratio; P-val, p-value; SCLC, small cell lung carcinoma; SqCLC, squamous cell lung carcinoma; SNP, single
nucleotide polymorphism.
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singularly unique diseases, it is evident that the risk associated with
breast cancer differs from that of pancreatic cancer. Biological
distinctions also exist between solid malignancies and
malignancies of the hematopoietic system. Consequently,
categorizing all cancer or sepsis patients uniformly is erroneous,
and treatments conducted in this context are likely to yield
suboptimal outcomes. Sepsis, akin to cancer, exhibits intricate
diversity. Gaining a deeper understanding of the distinctive
physiological states induced by sepsis and cancer is complex
and crucial.

Observational studies often face limitations due to unobserved
confounding factors and reverse causality, focusing more on
correlation than causation. While data indicates a connection, the
causal link between sepsis and LC has not yet been conclusively
proven. We used MR analysis to investigate the genetic
underpinnings of the causative link between sepsis and LC to
counteract biases and confounders. Our study indicates that we
must pay attention to monitoring patients with LC infection and
inflammation factors and prevention and intervention in promptly
treating sepsis.

Further MVMR analyses underscored the significance of BMI,
educational attainment, T2DM, and data on cigarettes per day.

Firstly, high BMI, especially obesity, may increase the risk of
infection because obesity may affect the function of the
immune system and may be associated with chronic
inflammation. An MR study also showed that obesity was
linked to a heightened likelihood of developing sepsis (Hu
et al., 2023). Secondly, educational attainment may indirectly
affect an individual’s risk of sepsis by influencing their lifestyle,
health behaviors, access to medical resources, and the environment
in which they live and work. For example, previous observational
research has shown that lower educational attainment (EA) levels
are connected to a heightened likelihood of COVID-19 (Jian et al.,
2021). Additionally, individuals with diabetes have a higher
propensity to develop wounds and ulcers that do not heal and
can become infected, resulting in sepsis. In addition, diabetes alters
the immune system, leading to an increased risk of sepsis (Schuetz
et al., 2011). Lastly, smoking may elevate infection risk by
increasing proinflammatory cytokines, damaging endothelial
cells, and correlates with poor health habits (Alroumi et al.,
2018; Zhang et al., 2022). A causative link between smoking
and infectious disease risk was also shown in an MR study
(Zhu et al., 2023). Therefore, this implies a comprehensive
strategy for managing sepsis, considering these factors combined.

TABLE 3 Summary of analytical results for MVMR.

Exposure MVMR models SNP P-val OR (95%CI)

LC on sepsis BMI 449 0.581 1.023 (0.944, 1.108)

EA 265 0.001 1.123 (1.050, 1.200)

T2DM 161 0.003 1.069 (1.024, 1.116)

ASI 82 5.18E-07 1.193 (1.114, 1.278)

CPD 29 0.003 1.145 (1.047, 1.252)

ADPW 44 1.50E-06 1.183 (1.105, 1.267)

COPD 25 0.012 1.128 (1.027, 1.239)

SqCLC on sepsis BMI 458 0.279 1.031 (0.975, 1.091)

EA 258 0.099 1.052 (0.990, 1.118)

T2DM 151 0.081 1.070 (0.992, 1.154)

ASI 84 0.025 1.079 (1.010, 1.153)

CPD 26 0.023 1.086 (1.011, 1.167)

ADPW 36 0.007 1.110 (1.029, 1.196)

COPD 22 0.030 1.087 (1.008, 1.172)

LUAD on sepsis BMI 449 0.752 0.989 (0.923, 1.060)

EA 269 0.001 1.103 (1.041, 1.170)

T2DM 158 5.50E-05 1.143 (1.071, 1.220)

ASI 85 0.001 1.104 (1.042, 1.170)

CPD 28 0.101 1.060 (0.989, 1.136)

ADPW 42 0.002 1.103 (1.035, 1.175)

COPD 21 0.048 1.206 (1.002, 1.451)

ADPW, alcoholic drinks per week; ASI, age of smoking initiation; BMI, body mass index; CI, confidence interval; COPD, chronic obstructive pulmonary disease; CPD, cigarettes per day; EA:

education attainment; LC, lung cancer; LUAD, lung adenocarcinoma; MVMR, multivariable mendelian randomization; OR, odds ratio; P-val, p-value; SNP, single nucleotide polymorphism;

SqCLC, squamous cell lung carcinoma; T2DM, type 2 diabetes mellitus.
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Our research has several advantages. This MR study represents
the inaugural exploration of the causative link between sepsis and
LC at the genetic level. All the SNPs selected as instrumental
variables (IVs) originated from the European demographic, thus
diminishing the probability of population stratification bias and
bolstering the credibility of the bidirectional MR hypothesis. Our
robust tools in this research (such as an F statistic significantly
exceeding 10) should mitigate potential bias from sample
overlap. Nonetheless, our investigation has its limitations. Several
initial exposures were sourced from the UKB cohort, and the absence
of additional GWAS hindered the execution of a confirmatory control
analysis. Additionally, the exclusive access to summary-level GWAS
data impeded the conduct of more detailed subgroup analyses.

In conclusion, our study used a comprehensive approach to
investigate the association between lung cancer and sepsis, providing
novel insights. Our results suggest that LC is a significant risk factor
for sepsis, however, sepsis was not found to act as a genetic
predisposing factor for LC. Further in-depth research is
warranted to unravel the additional intricacies of this
relationship. These efforts underscore the need for integrated
sepsis management in LC patients.

5 Conclusion

To summarize, our study establishes a causal relationship
between LC and increased risk of sepsis, with no evidence for a
reverse association. Comprehensive prevention and treatment of
sepsis should be carried out in LC patients, especially those with high
BMI, low educational attainment, T2DM, and smoking.
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